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ABSTRACT 
 The structural stability and energetics for small copper and 
gold clusters Cun and Aun (n=21-56) were investigated using an 
effective Monte Carlo simulated annealing method, which employs 
the Aggregate-Volume-Bias Monte Carlo (AVBMC) algorithm. 
Incorporated in the Monte Carlo method, is an efficient Embedded 
Atom Method (EAM) potential developed by the authors. In 
general agreement with previous empirical studies, the lowest-
energy copper structures adapt a single icosahedral structural 
motif, with pentagonal bipyramid geometry as the building block.  
However, contrary to studies that describe gold as less symmetric, 
this work demonstrates that gold clusters adapt both an icosahedral 
and icositetrahedral structural motifs with many clusters having 
symmetric geometries. 
 
1. INTRODUCTION 
 The study of metal clusters has attracted much attention in 
recent years.  Metal nanoclusters containing less than 400 atoms 
show quantum size effects [1] which give them unique properties. 
Copper (Cu) and gold (Au) nanoclusters are of particular interest 
since their chemical, thermodynamic, electronic, and optical 
properties make them interesting candidates as building blocks of 
nanostructure materials and nanoelectronic digital circuits [2-4].  
Delineation of these properties requires a complete and definitive 
characterization of the cluster’s geometrical structure. The 
investigation of the structural stability of small metal clusters also 
has great importance in understanding physical phenomena such as 
crystal growth and catalysis. The complexity of the potential 
energy surfaces of some metal clusters leads to a large number of 
local minima, making localization of the true global minima very 
difficult. 
 Several empirical approaches have been used to describe 
large clusters. The Cu and Au clusters with up to 55 atoms were 
studied based on empirical potentials. Garcia-Rodeja et al. [6] used 
Voter and Chen EAM potential to study structures and binding 
energies of the lowest-energy isomers as well as melting behavior 
of the Cun and Aun (n=2-23) clusters. They presented stable 
structures of the 13- and 19- atom clusters for both metals which 
are icosahedron and double-icosahedron, respectively. Other 
cluster configurations are obtained from 13-atom cluster 
configurations by removing or adding surface atoms. Erkoc and 
Shaltaf [7] investigated the structural stability and energetics for 

copper clusters up to 55 atoms by using a Monte Carlo technique 
at room temperature. They found that the majority showed five-
fold structures, with Cu13 and Cu19 being icosahedral and double-
icosahedral, respectively. Structures and stability of up to 56 atoms 
of copper and gold clusters were also employed by Darby et al. [8] 
using the many-body Gupta potential. In their work, most copper 
clusters have icosahedron-based geometries. Exceptions to the 
icosahedral motif occur at around Cu40, where the structures adopt 
oblate, decahedron-like geometries, and at Cu38, which has an fcc-
like truncated octahedral structure. Two-shell centered icosahedral 
structure was found for Cu55. Gold clusters do not adopt a single 
structural motif, instead they mostly have low-symmetry 
structures. Most larger structures are nonicosahedral in nature.  
Unlike Cu55, Au55 has a more amorphous structure. A hexagonal 
prismatic structural motif was found for Au21. As for copper, Cu38 
adapted a truncated octahedral structure. Wilson and Johnson [9] 
applied a molecular dynamics simulated annealing which uses an 
empirical Murrel Mottram many-body potential to probe the 
structure and stability of small gold clusters consisting of between 
2 and 40 atoms. In their work, no single structural motif dominates 
the predicted global minima over this size range. They found Au21 
(triple layer hexagonal prism) and Au38 (truncated octahedron) 
structures to be stable with respect to their neighboring 
nuclearities.  
 Some inconsistent results of lower-energy structures 
especially for gold clusters were observed in previous empirical 
studies. To resolve these disagreements, we perform a 
comprehensive theoretical study of the lower-energy structures for 
Cu and Au nanoclusters in the size range from 21 to 56 atoms. In 
general, the precise form of the interaction potential and an 
efficient global optimization algorithm are responsible for the 
search of low-energy structures for metal clusters. The present 
study is based on Monte Carlo (MC) simulation with the annealing 
method, using a recently published efficient Embedded Atom 
Potential developed by the authors [10]. 
 
2. THE POTENTIAL ENERGY FUNCTION  
 In the theoretical framework of an Embedded Atom Method 
(EAM) the total energy of a system can be written as [11] 
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where E is the total internal energy, ρh,i is the electron density at 
atom i due to all other atoms, fj is the electron density of atom j as 
a function of distance from its center, rij is the separation distance 
between atoms i and j, Fi(ρh,i) is the energy to embed atom i in an 
electron density ρh,i, and φij is a two-body central potential between 
atoms i and j.  For the embedding function we take the following 
form suggested by Hijazi and Park [10] 
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We also assume that the atomic electron density has the following 
exponential form: 
 ( )er r

ef f e χ− −=  (3) 
 
where ef  is a scaling constant, and er  is the equilibrium 
nearest distance, and χ is a parameter to be decided. The two-body 
potential is taken as follows: 
 
 [ ] ( / 1)1 ( / 1) er r

e er r e βφ φ δ − −= − + −  (4) 
 
This function has three adjustable parameters, eφ , δ, and β. These 
analytical functions are easy to be implemented in a computer 
simulation. In principle, they can be used for any crystal structure. 
For the materials Au and Cu the value of the five adjustable 
parameters χ, φe, β, η, and ρe used in this work are listed in Table 
1. 
 

Table 1: Fitting parameters for Cu and Au. 
Metal χ φ δ β η ρe 
Au 3.4991 0.1296 8.4781 7.6013 0.5640 2.6836 
Cu 2.4351 0.1751 8.7919 6.9336 0.5736 3.6728 
 
 
3. MONTE CARLO SIMULATION METHOD 
 The precision of the present simulation results depends on the 
extent to which the space of the system is sampled throughout the 
simulation. In this Monte Carlo simulation the NVT canonical 
ensemble is used.  The simulation procedure utilizes the standard 
Metropolis Algorithm as well as the Aggregate-Volume-Bias 
Monte Carlo (AVBMC) algorithm.   
 
3.1  Metropolis translation move 
  Starting from a given configuration of the system, state A, the 
Metropolis translation move proceeds as follows: 
 
(1) Chose an atom i at random to be moved.  
(2) Chose a vector on a unit sphere at random and then attempt to 

displace atom i a random distance between –rmax and  +rmax in 
that direction, leading to a trial configuration of state B. 

(3) Calculate the potential energy difference, ∆E = EB - EA and 
accept this move with a probability of  

[ ]( ) min 1,exp( / )Bacc A B E K TΔ− = −  (5) 
where KB and T are Boltzmann’s constant and the absolute 
temperature in Kelvin, respectively.   

  

3.2  AVMBC trial move 

 Whereas the unbiased translational trial move is used to 
explore nearby regions of phase space, the AVBMC algorithm 
introduces a trial move useful for forming and destroying clusters 
with atoms that tend to segregate together [12]. Starting from a 
given configuration A, an AVBMC trial move proceeds as follows:  
(1) Chose an atom i at random to be moved.  
(2) From a bounded region, chose randomly a second atom j that 

serves as the target for the move.  
(3) With a probability of Pbias,  atom i is allowed to move only 

into the bounded region of atom j, called the Bin state, while 
with a probability of 1- Pbia, s atom i is moved into the 
nonbonded region of atom j, called the Bout state.  

(4) Calculate the potential energy difference, ∆E = EB - EA .  
(5) Accept this move with the following set of acceptance 

probabilities: 
(a) If the swap move does not involve atom i entering or 

leaving the bonded region of atom j, the standard 
Metropolis acceptance rule is used. 

(b) If atom i enters the bounded region of atom j, the following 
acceptance rule is used: 

 

(1 ) exp( / )( ) min 1, bias in B
out in

bias out

P V E K Tacc A B
P V

Δ⎡ ⎤− × × −
− = ⎢ ⎥×⎣ ⎦

  (6)

  
where Vin is the volume of the bonded in region and Vout = 
V - Vin is the remainder of the system’s volume. 

(c) If atom i enters the nonbounded region of atom j, the 
following acceptance rule is used: 

exp( / )( ) min 1,
(1 )

bias out B
in out

bias in

P V E K Tacc A B
P V

Δ⎡ ⎤× × −
− = ⎢ ⎥− ×⎣ ⎦

(7)

 

  
 For each cluster size N, the initial geometry was generated by 
placing N atoms at random positions. The Cartesian x, y, and z 
coordinates are chosen randomly within a sphere of radius 
0.5reN1/3, where re is the equilibrium nearest-neighbor distance in 
the bulk solid.  This ensures that the cluster volume scales linearly 
with the cluster size. The randomly generated initial structure was 
equilibrated for more than 1,000 Monte Carlo cycles at a given 
temperature. Thereafter, simulations in the canonical ensemble 
were carried out for more than 10,000 cycles (one Monte Carlo 
cycle consists of N Monte Carlo moves and N is the number of 
atoms in the system). An annealing run is then performed after 
each cycle by slightly decreasing the temperature. The cluster is 
thus slowly cooled by periodically decreasing the temperature. 
This Monte Carlo procedure has proven to be effective in 
determining, with good certainty, the global minima within this 
size range.. 
 
4. RESULT AND DISCUSSION 
 The energy and geometry of the most stable pure copper and 
gold clusters with the number of atoms n=21-56 were researched. 
Figures 1 and 2 show the geometry of the most stable copper and 
gold clusters. The present simulation gives the most stable 
structures for the copper clusters with the number of atoms n = 21-
24 as the icosahedron structures while the Cu25 structure was found 
to be disordered. The icosahedron structure was also found for 
clusters n = 26, 27, 29, 31, 36 and 39, while for n = 28, 30, 32-35 
and 37 the structure was found to be disordered.  
.   
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Figure 1. The structure of energetically most stable copper 
clusters, Cun, n = 21-56 

 
 A highly symmetric fcc-like truncated octahedral (TO) 
structure forms at Cu38, while for Cu40 the structure adopts a 
flattened, decahedron like geometry. The rest of the larger clusters, 
n = 41-54, have icosahedron-based geometry, culminating in the 
complete, two-shell centered icosahedral structure found for n = 55 
and 56. It has also been found that the five-fold symmetry is 
favored in the optimized copper structures.  
 While copper adopts a single icosahedral structural motif, 
gold clusters adopt both icosahedron and icositetrahedron 
structural motifs. The stable structures of the 21-26 atom clusters 
are obtained from an icositetrahedron configuration by removing 
or adding surface atoms to the symmetric double icositetrahedron 
Au22.  With the exception of n = 30 and 33 being hexagonal closed 
pack (hcp) structure and n = 31 being icosahedron, the clusters n = 
27-37 have a less defined structure. In the next two clusters, n=38 
and 39, the structures are a symmetric truncated fcc structures. 
While the structure of n = 40 appears to be disordered, the 
structure of n = 41 is a symmetric hexagonal closed pack.  With 
the exception of n = 48 being an hcp and n = 50 being a symmetric 
fcc, in the next range, n = 42-53, the pentagonal bipyramid 
structure becomes dominant while exhibiting a five-fold outer 
geometry. The next two large gold clusters, n = 54 and 55, have 
icosahedron-based geometry, culminating in the complete, two-
shell centered icosahedral structure found for n = 56.   

For copper clusters, the present results are in good agreement 
with those in reference [7] and [8]. The present results essentially 
indicate that the majority of the structures displayed have a five-
fold surface geometry, in agreement with the two previous studies. 
The present results for gold clusters partially agree with the results 
of previous empirical methods used by Wilson and Johnston [9] 
and Darby et al. [8]. We found icosatetrahedron configurations 
with energies lower than those obtained by Wilson and Johnston 
and Darby et al. for Au22 who found n =21 to be a hexagonal 
prismic motif in nature, which is in reasonable agreement with the 
present result. In a previous study of gold clusters, bound by the 
Murrel-Mottram many-body potentials [9], the authors also found 
a hexagonal prismic structure for n = 21.  For gold clusters, n = 38 
and 39, our predicted results of fcc-like truncated octahedral motif 
is in good agreement with those of Wilson and Johnston [9] and 
Darby et al. [8]. 
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Figure 2.  The structure of energetically most stable gold clusters, 
Aun, n = 21-56 

 
 For n = 55 and 56 our two-shell icosahedral configurations 
are not in agreement with those of Darby et al. [8].   For n = 55, 
they predicted an amorphous structure and for n = 56 an fcc-based 
structure. However, a previous study by Cox et al., [13] predicted a 
two-shell icosahedral geometry for n = 55.   
 
5. RELATIVE STRUCTURE STABILITY 
 The relative stabilities of the clusters described earlier can be 
studied by analyzing their energies. We have considered the 
evolution of the average interaction energy Ec, the difference in 
energy in adding an atom to the preceding cluster, that is, the first 
difference energy ∆E(1) and the second-order derivative, or the 
second difference energy ∆E(2). These energies are defined in 
terms of the total interaction energy of the cluster with the number 
of atoms N as, respectively.  

 total
c

EE
N

=  (8) 

 (1)
1N NE E EΔ −= −  (9) 

 (2)
1 12N N NE E E EΔ + −= − +  (10) 

  
 From the above equations, in the limit of very large clusters 
both Ec and ∆E(1)

 will approach the cohesive energy of the 
corresponding bulk solid as shown in Figure 4  for Cu and Au 
clusters.  

 
Figure 4.  Cohesive energy for Cu and Au clusters. 
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Figure 5 shows plots of the first and second energy difference 
calculated for copper. There are significant peaks at n = 6, 13, 19, 
23, 26, 28, 38, 43, 46, 49 and 55 which imply greater stability at 
these nuclearities.  

 
Figure 5.  First and second energy difference for Cu clusters. 

 
 Figure 6 shows plots for the first and second energy 
difference for gold. By contrast, while there are still large peaks at 
n = 13 and 38, for gold clusters, there are significant peaks at n = 
6, 15, 22, 27, 31, 38, 50 and 53. Comparing our results with other 
studies, Darby et al. [18] found significant peaks for copper at n = 
7, 13, 19, 23 and 55.  For gold they found significant peaks at n = 
7, 13, 30 and 38. Erkoc and Shaltaf [7] found in their investigation 
for copper the lowest-energy magic clusters to be n = 13, 20, 24, 
29, 34 and 45. Wilson and Johnston [9] predicted in their study of 
gold that the most stable structures were n = 6, 8, 13, 17, 26, and 
38.  

 
Figure 6.  First and second energy difference for Au clusters. 

 gold the most stable structures were predicted to be n = 22, 27, 31, 
38, 50 and 53 
 
6. CONCLUSION 
 The lowest-energy geometrical structures for pure Cun and 
Aun

 (n = 21-56) metals were investigated using the AVBMC 
algorithm. An embedded atom potential function proposed by the 
authors has been used in the simulation. The lowest-energy 
structures found are generally based on octahedral, decahedra, 
icosahedra and hexagonal prisms. For copper n = (21-24, 26, 27, 
29, 31, 36, 39, 41-56) the structures were found to be icosahedron 
and for n = (25, 28, 30, 32-35, 37, 40) the structures were 
disordered. As for n = 38 an fcc-like truncated octahedral structure 
was obtained. For gold clusters n = 21-26 the structure was found 
to be icositetrahedron with Au22 being a double icositetrahedron. 
For n = 41 and 48 a hexagonal closed pack structure was obtained, 
while for n = 38, 39 and 50 an fcc-like truncated octahedron 
structure was predicted. For the largest clusters, n = 54-56, the 
icosahedron was found to be the lowest-energy structure.  The 

most stable copper structures were found to be n = 23, 26, 28, 38, 
43, 46, 49 and 55. As for gold the most stable structures were 
predicted to be n = 22, 27, 31, 38, 50 and 53.  
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