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Abstract

In the framework of gene expression data analysis, the selection of biologically relevant sets of genes and the discovery
of new subclasses of diseases at bio-molecular level represent two significant problems. Unfortunately, in both cases the
correct solution is usually unknown and the evaluation of the performance of gene selection and clustering methods is dif-
ficult and in many cases unfeasible. A natural approach to this complex issue consists in developing an artificial model for
the generation of biologically plausible gene expression data, thus allowing to know in advance the set of relevant genes
and the functional classes involved in the problem.

In this work we propose a mathematical model, based on positive Boolean functions, for the generation of synthetic
gene expression data. Despite its simplicity, this model is sufficiently rich to take account of the specific peculiarities of
gene expression, including the biological variability, viewed as a sort of random source. As an applicative example, we also
provide some data simulations and numerical experiments for the analysis of the performances of gene selection methods.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

DNA microarrays provide the gene expression level for thousands of genes pertaining to a given tissue, thus
allowing to understand mechanisms regulating biological processes, such as the onset of a disease or the effects
of a drug [2]. To this end, supervised and unsupervised machine learning and statistical methods have been
largely applied to the analysis of gene expression data [14,15,20,23].

In some situations the quality of the solution offered by a given technique can be easily evaluated; this is the
case of pattern recognition problems, where the accuracy of a classifier can be measured through cross-vali-
dation or hold-out estimation. In other problems the performance of a statistic or learning method cannot be
assessed since the correct solution is not available, even in a subset of cases.

For instance, several statistic and machine learning techniques [10,11,18] have been proposed in the liter-
ature to face with the important problem of gene selection, where the subset of genes involved in a biological
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process of interest is to be determined from a collection of microarray experiments. Unfortunately, the entire
set of genes involved in a specific biological process is usually unknown or only partially known. Conse-
quently, the evaluation of the real effectiveness of gene selection methods is very difficult and in many cases
unfeasible.

Other important problems, such as the discovery of new subclasses of diseases detected at bio-molecular
level may be formalized as unsupervised clustering problems [1,19]. However, besides the fact that unsuper-
vised clustering is in general an ill-posed problem, in this case no a priori solutions are known in advance,
as the ‘‘real’’ bio-molecular classes are usually unknown.

To provide some kind of performance evaluation, several models have been proposed to produce
synthetic gene expression data for classification, clustering and gene selection problems [6,24]. Even if in
principle they may be helpful to test gene selection methods, their main limitation consists in a drastic sim-
plification of the model, which is not sufficiently rich to take into account the peculiarities of gene expression
data.

In this paper we propose a new biologically motivated mathematical model capable to describe the relation-
ships between the expression levels of the genes of a virtual tissue and its functional state. In this way it is pos-
sible to design an artificial system for a genome-wide synthesis of gene expression data. In particular, the
randomness due to biological variability and measurement errors is gathered in a specific term, whereas it
is shown that the deterministic part of the model can be implemented by a positive Boolean function acting
on relevant genes.

Furthermore, a convenient manner of writing this kind of functions consists in employing m-of-n expres-
sions, which are able to capture the main biological characteristics of gene expression, while maintaining a suf-
ficient simplicity. Numerical experiments show how to apply the proposed model to the analysis of the
performances of largely used statistical and machine learning gene selection methods.

The structure of the paper is as follows: Section 2 analyze in detail the biological characteristics of gene
expression data that must be taken into account in the development of an artificial model for the generation
of virtual microarray experiments. The proposed model based on positive Boolean functions is described in
Section 3, whereas in Section 4 numerical experiments show how to apply the proposed model to the perfor-
mance analysis of gene selection methods. Section 5 reports some conclusions.

2. Biological characteristics of gene expression data

Many important results published in the bio-medical and bioinformatics literature point out the main struc-
tures underlying gene expression data. Their analysis allows to derive a collection of specific characteristics,
which must be satisfied by an artificial model so as to produce biologically plausible gene expression levels.

2.1. Profiles and expression signatures

The main goal of gene selection methods consists in finding sets of genes significantly related to a specific
functional state (e.g. diseased vs. healthy). In the bio-molecular literature sets of biologically relevant and dif-
ferentially expressed genes are named expression signatures [1,7,16,17,26]. This term has been firstly introduced
by Alizadeh et al. [1] to characterize gene expression patterns found by gene expression profiling. More pre-
cisely this term refers to a group of genes coordinately expressed in a given set of specimens and in a specific
physiological or pathophysiological condition.

The correlation among the mRNA levels of the genes is due to the underlying regulatory system, by which
the same set of transcription factors and binding sites may be directly or indirectly shared by the genes belong-
ing to the same expression signature. Hence, a gene expression signature indicates a cluster of coordinately
expressed genes, whose coordination reveals the fact that they participate to the same biological process
(and hence they are controlled by the same set of regulation factors). Indeed, they are usually named by either
the cell type in which their component genes are expressed, or by the biological process in which their com-
ponent genes are known to function.

From this standpoint the overall expression profile of a patient can be interpreted as a collection of gene
expression signatures that reveal different biological features of the analyzed sample [1].
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Expression signatures has been mainly discovered and analyzed in gene expression profiles of diseases. For
instance, the expression profiling of B-cell malignancies through hierarchical clustering revealed expression
signatures related to cell-proliferation, lymph-nodes, T-cells, germinal center B-cells (GCB) and others [1].

Independent Component Analysis performed on gene expression data from ovarian cancer tissues found
gene expression signatures representing potential pathophysiological processes in ovarian tissue samples
[16]. Expression profiling of rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children,
identified two signatures associated with metastatic RMS, responsible for most of the fatal outcome of this
disease [26], while two way hierarchical clustering analysis identified several expression signatures expressed
in different types of bladder carcinoma [7].

Expression signatures have been also identified in species other than humans and in contexts not related to
tumoral differentiation. For instance comparative functional genomics based on shared patterns of regulations
across orthologous genes identified shared expression signatures of aging in orthologous genes of D. melano-
gaster and C. elegans [17].

Since expression profiles and expression signatures seem to be well-established biological structures that
characterize gene expression data, they can be employed as the corner stones of our artificial model. To this
aim, in the next subsection the main properties of gene expression signatures will be analyzed and discussed.

2.2. Characteristics of gene expression signatures

2.2.1. Differential expression and co-expression
Differential expression analysis of single genes, even if it may be useful to identify specific genes involved in

biological processes [5], cannot capture the complexity of tightly regulated processes, crucial for the proper
functioning of a cell.

Correlations among gene expression levels have been observed [1,8], reflecting the fact that in most biolog-
ical processes genes are co-regulated. As recently observed, not all the changes in co-regulation are manifested
by up or down regulation of individual genes, and we need to explicitly consider interactions among genes to
discover patterns in the data [13]. This corresponds to examine sets of co-regulated genes, i.e. expression sig-
natures, to reveal functional relationships among genes.

2.2.2. Gene expression signatures as a whole rather than single genes contain predictive information.

Many times is the signature taken as a whole that seems to contain predictive information for a biologically
meaningful identification of tissue samples. For instance, it was found an expression signature of 8 upregu-
lated and 9 downregulated genes associated with metastasis in different types of adenocarcinoma: none of
these genes represents a marker, but it is the signature as a whole that represents a ‘‘collective marker’’ of
tumor metastasis [21].

In other works [13,21] it has been shown that in some cases relevant differences are subtle at the level of
individual genes but coordinate in gene expression groups.

2.2.3. Genes may belong to different gene expression signatures at the same time

Many genes may be involved in a number of distinct behaviors, depending on the specific conditions of the
tissue. From this standpoint they may belong to different expression signatures [9]. Indeed, each gene may be
influenced by several transcription factors, each of which affects several genes [16]. Moreover, many underly-
ing conditions in a given sample may concur to define a gene expression signature (e.g. tumorigenesis, angi-
ogenesis, apoptosis) [12].

2.2.4. Expression signatures may be independent of clinical parameters

An expression signature of 153 genes can be used to correctly classify hepatocellular carcinoma (HCC)
intra-hepatic metastasis from metastatic-free HCC [25]. This expression signature, that embeds high predictive
information, has been shown to be independent of tumor size, tumor encapsulation and patient age, but very
similar to that of their corresponding metastases.

Several other works showed that a bio-molecular characterization of tumors can discover different subtypes
of malignancies, not detectable with traditional morphological and histopathological features (see e.g. [1,10]).
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2.2.5. Different gene expression profiles may share signatures and may differ only for few signatures

It has been shown that gene expression signatures may be shared and partially expressed in different gene
expression profiles [1,21,25].

For instance, it has been shown that Diffuse Large B-Cell Lymphoma (DLBCL) subgroups (GCB-like and
activated B-like DLBCL) share most of the expression signatures but differ mainly for two signatures (GCB
and activated B-cell signatures), partially expressed respectively in germinal center B-cell and activated periph-
eral blood B cell [1].

Moreover, hierarchical clustering, in the space of a 128 genes signature of metastatic adenocarcinoma nod-
ules of diverse origin, showed two clusters of primary tumors that were highly correlated with metastatic ones:
this fact, together with a differential overall survival in primary adenocarcinoma tumors, showed that the con-
sidered gene expression signature is present in a subpopulation of primary tumors [21].

Hence, gene expression profiles of functionally different tissues may share some expression signatures, dif-
fering only for a subset of them. These expression signatures may be also partially expressed (that is, not all the
genes belonging to the expression signature are over-expressed or under-expressed), reflecting functional alter-
ations in diseased patients.

2.3. Modeling issues

In the light of the characteristics of gene expression signatures described in the previous section, we can
identify the following main issues, which must be taken into account in the construction of a biologically plau-
sible artificial model for gene expression data:

(1) Expression profiles may be characterized as a set of gene expression signatures, which uniquely deter-
mines a functional group of samples. Thus, the model should allow us to define expression profiles in
terms of expression signatures, ensuring a large flexibility with respect to the number and the kind of
genes composing the synthetic expression signatures.

(2) Expression signatures are interpreted in the literature as a set of coexpressed genes; these genes may be
overexpressed or underexpressed with respect to a particular condition. Accordingly, in the model, each
expression signature should be defined as a set of overexpressed or underexpressed genes, that is genes
with expression levels above or below a given threshold. The model should define a signature active if its
genes are coordinately over(under)expressed.

(3) Expression signatures may be defined either by the overall available knowledge about bio-molecular pro-
cesses (e.g. by Gene Ontology categories) or may be discovered through statistical and machine learning
methods. Hence, the model should permit to define arbitrary signatures, in order to face with a large
range of applications in different biological contexts.

(4) Genes may belong to different signatures at the same time. Consequently, the model should allow to
assign the same gene to different signatures.

(5) The number of genes within an expression signature usually vary from few units to few hundreds.
Accordingly, the model should permit to select within this range the number of elements for each gene
expression signature.

(6) Apart from technical variation (that in principle should be detected and canceled by proper design and
implementation of bio-technological experiments and suitable pre-processing procedures [3]), gene
expression is biologically variable also within functional classes (conditions) [4]. Thus, the model should
reproduce the variation of gene expression data, which may be simulated by sampling from a predefined
distribution. Our preliminary analysis showed that gene expression values are close to be normally
distributed.

(7) Not always expression signatures show large variations of gene expression levels: some signatures may
present modest but coordinate variations. Consequently, the model should be sufficiently flexible to
allow small variations of coexpressed genes, and to this end it should include tunable parameters of
the gene distributions.

(8) Not all the genes within a signature may be expressed in all the samples. Moreover, gene expression var-
iation among individuals may introduce variation into expression signatures. Hence, the model should
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permit to introduce flexibility in the number of genes that can be underexpressed or overexpressed, as
well as to introduce individual variability within a functional group.

(9) Different expression profiles may differ only for few signatures, i.e. different functional groups may share
the same (or very similar) expression signatures. This situation must be permitted by the artificial model
when developing expression signatures for different functional states.

(10) Some signatures may be only partially expressed within a particular expression profile. Accordingly, the
model should be sufficiently flexible to allow different ways of constructing an expression profile. For
instance, it must provide for signatures that may or may not be expressed, as well as for ‘‘mandatory’’
signatures, whose activation is necessary for a given functional state.
3. The mathematical model

On the basis of the biological analysis presented in Section 2 and, in particular, starting from the concepts
of expression profile, expression signature and gene modulation, we propose a mathematical model describing
the relationship between the expression levels of genes and functional state of a tissue. Our model will receive
in input a set of values representing the gene expression levels of a tissue and will return in output the value 1 if
the tissue is in the functional state of interest and 0 otherwise.

Since in a real situation, due to both biological variability and possible measurement errors occurring in
DNA-microarray experiments, a deterministic relationship between gene expression values and the functional
state of the tissue does not exist, the model will be composed by a deterministic part described through a func-
tion f : Rm ! f0; 1g and by a random term e corresponding to the probability that a tissue is assigned to the
wrong state. If we denote with y the output of the model and with x the input vector we will have
y ¼
f ðxÞ with probability 1� e

1� f ðxÞ with probability e

(

To define the model function f let us introduce the input set A ¼ fg1; . . . ; gmg, given by the collection of the
total number m of analyzed genes, and the real vector x ¼ ðx1; . . . ; xmÞ including the expression levels of the
m genes belonging to A.

Suppose that, for each gene gi belonging to A, a modulation threshold ti exists so that we can assert that the
gene gi is overexpressed if the value xi of its expression exceeds ti and underexpressed if xi < �ti. More pre-
cisely, we say that a gene is modulated when it is overexpressed or underexpressed with respect to a given func-
tional state.

Therefore, it is possible to define a mapping b : Rm ! f0; 1gm that depends on the modulation thresholds ti

and returns for each gene the value 1 if that gene is modulated and 0 otherwise.
zi ¼ biðxÞ ¼
1 if gi is modulated ði:e: if xi > ti or xi < �tiÞ
0 if gi is not modulated

(
ð1Þ
Suppose the output is uniquely determined by the state (modulated or not) of the m genes and does not depend
on their specific expression values. Then, the function f can be written as f ðxÞ ¼ uðbðxÞÞ, where u is a Boolean
function defined on binary strings in f0; 1gm. Consequently, once the mapping b is completely described, the
deterministic component f of our model is uniquely determined by the construction of the Boolean function u.

On the input set f0; 1gm, having cardinality 2m, we consider the standard partial ordering (f0; 1gm
;6), i.e.

for any pair u; z 2 f0; 1gm we have u 6 z if and only if ui _ zi ¼ zi for every i 2 f1; . . . ;mg, where _ denotes the
logical OR operator. A Boolean function u : f0; 1gm ! f0; 1g will be called positive if and only if u 6 z implies
uðuÞ 6 uðzÞ for all u; z 2 f0; 1gm.

Consider the truth table of a positive Boolean function u : f0; 1gm ! f0; 1g. Denote with pi the fraction of
input vectors z with output 1 having the ith component zi ¼ 1 and with p the fraction of patterns z 2 f0; 1gm

with output 1 out of the total 2m.
pi ¼
P

z2f0;1gm;zi¼1uðzÞ
2m�1

; p ¼
P

z2f0;1gmuðzÞ
2m ð2Þ
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By using the definition of positive Boolean function it can be easily seen that pi P p. Thus, we can denote with
Ru the set of the indexes of the input components for which the strict inequality holds, i.e.
Table
(Panel

Panel

z

z1

0
0
0
0
0
0
0
0

Ru ¼ i 2 f1; . . . ;mg : pi > p;f g

and with k ¼j Ru j its cardinality (number of elements).

In a similar way we define
Iu ¼ fi 2 f1; . . . ;mg : pi ¼ pg

Iu will obviously have cardinality m� k and will include the indexes of the components of the input vector not
relevant for the output. Hence, the function u can be equivalently defined by a truth table with only k inputs;
this new description leaves fractions p and pi unchanged.

As an example, consider the truth table in Table 1a for the positive Boolean function u1. From a direct
inspection, using the definitions (2), we obtain:
p ¼ 3

8
; p1 ¼

1

2
; p2 ¼

1

2
; p3 ¼

3

4
; p4 ¼

3

8

Since p1; p2 and p3 are strictly greater than p, whereas p4 ¼ p, the same function can be described by a truth
table with three inputs, reported in Table 1b. As we can note, the values of p, p1, p2 and p3 remain unchanged.

It will be shown in this section that the adoption of a positive Boolean function u for the construction of the
model allows to satisfy the biological requirements outlined in Section 2. In particular, if gene gi (correspond-
ing to the ith input zi) is defined to be relevant when pi > p, i.e. when i 2 Ru, from a biological point of view,
the set Ru determines the expression profile of the functional state described by u, since the presence in it of
indexes of modulated genes increases the probability that the corresponding tissue is in the considered func-
tional state. The elements having indexes in Iu, on the contrary, are irrelevant for the determination of the
output value for u and, consequently, are associated with genes not belonging to the expression profile.

Consider a positive Boolean function and restrict its domain to include only the relevant k input variables.
If D1(f) is the collection of the input vectors z for which the output value of u is 1
D1ðf Þ ¼ fz 2 f0; 1gk
: uðzÞ ¼ 1g
and PðzÞ is the set of the indexes of the components of z with value 1
P ðzÞ ¼ fi 2 f1; . . . ; kg : zi ¼ 1g

we have
uðz1; . . . ; zkÞ ¼
_

z2D1

^
PðzÞ

zi ð3Þ
where ^P ðzÞ is the logical product (AND) among all the components of z with indexes in P ðzÞ, while
W

D1
is the

logical sum (OR) on the input vectors in D1.
1
a) Truth table of the positive Boolean function u1 and (panel b) truth table equivalent to (panel a)

(a) Panel (b)

u1ðzÞ z u1ðzÞ z u1ðzÞ
z2 z3 z4 z1 z2 z3 z4 z1 z2 z3

0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 1 0 0 0 1 0
0 1 0 0 1 0 1 0 1 0 1 0 0
0 1 1 0 1 0 1 1 1 0 1 1 1
1 0 0 0 1 1 0 0 0 1 0 0 0
1 0 1 0 1 1 0 1 0 1 0 1 1
1 1 0 1 1 1 1 0 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1
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In this way every positive Boolean function can be expressed through a logical sum (¤) of logical products
(§) of their inputs. As an example, consider the truth table in Table 1b: expression (3) for u1 has the form
u1ðz1; z2; z3Þ ¼ ðz2 ^ z3Þ _ ðz1 ^ z3Þ _ ðz1 ^ z2 ^ z3Þ ¼ ðz2 ^ z3Þ _ ðz1 ^ z3Þ ð4Þ

An alternative way of representing a positive Boolean function can be derived by extending the concept of m-

of-n expression defined in [22]. To this aim we introduce the following:

Definition 1. If
GðqÞ ¼ fzj1
; . . . ; zjl

; jr 6¼ js if r 6¼ sg
is a set composed by l distinct components of the generic vector z 2 f0; 1gk and q is a positive integer with
q 6 l, we say that GðqÞ is active if at least q of its components have value 1.

Suppose, for example, that k = 4 and Gð2Þ ¼ fz1; z2; z3g. Then, G(2) is not active for z ¼ ð1; 0; 0; 1Þ, while
G(2) is active for z ¼ ð1; 1; 0; 0Þ or z ¼ ð1; 0; 1; 0Þ.

Definition 2. If G1ðq1Þ; . . . ;GhðqhÞ are defined as above, with j GiðqiÞ j¼ li, qi 6 li, and p; h are positive integers
with p 6 h, the m-of-n expression of a positive Boolean function u : f0; 1gk ! f0; 1g is given by the following
representation:
uðz1; . . . ; zkÞ ¼
1 if at least p of the h sets G1ðq1Þ; . . . ;GhðqhÞ are active

0 otherwise

(

It can be shown that

Theorem 3. A positive Boolean function u : f0; 1gk ! f0; 1g can always be written in the form of an m-of-n

expression.

Proof. Denote with h ¼ jD1j the cardinality of the set D1 and with z1; . . . ; zjD1j its elements. Then, the theorem
is proved by setting qi ¼ jP ðziÞj, GiðqiÞ ¼ fzj : j 2 P ðziÞg, for every i 2 f1 . . . ; hg, and p = 1. In this way the m-
of-n expression of u is equivalent to the AND-OR expression in (3). h

According to the proof of Theorem 3, the function u1 of Table 1b can be put in the form of an m-of-n
expression by taking the following two sets of components:
G1ð2Þ ¼ fz1; z3g; G2ð2Þ ¼ fz2; z3g ð5Þ

each of them gives rise to a logical product in expression (4) since every set is active when all its components
has value 1, i.e. when the corresponding logical product gives output 1. Then, by taking p = 1, the logical OR in
(4) is obtained.

In general, by denoting
GiðqiÞ ¼ ðzji;1
; . . . ; zji;li

Þqi
we can represent u as follows:
uðzÞ ¼ ½ðzj1;1
; . . . ; zj1;l1

Þq1
; . . . ; ðzjh;1

; . . . ; zjh;lh
Þqh
�p ð6Þ
As an example, from (5) we obtain:
u1ðzÞ ¼ ½ðz1; z3Þ2; ðz2; z3Þ2�1

However, this representation of u1 as an m-of-n expression is not unique; the same function can also be ob-
tained by
u1ðzÞ ¼ ½ðz1; z2Þ1; ðz3Þ1�2

As a matter of fact, the resulting truth table, presented in Table 2, is equivalent to that reported in Table 1b.

The following example shows how, when the dimension k of the input domain is large, m-of-n expressions
can provide a more compact description of positive Boolean functions with respect to (3).
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Let u2 : f0; 1g5 ! f0; 1g be the positive Boolean function having the truth table in Table 3. By using (3) we
obtain:
Table
Truth

z

z1

0
0
0
0
1
1
1
1

Table
Truth

z

z1

0
0
0
0
0
0
0
0
0
0
0

u2ðz1; z2; z3; z4; z5Þ ¼ðz4 ^ z5Þ _ ðz1 ^ z2 ^ z4Þ _ ðz1 ^ z2 ^ z5Þ _ ðz1 ^ z3 ^ z4Þ
_ ðz1 ^ z3 ^ z5Þ _ ðz2 ^ z3 ^ z4Þ _ ðz2 ^ z3 ^ z5Þ
However, it can be easily seen that the m-of-n expression
u2ðzÞ ¼ ½ðz1; z2; z3Þ2; ðz4Þ1; ðz5Þ1�2 ð7Þ

leads to the same positive Boolean function. Because of this property, m-of-n expressions will be employed to
derive a compact representation for positive Boolean functions.

Finally, by combining the representation of the function u defined in (6) and the mapping b defined in (1),
the model function f ðxÞ ¼ uðbðxÞÞ can be written in an explicit form. It is sufficient to replace the components
of the vector z belonging to the sets GiðqiÞ with the mapping b that determines their values. For example, if zi

assume value 1 when xi > ti, we can replace zi with xi > ti, otherwise we replace zi with xi < �ti. As an example,
suppose that in f2ðxÞ ¼ u2ðbðxÞÞ, the mapping b has the following form:
z1 ¼ b1ðxÞ ¼
1 if x1 > 2;

0 otherwise;

(
z2 ¼ b2ðxÞ ¼

1 if x2 < �3

0 otherwise

(

z3 ¼ b3ðxÞ ¼
1 if x3 > 1;

0 otherwise;

(
z4 ¼ b4ðxÞ ¼

1 if x4 > 3

0 otherwise

(

z5 ¼ b5ðxÞ ¼
1 if x5 < �1;

0 otherwise;

(

2
table equivalent to Table 1b

G1 G2 u1ðzÞ
z2 z3

0 0 Not active Not active 0
0 1 Not active Active 0
1 0 Active Not active 0
1 1 Active Active 1
0 0 Active Not active 0
0 1 Active Active 1
1 0 Active Not active 0
1 1 Active Active 1

3
table of u2 : f0; 1g5 ! f0; 1g

u2 z u2 z u2

z2 z3 z4 z5 z1 z2 z3 z4 z5 z1 z2 z3 z4 z5

0 0 0 0 0 0 1 0 1 1 1 1 0 1 1 0 1
0 0 0 1 0 0 1 1 0 0 0 1 0 1 1 1 1
0 0 1 0 0 0 1 1 0 1 1 1 1 0 0 0 0
0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1
0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1
0 1 0 1 0 1 0 0 0 0 0 1 1 0 1 1 1
0 1 1 0 0 1 0 0 0 1 0 1 1 1 0 0 0
0 1 1 1 1 1 0 0 1 0 0 1 1 1 0 1 1
1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 0 1
1 0 0 1 0 1 0 1 0 0 0 1 1 1 1 1 1
1 0 1 0 0 1 0 1 0 1 1
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Then, by extending the representation (7), f2 can be written as follows:
f2ðxÞ ¼ ½ðx1 > 2; x2 < �3; x3 > 1Þ2; ðx4 > 3Þ1; ðx5 < �1Þ1�2 ð8Þ
In this way, when a vector x is presented to the model, we can immediately know if f2ðxÞ ¼ 1. In addition, if
we interpret each set GiðqiÞ as an expression signature, it is easy to see that the proposed model implements the
biological specifications presented in Section 2:

• The expression profile is defined in terms of expression signatures;
• Each expression signature is defined as a set of underexpressed or overexpressed genes, that is genes with

gene expression levels above or below a given threshold;
• Genes may belong to different expression signatures at the same time;
• By choosing a value of q lower than the cardinality of the sets GðqÞ, not all the genes belonging to the

expression signature have to be modulated to make GðqÞ active. In a similar way, by taking a value for
p less than h, not all the expression signatures have to be active to induce the output value 1.
4. An application to the evaluation of gene selection methods

The model proposed in the previous section can be employed to evaluate the performance of gene selection
methods in determining the correct set of relevant genes when analyzing a collection of examples derived from
synthetic microarray experiments, each of which is associated with a virtual tissue. Every example is given by a
pair ðx; yÞ, where x is a real-valued input vector whose components represent the gene expression levels for the
corresponding tissue.

The output y can vary into a set of c different values, each one denoting the class which the associated tissue
belongs to. In this way situations where the analyzed tissue belongs to one of c different possible classes are
simulated; this corresponds to consider c different functional states, one for each output class. The case c ¼ 2,
where the output y can assume the values 1 and �1, will be examined henceforth; a generalization of the anal-
ysis to higher values of c is straightforward.

The mathematical model developed in the previous section can be adopted to describe each of the two func-
tional states. Two subsequent phases have been devised: in the first one the two functions f1 and f2, related to
the two different functional states, are built, whereas in the second one the gene expression levels of n virtual
tissues are generated.

As described in the previous section, randomness inherent the determination of the functional state can be
collected into a real parameter e, so that with probability 1� e each virtual tissue belonging to the output class
1 (resp. �1) has gene expression levels forming a vector x verifying f1ðxÞ ¼ 1 (resp. f2ðxÞ ¼ 1). If the classes are
mutually exclusive (as it is usually the case), it should be guaranteed that each tissue belongs to only one func-
tional state, i.e. if x is the associated input vector only one model provides the output 1.

The collection of virtual tissues generated by the model can be collected into a matrix X, where each row
corresponds to a tissue and each column to a gene. Then, a final column Y representing the class of each tissue
is added. Feature selection and clustering methods can be applied to Z ¼ ½X ; Y � and X respectively. However,
since both the rule determining the membership of a tissue to a class and the relationship among the virtual
genes are completely known, these methods can be directly tested and their performances can be easily
evaluated.

As an example, we compare two feature selection methods, the technique proposed by Golub et al. in [10] (a
simple variation of the classic t-test) and the SVM-RFE procedure [11], on two different collections of exam-
ples built by adopting the model described in the previous section. The evaluation of the performances of the
two methods has been performed by counting how many relevant genes, actually belonging to the expression
profile, are found.

The first dataset X 1 is composed by 100 artificial tissues, 60 belonging to the first class and 40 in the second
class, with 6000 virtual genes. The expression profiles of the two functional states, represented by the functions
f1 and f2, contain 144 genes in total.

The m-of-n expression of f1 has been built by using the mathematical model described in the previous sec-
tion with parameters:
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• h = 5;
• l1 ¼ 17; l2 ¼ 20; l3 ¼ 10; l4 ¼ 11; l5 ¼ 16;
• q1 ¼ 7; q2 ¼ 8; q3 ¼ 4; q4 ¼ 5; q5 ¼ 7;
• p = 3;

while the values of the parameters for the function f2 are the following:

• h = 6;
• l1 ¼ 14; l2 ¼ 12; l3 ¼ 13; l4 ¼ 11; l5 ¼ 11; l6 ¼ 10;
• q1 ¼ 7; q2 ¼ 6; q3 ¼ 7; q4 ¼ 6; q5 ¼ 6; q6 ¼ 5;
• p = 4;

For both the functional states the parameter e has been fixed to 0.1.
Both the Golub’s method and SVM-RFE have been applied to the complete dataset Z1 ¼ ½X 1; Y 1�, being Y 1

the vector containing the labels y of the class of each tissue x (y = 1 if f1ðxÞ ¼ 1 or y ¼ �1 if f2ðxÞ ¼ 1). Every
gene selection method assigns a rank value to each of the 6000 genes: the higher is the rank the more relevant is
the corresponding gene. The first 144 genes with greater rank values are then compared with the 144 genes
actually belonging to the two expression profiles.

If we denote with G144 and S144 the set of the 144 most relevant genes selected by Golub’s method and by
SVM-RFE, respectively, we can evaluate the intersections between G144 or S144 and the set M144 of the genes
included in the two expression profiles. The greater is the size of the intersection, the better is the performance
of the gene selection method. A relative measure of this term is given by the fraction P G (resp. P S) of relevant
genes contained in G144 (resp. R144).

The results show that
P G ¼
jG144 \M144j
jM144j

¼ 132

144
¼ 0:92
and
P S ¼
jS144 \M144j
jM144j

¼ 24

144
¼ 0:17
having denoted with j A j the cardinality (number of elements) of the set A. The comparison between the val-
ues of P G and P S shows that in this artificial dataset the behavior of the Golub’s method is significantly better
than that of SVM-RFE. In particular, the former is able to retrieve most (92%) of the relevant genes.

The application of the same approach to a second artificial dataset may help to understand if this result has
a more general validity. To this aim a new data matrix Z2 ¼ ½X 2; Y 2� has been generated, where X 2 contains 80
virtual tissues (50 belonging to the first class and 30 to the second class) and 2500 virtual genes. The param-
eters for the construction of the m-of-n expression f1 for the first functional state are

• h = 5;
• l1 ¼ 13; l2 ¼ 17; l3 ¼ 10; l4 ¼ 17; l5 ¼ 10;
• q1 ¼ 6; q2 ¼ 7; q3 ¼ 4; q4 ¼ 7; q5 ¼ 4;
• p = 5;

while the model f2 for the second functional state is generated starting from the following parameters:

• h = 6;
• l1 ¼ 12; l2 ¼ 15; l3 ¼ 12; l4 ¼ 10; l5 ¼ 12; l6 ¼ 10;
• q1 ¼ 5; q2 ¼ 6; q3 ¼ 5; q4 ¼ 4; q5 ¼ 5; q6 ¼ 4;
• p = 6;

The value of the parameter e has been fixed to 0.05.
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Since, in this case, the total number of genes belonging to the two expression profiles is 133, we consider the
sets G133 and S133 obtained by applying the Golub’s method and SVM-RFE, respectively, to the dataset Z2

and by taking the 133 genes with highest rank for both methods. In this way, we can again compute the quan-
tities PG and PS, given by the fraction of relevant genes included in G133 and S133:
P G ¼
jG133 \M133j
jM133j

¼ 124

133
¼ 0:93
while
P S ¼
jS133 \M133j
jM133j

¼ 39

133
¼ 0:29
M133 is the set of the relevant genes adopted for the construction of the m-of-n expressions of f1 and f2. As one
can note, also in this case the Golub’s method achieves by far the best performance.

5. Conclusions

An artificial model for the generation of biologically plausible gene expression data, to be adopted in the
evaluation of gene selection and clustering methods, has been proposed. Starting from the concepts of gene
expression signature and gene expression profile, whose properties can be derived by publications in the
bio-medical and bioinformatics literature, we have obtained a list of requirements that must be fulfilled by
the artificial model to guarantee a sufficient degree of similarity between virtual and real gene expression data.

A mathematical model, composed by a random term and by a positive Boolean function u, has been shown
to satisfy the required specifications. The adoption of a particular form, called m-of-n expression, for the func-
tion u allows to significantly simplify the generation process of the model, emphasizing the mathematical
counterparts of gene expression signature and gene expression profile.

An application of the proposed artificial model in evaluating the performances of two gene selection tech-
niques, Golub’s method [10] and SVM-RFE [11], has been also presented. The analysis of two artificial data-
sets, where the collection of relevant genes is considerably smaller than the whole set of genes characterizing
the virtual tissue, has permitted to derive that the Golub’s method performs significantly better than SVM-
RFE, being able to retrieve more than 90% of the relevant genes.
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