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Microinechanical Definition of 
the Strain Tensor for Granular 
Materials 
In order to develop constitutive relations for granular materials from the microme-
chanical viewpoint, general expressions relating macroscopic stress and strain to 
contact forces and particle displacements are required. Such an expression for the 
stress tensor under quasi-static conditions is well established in the literature, but a 
corresponding expression for the strain tensor has been lacking so far. This paper 
presents such an expression for two-dimensional assemblies. This expression is veri
fied by computer simulations of biaxial and shear tests. As a demonstration of the use 
of the developed expression, a study is made of the elastic moduli of two-dimensional, 
isotropic assemblies of bonded, nonrotating disks. Theoretical expressions are given 
for the elastic moduli in terms of micromechanical parameters, such as coordination 
number and contact stiffnesses. Comparison with the results from computer simula
tions show that the agreement is fairly good over a wide range of coordination 
numbers and contact stiffness ratios. 

Introduction 
Constitutive relations describing the behavior of granular ma

terials are of great importance to various geotechnical and in
dustrial applications. Usually these constitutive relations are 
developed from the continuum-mechanical viewpoint and do 
not recognize the discrete nature of granular materials. The 
resulting relations are frequently phenomenological in nature. 

As an alternative to the continuum-mechanical approach, the 
micromechanical approach to constitutive modeling of granular 
materials under quasi-static conditions is being developed (for 
example, Cundall et al., 1982; Bathurst and Rothenburg, 1988a, 
b; Rothenburg and Bathurst, 1989; Rothenburg et al , 1989; 
Mehrabadi et al., 1993). Herein a granular material is modeled 
as an assembly of semi-rigid particles interacting by means of 
contact forces. Development of constitutive relations is per
formed using suitable averaging techniques. 

In order to link the behavior on the micro (particle) level to 
the macro (continuum) level, general micromechanical expres
sions for the stress and strain tensors are required. The expres
sion for the stress tensor is well established (Drescher and De 
Josselin de Jong, 1972; Strack and Cundall, 1978; Rothenburg 
and Selvadurai, 1981), but a similar expression for the strain 
tensor has been lacking so far in the literature. The principal 
aim of this paper is to develop such a general expression for 
the two-dimensional case. This expression will be verified by 
computer simulation of biaxial and direct shear tests. 

As a demonstration of the use of the resulting micromechani
cal expressions for the stress and strain tensor, a study is made 
of the elastic moduli of two-dimensional, isotropic assemblies 
of bonded, nonrotating disks. Theoretical expressions will be 
derived for the elastic moduli in terms of micromechanical pa
rameters, such as contact stiffnesses and coordination number, 
i.e., the average number of contacts per particle. These theoreti-
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cal expressions will be compared with the results of computer 
simulations. 

The usual sign convention from continuum mechanics for 
stress and strain is adopted: tensile stresses and strains are 
counted positive. The summation convention is adopted: sum
mation is implied over repeated indices. 

Micromechanical Stress Tensor 
Many authors (Drescher and De Josselin de Jong, 1972; 

Strack and Cundall, 1978; Rothenburg and Selvadurai, 1981) 
have proposed an expression for the average stress tensor in 
terms of the forces acting at the contacts between particles and 
the geometry of the assembly of particles. A "derivation" of 
this expression is repeated here, since it suggest an analogous 
way to ' 'derive'' the expression for the average strain tensor. 

The derivation of the expression for the average stress tensor 
proceeds in two steps. In the first step the average stress tensor 
is related to quantities involving forces exerted on the particles 
by the boundary that encloses the assembly of particles. The 
second step equates these quantities involving external forces 
to quantities involving internal forces. The result is the micro
mechanical expression for the average stress tensor. 

Average Stress Tensor in Terms Involving External 
Forces. The expression for the average stress tensor is derived 
under conditions of quasi-static equilibrium and in the absence 
of body forces. Then the (continuum) equilibrium conditions 
are 

da, 

dx. 
11 = 0. (1) 

The two-dimensional average stress tensor in area S with bound
ary B is defined by 

T::dS. 

From (1) and Gauss' theorem it follows 

°u = c nkaikXjdS 

(2) 

(3) 
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where n, is the vector normal to the boundary; the vector tangen
tial to the boundary is denoted by tt. Considering the loads to 
be point loads on the boundary B, it follows: 

*v = \ X ffxf (4) 

where ff is the boundary force exerted, on boundary particle 
(5. This is the expression for the average stress tensor in terms 
involving external forces. 

Average Stress Tensor in Terms Involving Internal 
Forces. The equilibrium conditions for particle p in the ab
sence of body forces read 

I / f = 0 (5) 
i 

where the summation is over the particles q that are in contact 
with particle p and ff is the force exerted by particle q on 
particle p. 

Multiplication of (5) by the position vector Xf of the center 
of mass of particle p and addition of all equations gives 

I 2 / W = o. (6) 

This double sum contains one term for each boundary contact 
(3 with particle p ffXf, which can be rewritten as ff(xf -
if), where If is the so-called contact vector connecting the 
center of mass of particle p to the boundary contact point (3. 

Each internal contact between particles p and q contributes 
a term (ffXf + ffx]). Since fp

t" = -ff, terms correspond
ing to internal contacts can be written as -f!"(X] - Xf) or 
—fT'lf > where If is the so-called contact vector connecting 
the centres of the particles p and q. Combinations f1qlf can 
be written as f\l], since / f = -ff and V? = -if. As a result 
it follows that 

x//V = x/?/;- (7) 
BBB cES 

Hence it follows from (4), 

»« = h m- (8) 
This is the expression for the average stress tensor in terms 
involving internal forces, i.e., the micromechanical expression 
for the average stress tensor. 

Average Stress Tensor in Terms of Group Averages. Bath-
urst and Rothenburg (1988a, b) have suggested grouping the 
contacts within a finite number of orientation classes. Then 
group averages fUji'Ps) c a n be calculated and relation (8) can 
be rewritten in terms of group averages as 

Vv = ^LI.lVX<Pi)E(<Pg)A<p (9) 
^ s 

where Ms is the total number of contacts in area S and E(tp) 
is the contact orientation distribution function, as proposed by 
Home (1965). E( <p ) A<p is the fraction of contacts with orienta
tions within (ip, >p + Aip). 

The continuous form of (9), valid for an infinite assembly, 
becomes 

ffa = ms f Jvj(ip)E(<p)d<p (10) 
Jo 

where ms = Ms/S is the contact density with respect to assembly 
area. 

Micromechanical Strain Tensor 

In analogy to the expression for the average stress tensor, an 
expression for the average displacement gradient is derived 
here. The strain tensor is obtained by taking the symmetric part 
of the displacement gradient tensor. 

The derivation of the expression for the average displacement 
gradient tensor proceeds in two steps. In the first step the aver
age displacement gradient tensor is related to quantities involv
ing relative displacements of the boundary particles. The second 
step equates these quantities involving external relative dis
placements to quantities involving internal relative displace
ments. The result is the micromechanical expression for the 
average displacement gradient tensor, and hence for the average 
strain tensor. 

Average Displacement Gradient Tensor in Terms Involv
ing External Relative Displacements. The average displace
ment gradient tensor is defined by 

b Js oXj 

where u, is the displacement vector. Using Gauss' theorem it 
follows that 

6,j = - Uitijds. (12) 
o JB 

A relation based on (12) has been proposed by Strack and 
Cundall (1978). Constitutive relations at the contact will in
volve relative displacements between particles. Therefore it is 
desirable to transform (12) to a form containing derivatives of 
the displacements. This is done using the following identity: 

I UjUds = I Uj—ds = —I —'-xkds. (13) 
JB JB ds JB ds 

Combining (12) and (13) gives 

Oij = ~ - ejk —fxkds (14) 
S JB ds 

where ey is the two-dimensional permutation tensor. The dis
crete formulation of (14) in terms of relative displacements at 
the boundary is 

^u=-\eJkJl Alfxi. (15) 

This expression for the average displacement gradient tensor is 
analogous to Eq. (4) for the average stress tensor. It gives the 
average displacement gradient tensor in terms involving exter
nal relative displacements. 

Average Displacement Gradient Tensor in Terms Involv
ing Internal Relative Displacements. The derivation of the 
stress tensor employed the equilibrium conditions for the parti
cles. The equivalents for the displacement gradient tensor are 
the compatibility conditions for polygons. These polygons arise 
as a way of dividing the plane network of particle centers of 
mass and contacts into polygons, as depicted in Fig. 1. Various 
properties associated with such a subdivision of the assembly 
into polygons were studied by Satake (1992). 

Since the polygons form closed loops, the compatibility con
ditions for polygon r are 

X A / r = 0 (16) 
s 

where the summation is over the sides of polygon r and A/™ 
is the relative displacement between particles comprising side 
s of polygon r. Multiplication of (16) by the position vector 
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Fig. 1 Tessellation of the area into polygons, based on the contacts of 
the particles 

V'i of the center of gravity of polygon r and addition of all 
equations gives 

1 1 A/fv; = o. (17) 

This double sum contains one term for each external side a of 
polygon r Al1aVj, which can be rewritten as Alf(xf — 
g'ja), where g]a is the vector connecting the center of gravity 
of polygon r to boundary point a. 

Each internal side contributes a term (Al"Vj + AlfVj). 
Since Al" = — Alf, terms corresponding to internal contacts 
can be written as — Alf(Vj — Vj) or — Alfg", where g" is 
the vector connecting the centers of gravity of polygons r and 
s. Combinations Alfg" can be written as Al'gj, since Al" = 
-Alf, and g" = — gf. The resulting expression for (17) be
comes 

X Al7x? = I Allgh 

Hence it follows from (15) 

3„ = - I A/fAJ 
^ c<ES 

where the so-called polygon vector h] is defined by 

hi = -< •jkgk-

(18) 

(19) 

(20) 

Equation (19) is the expression for the average displacement 
gradient tensor in terms involving internal relative displace
ments. This micromechanical expression for the average dis
placement gradient tensor is analogous to the micromechanical 
expression for the average stress tensor (8). Equation (19) was 
first reported by Rothenburg (1980). 

The expression for the average strain tensor then becomes 

i - I \{AlWj+ Al]h1). (21) 

Average Strain Tensor in Terms of Group Averages. In 
analogy to Eq. (10) for the average stress tensor, the average 
strain tensor can be expressed in terms of group averages. The 

continuous form for the average strain tensor, valid for an infi
nite assembly, is 

e« = ms f 
Jo 

1 
Al1hcj + Alcjh1(ip)E(ip)dip. (22) 

Geometrical Relation 
A useful geometrical relation is derived by repeating the 

derivation leading to (18), but with All replaced by /•' in (17). 
It follows that 

I Ifxf = I 11 gj- (23) 

From Gauss' theorem for the area of S it follows after some 
algebra that 

and hence 

S5y = -eJk I IUI, 

7 z m 

(24) 

(25) 

where 8,j is the Kronecker symbol. This means that /•' and hi 
are colinear on average. In terms of group averages, the continu
ous form of (25) is 

ms 

fl2n 

Jo 
](<p)E((p)d<p. (26) 

Uniform strain and stress can now be characterized by, respec
tively, 

All = eal1 

fl = <?uhj 

as can be verified from (8), (19), and (25). 

(27) 

(28) 

Verification of the Micromechanical Strain Definition 
The developed micromechanical strain definition for granular 

materials is verified by computer simulation of a biaxial test 
and a shear test. The average strain tensor according to the 
micromechanical definition is compared with the macroscopic 
strain tensor determined from the displacement of boundaries 
of the assembly. 

The computer simulation is performed using the discrete 
element method as proposed by Cundall and Strack (1979). 
This essentially is an explicit time-stepping scheme for solv
ing Newton's equations of motion. The constitutive relation 
at the contact as employed here is identical to that of Cundall 
and Strack (1979). It involves linear springs in normal and 
tangential direction. The tangential force is limited by dry 
Coulomb friction. The assembly consists of 1001 disks with 
various disk radii. In the biaxial test the assembly is contained 
in a box with height H and width B. Initial height and width 
are denoted by H0 and B0. The macroscopic (logarithmic) 
displacement gradient is determined from the geometry of 
the box by 

l ° g f 0 
t>0 

0 log 
H_ 

(29) 

In the constant volume shear test the assembly is contained 
in a parallelogram with angle a, constant height H, and constant 
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width B. The macroscopic displacement gradient is determined 
from the geometry of the parallelogram by 

tan a 

0 
(30) 

For both the shear test and the biaxial test the macroscopic 
and microscopic displacements gradients were virtually identi
cal: the differences were of the order of the roundoff error. This 
result completes the verification of the micromechanical strain 
definition. 

Elastic Moduli of Isotropic Assemblies of Bonded, 
Nonrotating Particles 

The micromechanical expressions for the stress and strain 
tensors are used here to derive relations for the elastic moduli 
of two-dimensional isotropic systems of bonded, nonrotating 
disks. This work is an extension of Bathurst and Rothenburg 
(1988a, b) to a wider range of coordination numbers, but re
stricted to the case of nonrotating particles. 

The link between contact forces and contact displacements 
is made through the constitutive relation at the contact. A simple 
linear contact model without particle rotation is assumed: 

f„ = k„Aln (31) 

(32) 

where fc„ and fc, are the normal and tangential forces at the 
contact and All, and Alc, are the normal and tangential relative 
displacements at the contact. Parameters k„ and k, are the normal 
and tangential contact stiffnesses. The ratio of tangential over 
normal stiffness k,lk„ is denoted by \ . 

In the isotropic case considered, bulk modulus K and the 
shear modulus G relate macroscopic stress and strain by 

on + an = 2K(en + £22) 

Oil cr22 = 2G(e„ 

a i2 = 2Ge12. 

£22) 

Geometrical Considerations. Isotropy of the contact dis
tribution means that 

E(<p) = 
2TT 

(36) 

Contact and polygon vectors are (approximately) related to 
orientation by, respectively, 

h1(<p) s hani(tp) 

(37) 

(38) 

where l0 and h0 are the average lengths of the contact and 
polygon vectors. 

P 0.85 

+ Experiments 

Theory 

4.0 4.5 5.5 6.0 

Fig. 3 Comparison of the theoretical relation for the packing density 
with experimental results of Quickenden and Tan (1974) 

From the geometrical identity (26) it follows that 

mJoho = 2. (39) 

A simple approximate relation for the ratio of the lengths of 
the polygon and contact vector l0/h0 is derived here. Assume 
that the assembly is regular with coordination number y (see 
Fig. 2) . The average internal angle a between two sides of a 
polygon is then given by 

2TT 

7 
(40) 

Considering the triangle formed by the center of the polygon, 
the midpoint of a side and a vertex it follows that 

(41) i the 

(33) 

(34) 

(35) 

and hence 

a h0 

tan — = — 
2 /„ 

h0 -K 
— = tan — 
k y 

(42) 

For assemblies consisting of equal-sized disks an approximate 
relation for the packing density rj, i.e., the fraction of area filled 
by the disks, can be derived with (39) and (42): 

(43) 

y tan • 

In Fig. 3 this theoretical expression is compared with experi
mental results from (Quickenden and Tan, 1974). The agree
ment is acceptable. 

Fig. 4 Comparison between bulk moduli based on the uniform stress 
Fig. 2 (a) Polygons for a regular packing, (b) geometry of a single poly- and strain assumptions and bulk modulus as determined from computer 
gon simulations for various coordination numbers and stiffness ratio \ = 0.5 
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Uniform Strain. Uniform strain is characterized by (27). 
Application of the constitutive relation at the contact gives 

Anne ijkl £ « (44) 

where 

Aiju — nislok, 
fl2n 

:„ (nttij 
Jo 

nkn, + \tinjtkni)E(ip)dip. (45) 

Evaluating the integrals gives the bulk modulus Ke and the 
shear modulus G', based on the uniform strain assumption 

' msllk„ 

G€ 

Kc = 

msl%k„ 1 + X 

(46) 

(47) 

Uniform Stress. Uniform stress is characterized by (28). 
Application of the constitutive relation at the contact gives 

eu ~ Byki&u (48) 

where 

"Ijkl ~~ 

mshl f2* / 
/»*»< + — (tjHj + tjnj)tkn, ]E(tp)d<p. 

(49) 

Evaluating the integrals gives the bulk modulus K" and the 
shear modulus G", based on the uniform stress assumption 

K" 

G" = 

mshl 

2X 
msh\ 1 + X 

(50) 

(51) 

General Case: A Heuristic Argument. Based on the as
sumption of uniform strain and stress, two expressions have 
been derived for the bulk and shear modulus. Here a heuristic 
argument is given to propose expressions for the general case. 
Consider the case \ = 0. Conditions of static equilibrium re
quire that 4 < y, conditions of compatibility for the polygons 
require that y =s 6. Hence it is expected that the expressions 
for the bulk and shear modulus based on the uniform stress 
assumption are valid for coordination number y around 4 and 
that the expressions for the bulk and shear modulus based on 
the uniform strain assumption are valid for coordination number 
y around 6. 

QeJm 

G« 

G' 

Fig. 6 Comparison between shear moduli based on the uniform stress 
and strain assumptions and shear modulus as determined from com
puter simulations for various stiffness ratios and coordination number y 
= 5.12 

The general heuristic expression for the bulk and shear modu
lus proposed here is obtained by (weighted) interpolation of the 
moduli obtained from the uniform strain and stress assumption: 

K{y) 
y — 4 6 — y 

G(y) = 1—A G< + 6__y G° 

(52) 

(53) 
2 2 

Using the geometrical relations (39) and (42) it follows that 

G(y) = 
7 ~ 4 k„ VS 

+ • 

1 + X 6 - y k„ IK 

2 2 2 1 + X.' 

(54) 

(55) 

Computer Simulations. Computer simulations of two-di
mensional isotropic assemblies of bonded, nonrotating disks have 
been performed using the discrete element method. A relatively 
narrow particle size distribution was employed for the disk radii. 
Simulations were performed over the range of coordination num
bers 4 < y < 6 and stiffness ratios 0 < X < 1. 

Figure 4 gives the comparison between the bulk moduli based 
on the uniform stress and strain assumptions and the bulk modu
lus as determined from the computer simulations for stiffness 
ratio X = 0.5. A similar comparison for the shear moduli is 
presented in Fig. 5. For y = 5.12, the shear moduli based on 
the uniform stress and strain assumptions are compared with 
the shear modulus as determined from the computer simulations 
in Fig. 6. These figures seem to indicate that the elastic moduli 
based on the uniform strain assumption form an upper bound 

G° 

G' 

X=0.0 

*=0.125 

X=0.25 

X=0.5 

X=0.75 

X=1.0 

Fig. 5 Comparison between shear moduli based on the uniform stress 
and strain assumptions and shear modulus as determined from com- Fig. 7 Comparison between theoretical bulk modulus and bulk modulus 
puter simulations for various coordination numbers and stiffness ratio X as determined from computer simulations for various coordination num-
= 0.5 bers and stiffness ratios 
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7"=4.34 

-y=4.69 

r=5.12 

T=5.53 

r=5.B 1 

T=5.98 

Fig. 8 Comparison between theoretical shear modulus and shear modu
lus as determined from computer simulations for various coordination 
numbers and stiffness ratios 

to the elastic moduli, while the elastic moduli based on the 
uniform strain assumption form a lower bound to the elastic 
moduli. These observations are rigorously proven in Rothen-
burg and Kruyt (1994). 

The bulk and shear modulus as determined from the computer 
simulations are shown in Figs. 7 and 8, together with the theoret
ical predictions according to (54) and (55). The agreement is 
fairly good, although larger deviations occur for low coordina
tion number y and low stiffness ratio V 

Discussion 
A micromechanical expression for the average strain tensor 

has been developed in the two-dimensional case, similar to 
an existing micromechanical expression for the average stress 
tensor. These relations exhibit the following duality: 

tj rij 

IfW 1 A/fAf. 

The micromechanical definition of the strain tensor has been 
applied to the development of (heuristic) theoretical expres
sions for the elastic moduli of two-dimensional, isotropic assem
blies of bonded, nonrotating particles. These expressions give 
the moduli in terms of the coordination number y and contact 
stiffnesses k„ and k,. In contrast to Bathurst and Rothenburg 
(1988a, b) it has been possible to derive the dependencies of 
the elastic moduli K and G on coordination number y. The 
developed theory has been compared with results from com
puter simulations; agreement is fairly good over the range of 
coordination numbers and stiffness ratios considered. The 
largest deviations occur in the case of zero tangential stiffness 
k, and coordination number y around 4. The reason for these 

deviations is that the system is least stable under these condi
tions. 

The assumption of uniform strain is frequently made in con
tinuum mechanics of heterogeneous systems (for example, Bat-
chelor and O'Brien, 1977). This study and a related study (Ro
thenburg et al., 1987) show that the uniform strain assumption 
does not always lead to accurate prediction of the system behav
ior. In fact, two regimes have been distinguished here, uniform 
stress and uniform strain, each with its range of validity. 

Future work is directed towards development of theories for 
the elastic moduli of bonded systems with particle rotations. 
Another subject of research is the extension of the presented 
micromechanical strain definition to the three-dimensional case. 
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