
Optimal FP Scheduling with Deferred Pre-emption

Robert I. Davis (Speaker) ∗ Marko Bertogna †

1 Introduction

A common misconception about fixed priority scheduling of sporadic tasks on a single
processor is that fully pre-emptive scheduling is the best approach in terms of schedula-
bility. Fixed priority non-pre-emptive scheduling (FPNS) and fixed priority pre-emptive
scheduling (FPPS) are however incomparable; there are tasksets that are schedulable
under FPNS that are not schedulable under FPPS and vice-versa.

The term fixed priority scheduling with deferred pre-emption (FPDS) has been used
to refer to a variety of techniques by which pre-emptions may be deferred for some period
of time after a higher priority task becomes ready [4]. In this paper, we assume a form
of FPDS where each task has a final non-pre-emptive region (FNR). If this region is of
the minimum possible length1 for all tasks, then we have FPPS, whereas if the FNR
constitutes all of the task’s execution time then we have FPNS; thus FPDS is a superset
of, and dominates both FPPS and FPNS.

With FPDS, there are two key parameters that affect taskset schedulability: the
priority assigned to each task, and the length of each task’s FNR. The length of the
FNR affects both the schedulability of the task itself, and the schedulability of tasks
with higher priorities. This is a trade-off as increasing the length of the FNR can
improve schedulability for the task itself by reducing the number of times it can be
pre-empted, but potentially increases the blocking experienced by higher priority tasks
reducing their schedulability. Here, we present an optimal algorithm for FPDS. This
Final Non-pre-emptive Region and Priority Assignment (FNR-PA) algorithm is optimal
in the sense that it is guaranteed to find a combination of priority assignment and FNR
lengths that result in a schedulable system under FPDS whenever such a schedulable
combination of these parameters exists. Full details are given in [4].

2 System Model and Analysis

We consider the fixed priority scheduling of a set of sporadic tasks (or taskset) on a single
processor. Each taskset comprises a static set of n tasks (τ1 . . . τn). We assume that the
index i of task τi represents the task priority, hence τ1 has the highest priority, and τn

∗rob.davis@york.ac.uk. Real-Time Systems Research Group, Department of Computer Science,
University of York, York, UK.
†marko.bertogna@unimore.it. Algorithmic Research Group, Department of Mathematics, Univer-

sity of Modena, Italy.
1The minimum possible length of a non-pre-emptive region is 1 rather than 0, as we assume a discrete

time model and tasks cannot be pre-empted during a processor clock cycle.

1

the lowest. We assume a discrete time model, where all task parameters are assumed to
be positive integers. Each task τi is characterized by its worst-case execution time Ci,
minimum inter-arrival time or period Ti, and relative deadline Di. Each task τi gives
rise to a potentially unbounded sequence of jobs, each of which has an execution time
upper bounded by Ci, an arrival time at least Ti after the arrival of its previous job,
and an absolute deadline that is Di after its arrival. Under FPDS, each task is assumed
to have a final non-pre-emptive region of length Fi in the range [1, Ci] . The worst-case
response time Ri of a task is given by the longest possible time from release of the task
until it completes execution. Thus task τi is schedulable if and only if Ri ≤ Di, and a
taskset is schedulable if and only if ∀i Ri ≤ Di.

We now recapitulate schedulability analysis for FPDS for sporadic tasksets given by
Bril et al. [3]. They showed that for FPDS, the longest response time of a task τi occurs
for some job of that task within the priority level-i active period starting at a δ-critical
instant. Lemma 3 in [3] states that the worst-case length of a priority level-i active
period Ai is given by the minimum solution to the following fixed point equation:

Ai = BFNR
i +

∑
j∈hep(i)

⌈
Ai

Tj

⌉
Cj . (1)

In (1) the term BFNR
i is the longest time that task τi can be blocked from executing

by lower priority tasks, and is given by BFNR
i = maxl∈lp(i) (Fl − 1). The number of

jobs Gi of task τi in the priority level-i active period is given by Gi = dAi/Tje. The
start time Wi,g of the final non-pre-emptive region of job g (where g = 0 is the first
job) measured with respect to the start of the δ-critical instant is given by the minimum
solution to the following fixed point equation:

wm+1
i,g = BFNR

i + (g + 1)Ci − Fi +
∑

j∈hp(i)
(

⌊
wm
i,g

Tj

⌋
+ 1)Cj . (2)

To find the worst-case response time, the start times of the final non-pre-emptive regions
Wi,g need to be calculated for jobs g = 0, 1, 2, 3, . . . Gi − 1. The worst-case response
time of task τi is then given by: Ri = maxg=0,1,2,3,...Gi−1Wi,g + Fi − gTi. Task τi is
schedulable provided that Ri ≤ Di.

3 Optimal FPDS

Definition 1 (Optimality) An algorithm Z is said to be optimal for FPDS if there are
no tasksets compliant with the task model that are schedulable under FPDS with some
priority assignment and some set of values for the lengths of the final non-pre-emptive
regions of each task, that are not also schedulable using the priority assignment and set
of lengths for the final non-pre-emptive regions determined by algorithm Z.

Theorem 2 The Final Non-pre-emptive Region Priority Assignment (FNR-PA) algo-
rithm (Algorithm 1) is optimal for the FNR-PA problem.

Theorem 3 For any taskset where there exists a priority ordering and a set of final non-
pre-emptive region lengths that is schedulable under FPDS, the FNR-PA algorithm results
in a blocking factor BFNR

i at every priority level i that is no larger than that obtained
with any other schedulable priority and final non-pre-emptive region length assignment.

2

for each priority level k, lowest first {
for each unassigned task τ {
 determine the smallest length F(k) for the FNR of task τ such that

 it is schedulable at priority k, assuming all other unassigned tasks
 have higher priorities. Record as task y the unassigned task with
 the minimum FNR length at priority k.

}
if no tasks are schedulable at priority k {
 return unschedulable
} else {
 assign task y priority k using the value of F(k) as its FNR length.
}

}
return schedulable

Figure 1: FNR-PA Algorithm

Proof of Theorems 2 and 3 is given in [4] and will be presented at the conference.
The FNR-PA algorithm (which is based on Audsley’s Optimal Priority Assignment

algorithm [1]) effectively requires a maximum of n(n + 1)/2 pseudo-polynomial task
schedulability tests to determine an optimal priority and final non-pre-emptive region
length assignment, which compares favourably with a search space of size n!

∏
∀iCi.

Thus, the FNR-PA algorithm represents a significant reduction in complexity, making
the problem tractable for the majority of practical applications.

4 Summary

Fixed priority scheduling with deferred pre-emption (FPDS), dominates both fixed pri-
ority fully pre-emptive (FPPS) and fixed priority non-pre-emptive scheduling (FPNS).

The main contribution of this work is the introduction of an optimal algorithm for
FPDS. This FNR-PA algorithm is optimal in the sense that it is guaranteed to find a
combination of priority assignment and task final non-pre-emptive region lengths that
result in a schedulable system under FPDS, whenever such a schedulable combination of
these parameters exists. As a consequence of optimising schedulability under FPDS, the
FNR-PA algorithm has the notable side-effect that for any given taskset, it minimises
the blocking effect due to final non-pre-emptive regions at every priority level. Using an
analytical method of computing final non-pre-emptive region lengths, given in [4], the
FNR-PA algorithm requires at most n(n+ 1)/2 (pseudo-polynomial) task schedulability
tests to find an optimal solution, making the problem tractable for the majority of
practical real-time systems.

References

[1] N.C. Audsley On priority assignment in fixed priority scheduling (2001) Information Processing
Letters, 79(1): 39-44.

[2] G.C. Buttazzo, M. Bertogna, G. Yao (2013) Limited Preemptive Scheduling for Real-Time
Systems: A Survey IEEE Transactions on Industrial Informatics. In press. Downloadable from
http://retis.sssup.it/ marko/publi.html

[3] R. Bril, J. Lukkien, and W. Verhaegh (2009) Worst-case response time analysis of real-time
tasks under fixed-priority scheduling with deferred preemption Real-Time Systems, 42(1-3):63119.

[4] R.I. Davis, M. Bertogna (2012) Optimal Fixed Priority Scheduling with Deferred Pre-emption In
proceedings 33rd IEEE Real-Time Systems Symposium.

3

