
Efficient High-precision Boilerplate Detection Using Multilayer Perceptrons
(Extended abstract of unpublished paper)

Roland Schäfer

German Grammar
Freie Universität Berlin

Habelschwerdter Allee 45, 14195 Berlin
roland.schaefer@fu-berlin.de

Abstract
Removal of boilerplate is among the essential tasks in web corpus construction and web indexing. In this paper, we present
an improved machine learning approach to general-purpose boilerplate detection for languages based on (extended) Latin
alphabets (easily adaptable to other scripts). We keep it highly efficient (around 320 documents per single CPU core
second) by using an optimized Multilayer Perceptron implementation while achieving around 95% correct classifications
(Precision, Recall, and F1 score over 0.95) by extracting suitable text block-internal features. We finally compare the
performance of the Multilayer Perceptron to that of other classifiers such as Support Vector Machines.
Keywords: boilerplate detection, Multilayer Perceptron, web corpus construction, MLP vs. SVM

1. Previous Approaches
and the Notion of Boilerplate

For automatic boilerplate detection, many types of
suitable classifiers have been used, such as Support
Vector Machines [SVM] (Bauer et al., 2007), Con-
ditional Random Fields [CRF] (Marek et al., 2007;
Spousta et al., 2008), Naive Bayes (Pasternack and
Roth, 2009), Multilayer Perceptrons [MLP] (Schäfer
and Bildhauer, 2012). Bauer et al. (p. 120) report
F1 = 0.652, Spousta et al. report F1 scores around
0.8 or below (p. 16) and Pasternack and Roth report
F1 scores above 0.9, even 0.95 (p. 977–979).1 Finally,
Schäfer and Bildhauer, training the MLP on nine very
simple text block-internal features, achieve an accept-
able Precision of 0.83 at a quite mediocre Recall of
0.68, resulting in an F1 score of 0.75.2 While the ac-
curacy reported by Schäfer and Bildhauer is below the
state of the art, the advantage of the MLP (especially
when using the FANN library, cf. below) is that it is
computationally very efficient. Section 2. will show
how a large number of easily extractable features can
be used to improve their MLP-based approach.
A major problem in designing and evaluating boil-
erplate detectors is the definition of boilerplate it-

1We acknowledge that it is generally unfair to cite single
scores, since all authors perform quite differentiated evalu-
ations with diverse results, some higher than the ones given
here. The values cited here are intended for a rough orien-
tation only, and readers are advised to refer to the papers
for full evaluations.

2The authors do not report all of these figures in the
paper. They are reported in their book on web corpus con-
struction, however (Schäfer and Bildhauer, 2013, p. 56).

self. We define boilerplate as all linguistic and non-
linguistic material which remains after HTML strip-
ping, and which does not belong to the (or one of
many) coherent block(s) of text on the web page.3 Un-
der this definition, headlines and abstracts relating di-
rectly to a block of connected text are not treated as
boilerplate, but similar blocks relating to the whole
web site are. Blocks just containing date strings, user
IDs, etc., are counted as boilerplate. Different se-
tups might involve substantially different definitions
of boilerplate as well as different definitions of the
removal task itself. For example, in the CleanEval
shared task (Baroni et al., 2008), minimal structure
detection (headlines, lists, etc.) was required on top
of the basic distinction between boilerplate and good
text, which makes comparisons with setups like ours,
where such distinctions are not required, more or less
inappropriate. More details about our definition of
boilerplate will be in the final paper, and the train-
ing data set will be made available publicly. The
method described here is implemented in the current
version of our open-source web page cleaning system
texrex.4

2. Features for Very High Precision
Boilerplate Detection

In principle, an MLP (Grossberg, 1973; Rumelhart et
al., 1986; Minsky and Papert, 1988) is ideally suited
for the task of learning a binary classification based

3Splitting the page into blocks is done in a very sim-
ple way by interpreting the text contents of certain HTML
containers like <div> and <p> as blocks.

4http://texrex.sourceforge.net/



on an array of input values. We extended Schäfer
and Bildhauer’s approach by adding a rich set of fea-
tures, many inspired by Spousta et al.’s comprehen-
sive feature set (Spousta et al., 2008). Like Schäfer
and Bildhauer, we used the FANN library implemen-
tation (Nissen, 2003) and made per-block decisions.
We thus do not use a single-window approach as used,
for example, by the WaCky project (?). Since our im-
plementation is part of a complete web page cleaning
system, many of these features can be extracted in the
HTML stripping process almost for free. Among the
features are (where text always refers to the raw text
stripped from HTML markup):

1. Markup-related features

(a) markup proportion in the block (bytes)
(b) same as (1a) for a window extended

by one block in both directions
(c) same as (1a) for a window extended

by two blocks in both directions
(d) type of enclosing container tag

(<article>, <div>, <h>, etc.)
(e) block is outside any expected HTML

container (<p>, <div>, etc.) {0,1}
(f) count of empty blocks before this one
(g) count of anchor tags in block

2. Link-related features

(a) count of email addresses in block
(b) count of literal URLs in block
(c) count of Twitter hashtags in block

3. Text length and position

(a) block text length in UTF-8 characters
(b) block text length ÷

document text length (UTF-8)
(c) position (percentile) in

the text mass of the document
(d) position (percentile) in

the document’s array of blocks

4. Graphemic features

(a) proportion of punctuation characters
(b) proportion of letter characters
(c) proportion of numeric characters
(d) proportion of uppercase letters
(e) occurrence of the copyright character {0,1}

5. Linguistic features

(a) average sentence length
(b) sentence count
(c) last character is punctuation character {0,1}

6. Whole-document weighting features

(a) declared doctype for document
{HTML 4, HTML 5, XHTML, undeclared}

(b) overall proportion of markup,
i. e., (1a) for the whole document

All features have to be scaled to fit within (−1, 1) or
(0, 1), the range of input values expected by the MLP.
For all proportions and the position/percentile values
(3c), this is trivially the case. For count features, we
follow two scaling strategies: If the count intrinsically
cannot exceed the number of characters in the block,
we simply divide the count by the number of charac-
ters (1g,2a,2b,2c). For all others, we divide the actual
count by a constant and clamp values to a maximum
of 1.0 (1f,1f,3a,5a,5b). Since by assumption the text
in the middle of the web page tends to be the good
(i. e., non-boilerplate) text, we scale the percentile val-
ues such that the 50th percentile is mapped to 0.0, and
the 0th and the 100th percentile are both mapped to
1.0 (3c). The nominal features (1d,6a) were encoded
as arrays of binary features.
Figure 1 shows how the good text is actually centered
around a central percentile in the analysis of an actual
web page.

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 A B C T EF 0

Figure 1: Cumulative distribution of the text mass of
a web page over the HTML input by blocks; A, B,
C, E, F, and 0 are boilerplate regions, T is the non-
boilerplate text region (Schäfer and Bildhauer, 2013,
53).

3. Training and Evaluation
The MLP was trained on a manually annotated data set
of 9, 917 blocks from a large breadth-first crawl of the
German top-level domain from late 2011, with a final
set of 37 features. The pages were randomly sampled,
but it was made sure that each web host was unique



in the sample to guarantee diversity. Also, the sample
was stratified according to the distribution of declared
document types in the crawl: HTML4 18.7%, HTML5
4.3%, XHTML 44.7% and undeclared 32.2% in the
crawl. The documents contained 9, 917 blocks in total.
To control for overfitting, we used a 10-fold cross-
validation, where in each fold 992 blocks were re-
tained for testing, and training was done on 8, 925
blocks. The best training algorithm and the best hid-
den and output activation functions were determined
by brute-force permutation of all options on the whole
data set (best mean square error [MSE] after 10,000
epochs). The RPROP algorithm as well as the Gaus-
sian Symmetric (hidden) and Linear Piece Symmetric
(output) activation functions were selected.5 We used
one hidden layer with 18 units by applying the default
rule of choosing half as many hidden units as there are
input units. The development of the training and test
MSE over 50, 000 training epochs is shown in Fig-
ure 2. All evaluations were performed using MLPs
trained for 50, 000 epochs, taking snapshots at inter-
vals of 1, 000 epochs, and finally using the snapshot
with the lowest MSE on the training data.

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

1 10 20 30 40 50

Figure 2: Training (lower lines) and testing (upper
lines) mean square error (y axis) for the 10 folds after
n thousand epochs (x axis). After the 50,000th epoch,
the mean training MSE across the folds is 0.00387, the
mean testing MSE is 0.01128.

The MLP outputs reals in (−1, 1), so in order to de-
rive a binary decision, a threshold has to be deter-
mined. Since in the training data, 0 was used for
“is not boilerplate” and 1 for “is boilerplate”, actual
predicted values are mostly in (0, 1). We determined
the values for Correct (Predictions), Precision, Recall,

5For the definitions of these functions as used by
the FANN library, cf. http://leenissen.dk/fann/
html/files/fann-h.html.

and F1 for thresholds in (−0.1, 1) at threshold incre-
ments of 0.01. Figure 3 plots the means of the results
(network trained on the 8, 925 training blocks applied
to the retained 992 testing blocks) of all folds. Ta-
ble 1 shows the mean results at the threshold where
Precision=Recall=F1.

0.
80

0.
85

0.
90

0.
95

1.
00

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Correct
Precision
Recall
F1

Figure 3: Mean (arithmetic) of Correct, Precision, Re-
call, and F1 (y axis) over all 10 folds at thresholds in
(−0.1, 1) (x axis). The diamond marks the threshold
where Precision=Recall=F1=0.968 (threshold 0.59),
the dot marks the threshold with the highest predic-
tion accuracy of 0.951 (threshold 0.5).

0.
80

0.
85

0.
90

0.
95

1.
00

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Correct
Precision
Recall
F1

Figure 4: Same as Figure 3 for fold 9.

These “balanced” thresholds show quite some vari-
ance between the folds, they are in (0.51, 0.74). The
thresholds at which the maximal number of correct
predictions is achieved (to be shown in tabular form
in the final paper) vary even to a greater extent and
are in (0.39, 0.72). However, since the prediction ac-
curacy is generally high and the Precision and Recall



Thresh. F1 Corr.
1 0.66 0.968 0.950
2 0.52 0.973 0.956
3 0.51 0.966 0.945
4 0.59 0.971 0.953
5 0.53 0.967 0.947
6 0.58 0.966 0.946
7 0.74 0.963 0.941
8 0.51 0.969 0.951
9 0.62 0.968 0.952

10 0.62 0.966 0.946

AM 0.59 0.968 0.948
HM 0.58 0.968 0.948

Table 1: Means (AM = arithmetic, HM = harmonic)
of the “balanced” thresholds (= thresholds where Pre-
cision = Recall = F1) across the 10 folds including
accuracy values at this threshold.

Prec. Rec. F1 Corr.
1 0.950 0.957 0.981 0.969
2 0.958 0.971 0.978 0.974
3 0.944 0.964 0.966 0.965
4 0.957 0.967 0.980 0.973
5 0.944 0.960 0.970 0.965
6 0.950 0.960 0.977 0.969
7 0.956 0.961 0.985 0.973
8 0.952 0.968 0.971 0.969
9 0.945 0.955 0.974 0.964

10 0.954 0.963 0.981 0.972

AM 0.962 0.976 0.969 0.951
HM 0.962 0.976 0.969 0.951

Table 2: Evaluation for all folds at a threshold of 0.5.

curves are not very steep, setting the threshold at 0.5
(where the average maximal prediction accuracy lies)
gives the excellent results in Table 2.

Considering that the input decisions were all 0s and
1s, the classifier is expected to perform very well at a
threshold of 0.5. Even if the system should turn out
to perform slightly less well in actual production runs
compared to the performance suggested by Table 2,
we have shown that state-of-the-art high precision
general-purpose boilerplate detection depends highly
on the selection of good features, cf. the substantial
improvement over earlier results using the same clas-
sifier (Schäfer and Bildhauer, 2012). The MLP outper-
forms Spousta et al.’s CRF implementation (Spousta
et al., 2008) by around almost 0.15 on all evaluation
metrics.

Method Prec. Rec. F1 Corr.
SVM (PUK)6 0.957 0.957 0.957 0.957
MLP 0.944 0.945 0.945 0.945
SVM (RBF)7 0.901 0.905 0.901 0.905
Log. Reg. 0.901 0.904 0.902 0.904

Table 3: Overview of best achievable results with dif-
ferent classifiers.

4. Comparison with other Classifiers
For various reasons, Support Vector Machines (SVM)
are sometimes regarded as a superior option compared
to MLPs. To test whether the MLP chosen for our tool
kit is a good choice (given the available features), we
tested several alternative popular classifiers, including
SVM, on the data set. We used the Weka tool kit (Hall
and Witten, 2011), always applying 10-fold cross val-
idation. The maximal correct predictions achieved are
summarized in Table 3 (full details about the config-
urations will be in the final paper). First of all, we
confirm the accuracy of the FANN evaluation by the
similar result from the Weka MLP (a full comparison
of configurations will be in the final paper). Further-
more, the SVM delivers roughly the same accuracy as
the MLP, at least if a Pearson VII universal kernel is
available, which helps the SVM to even slightly out-
perform the Weka MLP, although not the FANN MLP.
Again, this is a confirmation that it is rather the selec-
tion of the right features that helps to achieve around
95% correct predictions, and that the choice of either
MLP or SVM (with the right kernel) is secondary.

5. Efficiency
Finally, we show that the optimized MLP implemen-
tation in the FANN library is suitable for efficient pro-
cessing of huge data sets. We performed a simple
benchmark on a standard Intel Core i5 processor with
four physical cores at 2.3 GHz running a plain GNU/
Linux kernel (3.2.0-53-generic SMP) under Ubuntu
12.04 LTS. We switched off all configurable algo-
rithms of our web page cleaning tool, leaving only ba-
sic processing (HTML stripping, conversion to UTF-
8, conversion of HTML entities) on. We measured
the performance (in ms) over 11, 781 documents read
from an ARC file using one thread for reading, four
threads for the processing of the documents, and one
thread for writing the cleansed output as XML (five
runs with at least two minute cooling off in between).
Then, switching only the boilerplate detector, we mea-
sured the difference in processing time. Over the five

6Using Weka’s PUK kernel (Üstün et al., 2006).
7Using libSVM’s RBF kernel (Chang and Lin, 2011).



runs, the boilerplate detector (on average) consumed
3.15 single CPU core milliseconds per document, re-
sulting in an efficiency of ∼ 317 documents per single
CPU core second or an estimated 27.5 million docu-
ments per single CPU core day.

6. Summary and Outlook
We have shown that efficient and very high-precision
boilerplate detection based on easily extractable but
numerous document internal features is possible.
Since the method was tested only on German web
pages so far, future work will center around an eval-
uation of the method on English, French, Spanish,
and Swedish web pages. Especially, we are interested
to see how well MLPs trained on documents in one
language perform on other graphemically similar lan-
guages. Also, integrating the software in an Apache
Hadoop-based massively parallel architecture for web
corpus construction (Biemann et al., 2013) is among
our future goals.

7. References
Marco Baroni, Francis Chantree, Adam Kilgarriff, and

Serge Sharoff. 2008. CleanEval: A competition for
cleaning webpages. In Proceedings of LREC 06,
pages 638–643, Marrakech. ELRA.

Daniel Bauer, Judith Degen, Xiaoye Deng, Priska
Herger, Jan Gasthaus, Eugenie Giesbrecht, Lina
Jansen, Christin Kalina, Thorben Krüger, Robert
Märtin, Martin Schmidt, Simon Scholler, Johannes
Steger, Egon Stemle, and Stefan Evert. 2007. Fil-
tering the internet by automatic subtree classifica-
tion. In Fairon et al. (Fairon et al., 2007), pages
111–122.

Chris Biemann, Felix Bildhauer, Stefan Evert, Dirk
Goldhahn, Uwe Quasthoff, Roland Schäfer, Jo-
hannes Simon, Leonard Swiezinski, and Torsten
Zesch. 2013. Scalable construction of high-quality
web corpora. Special issue of JLCL. To appear.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technol-
ogy, 2:27:1–27:27.

Cédrick Fairon, Hubert Naets, Adam Kilgarriff, and
Gilles-Maurice de Schryver, editors. 2007. Build-
ing and Exploring Web Corpora: Proceedings of
the 3rd Web as Corpus Workshop (Incorporating
CLEANEVAL), Louvain. Presses universitaires de
Louvain.

Stephen Grossberg. 1973. Contour enhancement,
short-term memory, and constancies in reverberat-
ing neural networks. Studies in Applied Mathemat-
ics, 52:213–257.

Mark Hall and Ian H. Witten. 2011. Data mining:
practical machine learning tools and techniques.
Kaufmann, Burlington.

Michal Marek, Pavel Pecina, and Miroslav Spousta.
2007. Web page cleaning with Conditional Random
Fields. In Fairon et al. (Fairon et al., 2007), pages
155–162.

Marvin L. Minsky and Seymour A. Papert. 1988. Per-
ceptrons. MIT Press.

Steffen Nissen. 2003. Implementation of a Fast Ar-
tificial Neural Network Library (FANN). Technical
report, Datalogisk Institut Københavns Universitet,
Copenhagen.

J. Pasternack and D. Roth. 2009. Extracting article
text from the web with maximum subsequence seg-
mentation. In Proceedings of the 18th international
conference on World Wide Web, pages 971–980.

David E. Rumelhart, Geoffrey E. Hinton, and
Ronald J. Williams. 1986. Learning representa-
tions by back-propagating errors. Nature, 323:533–
536.

Roland Schäfer and Felix Bildhauer. 2012. Build-
ing large corpora from the web using a new ef-
ficient tool chain. In Nicoletta Calzolari, Khalid
Choukri, Thierry Declerck, Mehmet Uğur Doğan,
Bente Maegaard, Joseph Mariani, Jan Odijk, and
Stelios Piperidis, editors, Proceedings of the Eight
International Conference on Language Resources
and Evaluation (LREC’12), pages 486–493, Istan-
bul. ELRA.

Roland Schäfer and Felix Bildhauer. 2013. Web Cor-
pus Construction. Synthesis Lectures on Human
Language Technologies. Morgan and Claypool, San
Francisco.

Miroslav Spousta, Michal Marek, and Pavel Pecina.
2008. Victor: The web-page cleaning tool. In Ste-
fan. Evert, Adam Kilgarriff, and Serge Sharoff, ed-
itors, Proceedings of the 4th Web as Corpus Work-
shop, pages 12–17, Marrakech.

Bülent Üstün, Willem J. Melssen, and Lutgarde M.C.
Buydens. 2006. Facilitating the application of Sup-
port Vector Regression by using a universal Pearson
VII function based kernel. Chemometrics and Intel-
ligent Laboratory Systems, 81:29–40.


