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The Influence of Axial-Torsional 
Coupling on the Natural 
Frequencies of an Aerial Cable 
The equations of motion for the small oscillations of a stranded, overhead trans
mission line are derived and linearized about the static equilibrium position. The 
influence of axial-torsional coupling on the natural frequencies is studied analytically 
and an expression is presented for the coupled natural frequency in torsion. In order 
to verify the analytical results, a finite element analysis of the linearized coupled 
differential equations is carried out. The results of each analysis are compared and 
show close agreement. The results of the zero coupling case also closely agree with 
previous work. 

Introduction 
For a number of years various investigators have analyzed 

the problem of free vibrations of suspended cables or chains. 
Suspended cables can be found in many engineering applica
tions of which electrical power transmission is one. A common 
problem associated with aerial cables is that in the absence of 
circular cross-section, the aerodynamic lift characteristic is so 
altered that it can lead to dynamic instability, even at low wind 
speeds. The unstable case can result in a large amplitude, low-
frequency oscillation, termed as "galloping." Galloping may 
result in power outages and may cause various kinds of struc
tural damage. Attempts have been made in the past to suppress 
galloping or, at least, to minimize the galloping amplitude. In 
order to be effective in controlling galloping, a knowledge of 
the mechanics of galloping is required. 

Routh (1905) presented the equations of motion for an ine
lastic chain hanging in the form of a cycloid. He obtained 
exact solutions for the symmetric and anti-symmetric vertical 
oscillations. Based on the results of some elementary oscillation 
experiments, Pugsley (1949) presented a simple approximate 
theory of the oscillations of a uniform suspension chain. He 
derived semi-empirical formulae for the first three natural fre
quencies. Saxon and Cahn (1953) obtained an asymptotic so
lution of the linearized equations of motion for the small 
vibration of a suspended, in-extensible chain vibrating in the 
same catenary plane which contains the equilibrium configu
ration. The results obtained by Saxon and Cahn, which are 
applicable to cables with a larger sag to span ratio, agreed with 
those presented by Pugsley which are applicable for sag-to-
span ratios between 0.1 and 0.25. 

Cheers (1950) used a perturbation analysis for the cable 
motion which resulted in wave equation analysis. The equa
tions of motion for an elastic cable of symmetric cross-section 
were presented by Shea (1955) and by Simpson (1963). The 
equations of motion presented by Shea and Simpson assume 
an absence of torsional motion. In both of these investigations, 
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motion of the cable in all three Cartesian directions were con
sidered. Shea (1955) derived and solved the linearized equations 
of motion about the sagged, in-plane equilibrium position for 
a cable undergoing free vibrations. Shea concluded, on the 
basis of linearized analysis of the nonlinear partial differential 
equations that for free vibrations, the out-of-plane motion 
(normal to the catenary plane) is not coupled to the in-plane 
motion. Also, for a small sag-to-span ratio, the anti-symmetric 
vertical natural frequencies are given by the taut string model 
whereas the symmetric natural frequencies can be obtained by 
solving a transcendental equation which involves material and 
geometric parameters of the cable. Shea also mentioned the 
fact that if the sag-to-span ratio was greater than a critical 
value, then the first symmetrical mode would have three loops. 

Simpson (1966) used a transfer matrix method to determine 
the in-plane natural frequencies of a shallow elastic catenary. 
Unlike Shea who considered only fixed-fixed type of end sup
port, Simpson considered other types of end support in ad
dition to the fixed-fixed one. The results for the fixed-fixed 
case are identical in both of the investigations by Simpson and 
Shea. 

A study of the influence of curvature coupling on the nature 
of in-plane oscillations of an initially curved cable was carried 
out by Nariboli and McConnell (1988). As in the works of 
Shea (1955) and Simpson (1966), torsional motion was not 
considered in this analysis too. The study is unique in the sense 
that Nariboli and McConnell used a curvilinear coordinate 
system to derive the nonlinear equations of motion governing 
the planar oscillations of an initially curved cable. The non
linear equations were linearized and the nature of linear os
cillations was studied for the case of a shallow catenary 
geometry. The authors have presesnted dispersion relation for 
frequency and expressions for mode shapes. The transcenden
tal equation [Eq. (39) in the paper] used for finding the natural 
frequencies happens to be the same as given by Shea (1955) 
and Simpson (1966) except for the sign of a term. There appears 
to be a sign misprint in that equation. 

In addition to the three Cartesian directions of motion, 
torsional motion was also included in the analysis of a bundled 
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conductor by Simpson (1972). Thompson (1975) considered 
the torsional motion of a single conductor with the added 
assumption that no motion takes place in the cable axial di
rection. 

There are other notable works in the cable vibration area. 
Irvine and Caughey (1974) derived an approximate solution 
for the in-plane oscillation of an elastic cable and investigated 
the effect of elasticity on natural frequencies. For small sag-
to-span ratios, the theory provides good results and explains 
discrepancies caused by the inextensibility assumption. West 
et al. (1975) carried out a numerical investigation of the natural 
frequencies and modes of vibration of an elastic cable oscil
lating in its own plane. Triantafyllou (1984) presented an ex
cellent review of literature on linear dynamics of cables up to 
the year 1983. 

McConnell and Chang (1986) studied the axial-torsional cou
pling effect on a sagged transmission line. They considered the 
equations of motion presented by Simpson and included the 
constitutive model proposed by McConnell and Zemke (1982) 
which takes into account the stranded geometry. They solved 
the coupled equations numerically by a combination of finite 
difference and Runge-Kutta methods. By carrying out a Fast 
Fourier Transform analysis of the resulting time history of a 
point on the line, the frequencies were calculated. McConnell 
and Chang concluded based on their studies that axial-torsional 
coupling increases vertical fundamental natural frequency and 
that the ratio of torsional to vertical frequency may be such 
that it may lead to internal resonance. The equation of motion 
for torsional oscillation presented by McConnell and Chang 
is, in the opinion of the authors of the present paper, not 
dimensionally balanced. Also it was felt that closed form 
expressions for natural frequencies might give a better insight 
into the influence of axial-torsional coupling. Hence the pres
ent study was carried out. 

Following Shea's (1955) approach and including the con
stitutive model proposed by McConnell and Zemke (1982), the 
equations of motion of a stranded, sagged cable oscillating in 
the three Cartesian degrees of freedom and also undergoing 
torsional motion are derived using Hamilton's principle. The 
equations of motion are linearized about the sagged equilib
rium position. Neglecting motion along the axial direction, 
closed form expressions for natural frequencies are derived. 
In order to check the validity of the assumption that the axial 
motion is negligible, a finite element analysis of the coupled 
linearized differential equations is carried out without invoking 
the axial motion assumption. It is found that the assumption 
is, indeed, valid. 

Linearized Equations of Motion 

The linearized equations of motion of a stranded, sagged 
elastic cable, as shown in Fig. 1, are derived using Hamilton's 
principle. In the figure, XYZ represents the right-handed global 
coordinate system with the YOZ plane containing the static 
equilibrium configuration. The origin of the XYZ frame is 
located at the center span sagged position. The X coordinate 
direction is normal to the YOZ plane. The Lagrangian rep
resenting the complete kinetic and excess potential energies 
with respect to the equilibrium position is derived by forming 
the various component energies. Then by taking the first var
iation and requiring that it vanish, the equations of motion 
are obtained. Attention will now be focused on deriving the 
various energies. 

Strain Energy. The strain energy due to tension may be 
written as 

SET Aaeds (1) 

where A is the cross-sectional area, a is the axial stress, e is 
the axial strain, 5 is the parameter which measures length along 

Fig. 1 Conductor geometry 

the unstressed line, and / is the semi-free length. Equation (1) 
may be written as 

SET«> = \ J Peds 
(2) 

where P is the axial tension. 
The constitutive model presented by McConnell and Zemke 

(1982) is 

and 

dd 
P = AEe + B — 

ds 

dd 
T=Be + GJ — 

ds 

(3) 

(4) 

where E is the Young's modulus, B is the axial-torsional cou
pling term, GJ is the torsional rigidity, T is the twisting mo
ment, and 9 is the rotational deformation at a point about the 
unit tangent in the right-handed sense. The unit tangent points 
in the same direction as the coordinate s. For an aluminum-
conductor-steel-reinforced (ACSR) electrical conductor called 
DRAKE 26/7 (with 26 aluminum wires and 7 steel wires) the 
value of B is 24900 N-m. This value of B which was given by 
McConnell and Chang (1986) is used in later calculations. 
Using the constitutive model in Eq. (2), the strain energy be
comes 

SET u AEe + B 
ds 

eds. (5) 

With reference to Fig. 1, the position vector R of any point 
on the line located at the center of the cross-section may be 
written as 

R = xi+y'j+zk (6) 

where x, y, and z are the coordinates along X, Y, and Z 
Cartesian directions. The vectors i, j , and k represent the unit 
vectors along X, Y, and Z directions, respectively. The com
patibility condition is given by 

dR dR 
d + e) = ds ds 

(7) 

where the term on the right-hand side of Eq. (7) is the dot 
product of the vector which represents the parametric variation 
of R, with itself. Using Eq. (7), Eq. (5) can be written as 

SET AE m 
ds 

- 1 fife 

i f B°° 
2 J_, ds 

m 
ds 

1 fife (8) 

where 1 dR/ds I denotes the magnitude of the vector dR/ds. 
Similarly, the torsional strain energy may be written as 

2 

SET 
f' dd ( 3R \ , 1 f' (d%\ 

\^Js\Ts-T + l\_l
GJ\ds) ds. (9) 

The total strain energy is then the sum of Eqs. (8) and (9). 
It may be noted here that the influence of bending is not 
considered in this study since bending stresses in a single con
ductor span are small owing to small radius of cable cross-
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section and large radius of curvature of the cable. The total 
strain energy stored in the equilibrium configuration may be 
obtained in the same manner. 

Denoting quantities related to the static equilibrium config
uration by subscript zero, the excess of strain energy with 
respect to the equilibrium configuration is given by 

SE-SEn i>( m 
ds 

3Ro 
ds 

i>(s 
3R 
ds 

1 

3#o 
" ds 

3R 
ds 

l | Ids 

1 \ds 

H d% 
ds 

ds. (10) 

Gravitational Potential Energy. If m represents the mass 
per unit unstressed length, g the acceleration due to gravity, 
and z the vertical coordinate of any point on the line, then the 
excess of gravitational potential energy with respect to the 
equilibrium position is given by 

- - f . PEg- {PEg)0= - mg(z-z0)ds. (11) 

V-Vn^ 

I 

AElK,+K2 

B -

Ki+K2 , 1 Kl 

3R0 

ds 
3Rn 

ds 

\ds 

1 dd0 K, + K 

2 ds 3Ro 
ds 

2 1 dd0 

8 ds 
Kl 

3R0 

ds 

90 
' ds 

3R0 

ds 

1 
' 2 

K2 

9Ro 
ds 

> 1 

-
) \ 

ds 

-/2 
GJ\ 

{ds 
2frS]d s-J' ,m*w* (19) 

where Taylor series expansions have been used to express some 
of the nonlinear terms. It may be noted here that only those 
terms which, when the first variation is taken, will lead to 
linear terms in u, v, w, and </> are retained. The kinetic energy 
is given by 

KE = -
1 

m(u2 + v2+w2)ds + 
2 J_, 

Icj>2ds. (20) 

Kinetic Energy. The kinetic energy of the line is given by 

KE=-
1 

I m(x2 + y2+ z2)ds + -
1 L,1* ds (12) 

where / represents the mass moment of inertia per unit length 
of the cable and the dots represent differentiation with respect 
to time. 

By forming the Lagrangian, taking its first variation, setting 
the variations of u, v, w, and <j> at both ends of the line and 
at either end points in time to zero, equating the resulting 
variation to zero, and collecting like terms, the equations of 
motion become 

d_ 

ds 
P0 du 

1 + e0 ds dt2' 
(21) 

Linearization. Let 

x = x0 + u 

y=y0+v 

z = z0+w 

0 = 0o + 4> (13) 

where u, v, w, and <j> represent small perturbations from the 
equilibrium configuration. Since 

2 
3R 
ds 

and 

3R0 

ds 

dx 

ds 

dxo 
ds 

dy 

ds 

dyo 
ds 

dz 
ds, 

dZo 
ds 

we can use the perturbations to write Eq. (14) as 

9R 
ds 

3R„ 
ds 

where 

and 

* i 

+ Kt+K, 

dw 

a? 

(14) 

(15) 

(16) 

(17) 

(18) 
„ ~ (fyo dv dz0 dw 

\ ds ds ds ds 

Combining Eqs. (10), (11), and (16) the excess of total potential 
energy (tensile strain energy, torsional strain energy, and grav
itational potential energy) with respect to the equilibrium con
figuration is given by 

d_ 

ds 

dyo (dyo dv dzo dw 
ds \ ds ds ds ds 

B dy0 dt] m d2v 

' AE ds ds AE di2' 

d (dw 1 dzo 
ds \~ds+K ds 

3v0 dv dzo dw 
—• 1-
ds 35 ds ds 

B dzod<j> m d2w 

AEKds ds) AEK dt2' 

(22) 

(23) 

and 

d2<j> dy0 dv dzo dw 
ds ds ds ds 

d24> 
= / ^ (24) 

where K represents the stretch per unit length at the span center. 
The quantity K is the ratio of the horizontal tension to the 
axial stiffness of the cable. It may be noted here that the out-
of-plane motion u is decoupled from the other degrees of 
freedom, a result already established by Shea (1955) and Simp
son (1966). By setting the axial-torsional coupling parameter 
B to zero, Eqs. (22) and (23) reduce to the corresponding ones 
given originally by Shea (1955) and Simpson (1966). Also, when 
B vanishes, the torsional motion is decoupled from the other 
degrees of freedom as well. 

If the sag to span ratio is small (shallow catenary), then the 
ratio of weight per unit length to the horizontal tension is small 
compared to one. This implies that the tension in the string is 
approximately equal to the horizontal tension. Also the ratio 
of the horizontal tension to the axial stiffness is very small 
compared to unity for the majority of practical cases. These 
limits are referred to as the shallow catenary condition. Based 
on this assumption one may write 

f > . l + * and $*-*(!+*) 
ds ds a 

(25) 
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where a = AEK/mg. Using Eq. (25), comparing the order of 
magnitude of coefficients of like terms, neglecting small order 
coefficients the equations of motion for the axial, vertical, and 
torsional degrees of freedom may be reduced to 

ma d2v 

Table 1 

d / dv dw Ba d4> 

ds \ ds ds AE ds 

d_ 
ds 

dw s 
~ds+K? 

d_v d w Ba^ 9</> 

ds ds AE ds 
m d2w 

and 

ds2 a ds 

dv dw a ^r+s-— 
ds ds 

' AEK dt1' 

,d24> 

(26) 

(27) 

dt2 (28) 

Determination of Natural Frequencies 

Assuming normal mode of oscillations, we may write 

v(s,t) = v(s)e^', 

w(s,t) = w(s)e'"', 

and 0(5,0 =*(5)e'" ' (29) 

where / = \ / - 1 and co is the circular frequency. Using Eq. 
(29) in Eqs. (26), (27) and (28), and canceling out the common 
terms gives 

d_ I dy_ 
ds \ ds 

dw Ba d<j> 

~S ds AE ds 
ma 

~AE' 
(30) 

d (dw s I dv dw Ba d4> 

Js (~ds+K? \~ds+S'ds+AE~ds AEK 
o)2W, 

and 

d2(j) B d ( dv dw\ T 2-
G 7 - T + - — [a— + s — ) = -Iw2<l>. 

dsr a ds \ ds ds. 

(31) 

(32) 

By assuming that the axial motion is negligible, one may write, 
using Eq. (30), 

d I dv dw Ba_ d(j> 

ds \ ds ds AE ds 
f Uo 
Is J 

or 
dv dw Ba dd> 

ds ds AE ds 

(33) 

(34) 

where d is a constant. Using Eqs. (34) in Eq. (32) one gets 

d2$ 

ds2 + X|4> = 0 

where 

A„ = 

(35) 

(36) 
{GJ-Bl/AE)\ 

The general solution of Eq. (35) can be written as 

0 = C2cos(\os) + C3sin(X^) (37) 

where C2 and C3 are constants which depend on the boundary 
conditions. Applying the fixed-fixed boundary conditions the 
equation for the natural frequency, in Hertz, of torsional os
cillation may be written as 

n ((GJ-B2/AE)~)U1 

2(2/) [ / j / = (38) 

where n = 1, 2, 3, . . . 
From Eq. (38) one may conclude that axial-torsional cou

pling decreases torsional natural frequency. By using Eqs. (31) 
and (34), one can find the natural frequencies for vertical 
oscillations. The expressions for vertical natural frequencies 

Mass per unit length 
Axial stiffness 
Span 
Sag 

•=• 0.9669 kg/m 
= 2.21E7 N 
= 853.44 m 
= 70.7136 m 

Mode 

1 

2 

3 

4 

5 

Vertical Natural Frequencies (radians per second) 

West et al. 

Extrapolation 

0.800 

1.160 

1.630 

1.990 

2.450 

Continuous 
method 

0.811 

1.175 

1.653 

2.027 

2.492 

Pugsley 

0.811 

1.148 

1.647 

Saxon 
& 

Cahn 

0.803 

1.185 

1.671 

2.042 

2.452 

Present 
method 

0.800 

1.189 

1.667 

2.046 

2.528 

turn out to be identical to those given by Shea (1955) and 
Simpson (1966). The expression for finding the natural fre
quencies of anti-symmetrical modes of vertical oscillation is 
the same as that for a corresponding taut string model whereas 
the expression for determining the natural frequencies of sym
metrical modes of vertical oscillation is 

tan (»J'M»J i H/AE ( lm / = 0 

(39) 

where 8 is the sag at mid span and H is the horizontal com
ponent of cable tension. The other quantities appearing in the 
equation have been defined previously. The axial-torsional 
coupling parameter "B" does not appear in Eq. (39). This 
demonstrates the fact that if the axial motion is negligible, 
then the vertical natural frequency is unaffected and the tor
sional natural frequency is reduced due to the effect of axial-
torsional coupling. 

In order to check the validity of the assumption that the 
axial motion is negligible, a finite element analysis of the Eqs. 
(30), (31), and (32) is carried out. A Galerkin weighted residual 
approach is used with linear interpolation polynomials. The 
formation of element stiffness and mass matrices, the assembly 
of global stiffness and mass matrices, and the solution of the 
resulting eigenvalue problem are carried out in the usual man
ner (Segerlind, 1984; Meirovitch, 1980). A FORTRAN pro
gram was written to form the element matrices, build the global 
matrices, and apply the boundary conditions. The resulting 
eigenvalue problem was solved using IMSL (International 
Mathematical and Statistical Library), subroutine EIGRF. The 
calculation was carried out on an IBM 3084 machine. 

Numerical Examples and Discussion of Results 
At this stage, to check the finite element formulation and 

the FORTRAN program, an example given by West et al. 
(1975) is used as a test case. West and his coworkers considered 
only the in-plane (plane containing the static equilibrium con
figuration) oscillations. Torsional motion and the influence of 
stranded geometry of the cable were not included in the study. 
The results are given in Table 1. The last column in the table 
contains the results obtained for the cable problem using the 
finite element method described in this paper. The other col
umns contain results reported and discussed in the paper by 
West et al. (1975). It can be seen that the finite element results 
compare very well with those reported elsewhere. 

Now, the example given by McConnell and Chang (1986) is 
examined using the finite element program. Also, calculations 
for vertical natural frequency for symmetrical modes are per
formed using the transcendental equation given by Shea (1955). 
The results are presented in Table 2 which includes the results 
reported by McConnell and Chang. The frequencies are cal-
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Table 2 
Mass per unit length = 1.628 Jcg/m 
Axial stiffness = 3.52E7 N z 

Torsional rigidity = 161.0 N-m 
Mass moment of inertia per unit length = 0.00154 3 kg-m 
span = 304.8 m 

Symmetrical modes 

(Vertical Natural Freguencies) 

Sag/Span 
ratio 

a) 
1% 

b) 

a) 
3% 

b) 

a) 
5% 

b) 

Frequency (Hertz) 

McConnell 
& 

Chang 

1st 

0.333 

0.467 

0.500 

0.467 

2nd 

0.667 

0.667 

3rd 

0.934 

0.934 

Shea/Simpson 

1st 

0.362 

* 

0.475 

* 

0.402 

* 

2nd 

0.953 

* 

0.637 

A 

0.687 

* 

3rd 

1.585 

* 

0.925 

* 

0.922 

Present 
Finite Element 

method 

1st 

0.362 

0.361 

0.477 

0.477 

0.404 

0.404 

2nd 

0.955 

0.954 

0.638 

0.634 

0.699 

0.699 

3rd 

1.602 

1.602 

0.935 

0.934 

0.930 

0.932 

a) B = 0 N-m 
b) B = 24900 N-m 

Not reported 

* Does not apply 

Table 3 
Torsional Natural Frequencies (Hertz) 

Sag/Span 
ratio 

a) 
1% 

b) 

a) 
3% 

b) 

a) 
5% 

b) 

Finite Element Method 

First 

0.5298 

0.4988 

0.5287 

0.4982 

0.5268 

0.4967 

Second 

1.0614 

1.0012 

1.0593 

0.9995 

1.0555 

0.9958 

Third 

1.6023 

1.5051 

1.5931 

1.5100 

1.5866 

1.4990 

Equation (38) 

First 

0.5298 

0.5000 

0.5289 

0.4992 

0.5266 

0.4969 

Second 

1.0598 

1.0000 

1.0579 

0.9983 

1.0532 

0.9939 

Third 

1.5897 

1.5000 

1.5868 

1.4975 

1.5797 

1.4908 

a) B = 0 N-m 

b) B = 24900 N-m 

culated for three different values of sag to span ratio. The sag 
to span ratios chosen are above and below the critical sag 
which is 2.2 percent as reported by Shea (1955). For a given 
sag to span ratio there are two rows of entry in the table. The 
first row represents the natural frequencies without considering 
the coupling between axial and torsional motion due to stranded 
geometry (B = 0). The other row provides the results taking 
the effect of coupling into account. As mentioned before, the 
value of the coupling parameter is 24900 N-m. It can be seen 
that the results obtained from the finite element method com
pare well with those obtained using the transcendental equation 
given independently by Shea and Simpson for the case when 
B is zero. 

It may be noted here that in order to solve the set of coupled 
ordinary differential equations [Eqs. (30)-(32)] analytically it 
was assumed that the motion along the span direction could 
be neglected which implies that the tension in the cable is almost 
constant throughout the length but varies only with respect to 
time. However, this assumption was not made for solving the 
set of equations using the finite element method. This com
parison demonstrates the validity of the assumption. Shea and 
Simpson did not consider the axial-torsional coupling effect 
and it is noted in Table 2 where their results do not apply. 

0.0 0.200 0.400 0.600 0.600 1.00 

B*B/AEGJ 

Fig. 2 Fundamental torsional natural frequency as function of B2/AEJG 
for "DRAKE ACSR" cable: sag-to-span ratio = 1 percent 

It has been stated in the paper that even after including the 
effect of coupling, the frequencies of vertical oscillations which 
are important in the study of galloping are still given by the 
same equations as reported by Shea. The entries in the second 
row for every sag to span ratio confirms this result. This means 
that the frequencies of vertical oscillation are not affected by 
the coupling between axial and torsional motion. Also for a 
value of sag to span ratio greater than the critical sag, the first 
symmetrical mode (not shown here) obtained using the finite 
element method has three loops. 

The torsional natural frequencies for the same example are 
calculated using Eq. (38) and using the finite element program. 
The results are given in Table 3. It can be seen that the results 
obtained from both the methods agree well with each other. 
Also it can be seen that the coupling reduces the natural fre
quencies of torsional oscillations. To the best of the knowledge 
of the authors, the equation for finding the torsional natural 
frequencies of a shallow cable, considering coupling due to 
stranded geometry, has not appeared in literature before. From 
the results obtained using the finite element method it is ob
served that the frequencies of oscillations along the span di
rection are increased due to the coupling. However, the 
percentage change in the frequencies for along-the-span os
cillations for a given value of B, the axial-torsional coupling 
parameter, is much less than the percentage change in torsional 
frequencies. With reference to the illustrative cable problem 
presented by McConnell and Chang, for a 3 percent sag-to-
span ratio and a value of 24900 N-m for the coupling param
eter, the percentage changes in the fundamental torsional and 
along-the-span frequency are about 5.6 percent and 0.025 per
cent, respectively. 

Galloping is found to occur in the first few modes. It can 
be seen from Tables 2 and 3 that the first symmetrical vertical 
frequency is close to the coupled fundamental torsional fre
quency. If a torsional frequency is close to a vertical frequency 
or to an integer multiple of a vertical frequency then it may 
lead to internal resonance. Internal resonance may, in turn, 
lead to galloping instability. This can be avoided by separating 
the torsional and vertical frequencies by a proper design of 
the cable. The results presented in this paper will be useful 
toward that end. 

Figures 2 and 3 show the nondimensional fundamental tor
sional frequency (ratio of coupled fundamental torsional fre
quency to that of the uncoupled one) as a function of the axial-
torsional coupling parameter B for the example line presented 
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Fig. 3 Fundamental torsional natural frequency as a function of B2/ 
AEJG for "DRAKE ACSR" cable: sag-to-span ratio = 3 percent 
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Fig. 4 Torsional frequency as a function of B 

by McConnell and Chang (1986) for sag-to-spin ratios of 1 
percent and 3 percent (values below and above the critical sag), 
respectively. The nondimensional frequencies are calculated 
using the Eq. (38) and also using the finite element program. 
Figure 4 shows the same type of graph for the example given 
by West et al. (1975). Since West et al. did not consider tor
sional oscillations, the value of G/was not reported. Nor was 
the type of aerial cable specified. As a result, the torsional 
rigidity and the moment of inertia per unit length of the cable 
for the case of Fig. 4 are prorated from the data given by 
McConnell and Chang. The values are 98.21 N-m2 and 9.41 
x 10~4 Kg-m, respectively. The figures show agreement be
tween finite element produced results and those obtained using 

Eq. (38) for the complete range of the coupling parameter B. 
The ratio, B2/AEGJ, is less than unity for physical reality. 

Conclusions 
From this study, several conclusions can be made. These 

are: 
(7) Axial-torsional coupling does not influence the fre

quency of vertical oscillation whereas it reduces the frequency 
of torsional oscillation and increases the frequency of oscil
lation in the span direction. 

(2) Equation (38) may be used for finding the coupled 
torsional natural frequencies while designing electrical power 
transmission cables. 

(3) Sag-to-span ratio does not have an appreciable effect 
on torsional frequencies as may be deduced from Eq. (38). 
The small changes in torsional frequencies for changes in sag-
to-span ratio are due to corresponding small changes in free 
length. 

(4) The assumption of negligible motion along the span 
direction is valid. 
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