
A Prototype Quest Generator Based on a
Structural Analysis of Quests from Four MMORPGs

Jonathon Doran
Dept. of Computer Science & Engineering

University of North Texas
jhd@unt.edu

Ian Parberry
Dept. of Computer Science & Engineering

University of North Texas
ian@unt.edu

ABSTRACT
An analysis of over 750 quests from four popular RPGs (Eve
Online, World of Warcraft, Everquest, and Vanguard: Saga
of Heroes) reveals that RPG quests appear to share a com-
mon structure. We propose a classification of RPG quests
based on this structure, and describe a prototype quest gen-
erator based on that classification. Our aim is to procedu-
rally generate quests that are complex, multi-leveled, and
plausible to players of RPGs. We analyze a nontrivial quest
from Everquest and one from our prototype quest generator
for comparison.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem solving, control
methods, and search—Plan execution, formation, and gen-
eration; I.6.8 [Simulation and Modelling]: Type of Sim-
ulation—Gaming

General Terms
Algorithms, Experimentation

Keywords
Quest, role-playing game, RPG, MMORPG, NPC, procedu-
ral content generation, planning, intractability, Java, Prolog,
BNF.

1. INTRODUCTION
A quest is a player task commonly found within role play-

ing games where the player is challenged to complete goals
in return for some reward. From an author’s point of view,
the quest provides many of the challenging elements of game
play, and provide players with concrete goals [14]. From a
player’s point of view, the quest is a narrative element that
informs them about the world and allows the player to gain
knowledge and power. Dramatic events may be portrayed
through the dialog and actions of characters involved with a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PCGames ’11, June 28, 2011, Bordeaux, France
Copyright 2011 ACM 978-1-4503-0804-5/11/06 ...$10.00.

Figure 1: Roadmap for the rest of this paper.

quest. While authors seek exposition and players seek enter-
tainment, these goals are not necessarily mutually exclusive.

Procedural quest generation clearly has the potential to
increase the variability and replayability of games. This in
turn can lead to an increase in player interest in these games,
as there never comes a point where the player has seen ev-
erything or done everything in the game. The seemingly
limitless quests that might be generated could cause one to
dismiss quest generation as an intractable problem. How-
ever, an analysis of over 750 human-authored quests for Eve
Online, World of Warcraft, Everquest, and Vanguard: Saga
of Heroes shows these quests to have significantly less struc-
tural variety than one might expect. Without any artificial
restrictions on quest structure, human authors nonetheless
create works with shared structure, changing details such
as setting, but preserving the relationship between actions.
We have been able to exploit this common structure and
demonstrate a prototype system that procedurally generates
random quests appropriate for use in RPGs.

 Proceedings of the Second International Workshop on Procedural Content Generation in Games, pp. 1-8, Bordeaux, France, 2011.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357353793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The main part of this paper is divided into five short sec-
tions. In Section 2 we consider related work. In Section 3
we describe the results our structural analysis of quests from
four MMORPGs (see Figure 1(i)), a preliminary version of
which appeared in [11]. In Section 4 we give an example
of the structural analysis of a quest from Everquest (see
Figure 1(ii)). In Section 5 we describe a prototype quest
generator (available online at [10]) based on the structural
analysis (see Figure 1(iii)). In Section 6 we analyze a quest
from our quest generator (see Figure 1(iv)).

2. RELATED WORK
Previous research on RPG quest analysis falls into two

categories: structural and functional. Autonomous genera-
tion of quests involves not only a suitable form for a quest,
but a means for the generator to know when to generate a
quest and the ability to ensure that the quest makes sense
in the current game state.

Some classification studies have been performed [6, 12,
13], but these do not necessarily have the goal of autonomous
generation of quests. Sullivan has also classified player ac-
tions, and has came to similar conclusions [13]. Ashmore and
Nitsche [7] propose procedural quest generation using key-
lock structure quests, rather than NPC interactions. This
structure has potential for autonomous generation, but lacks
the sense of purpose found in quests derived from NPC goals.
Jill Walker [15] classifies World of Warcraft quests into ex-
ploration and combat quests, which is significant as it is
an early attempt to classify quests. We believe our classi-
fication is more general, in that it can express additional
types of quests. Dickey [9] provided a classification sys-
tem which appears suitable for autonomous generation, but
does not claim to provide complete coverage for RPG quests
nor does it address how quests could be generated based on
this system. Our decomposition is closely related to world
state, which makes it fairly straightforward to select a quest
type which modifies some piece of state. Aarsath discussed
quests in general, although using a somewhat liberal defini-
tion which could be applied to first-person shooters [6].

Quest generation is a special case of planning, as one may
consider a quest to consist of an initial state, a goal, and a
set of actions players must perform to reach the goal. Plan-
ning in general is NP-complete, as a planning problem may
be restated as a boolean satisfiability problem (whether an
action is present at a particular stage of a viable plan) [8].
As a result, exhaustive search may be required to determine
even if a plan exists.

The search space for non-trivial domains also grows very
quickly, as planning is PSPACE-hard. Therefore while gen-
eral planning algorithms are the most capable technique for
generating quest plans, they are impractical. We avoid this
limitation by abandoning the general planning problem in
favor of one with restrictions. We are able to do this without
loss of generality as our analysis of human generated quests
showed these quests to have structural patterns which oc-
curred in predictable situations. Each of these patterns has
an implicit precondition and postcondition, and as long as
these conditions are not violated a generator is free to elab-
orate or introduce new subquests.

3. STRUCTURAL ANALYSIS
For our structural analysis of RPG quests (refer back to

Motivation Quests Percent

Everquest 266 35%
Vanguard 137 18%
World of Warcraft 205 27%
Eve Online 145 19%

Table 1: Distribution of quest origins.

Motivation Description

Knowledge Information known to a character
Comfort Physical comfort
Reputation How others perceive a character
Serenity Peace of mind
Protection Security against threats
Conquest Desire to prevail over enemies
Wealth Economic power
Ability Character skills
Equipment Usable assets

Table 2: NPC motivations.

Figure 1(i)), we examined over 750 quests from Everquest,
World of Warcraft, Vanguard: Saga of Heroes, and Eve On-
line to determine whether common structures were present.
Table 1 gives the distribution of quests from the four games.
Quest descriptions were obtained from Allakhazam [1],the
MMODB Quest Database [2], Silky Venom [3], Thottbot [4],
and the Eve Info Mission Database [5]. Each quest descrip-
tion consists of NPC dialog, an explanation of the actions
players are required to perform, and the reward for complet-
ing the quest.

We observed the following patterns. Quests fall into a
set of 9 distinct underlying motivations best described by
the following list of nouns: Knowledge, Comfort, Reputa-
tion, Serenity, Protection, Conquest, Wealth, Ability, and
Equipment (see Table 2). Our use of motivations is novel,
and we believe essential for ensuring that quests appear in-
tentional and appropriate rather than randomly generated.
An NPC’s motivation is a statement of the most important
concern the NPC has, and the quest is intended to address
this concern. We assume that as game events unfold a par-
ticular NPC’s motivations will change, especially if players
successfully complete quests for this NPC. The distribution
of motivations observed was not uniform (see Table 3); we
assume that the designer could in principle change the dis-
tribution of motivations over time to affect the flavor of the

Motivation Quests Percent

Knowledge 138 18.3%
Comfort 12 1.6%
Reputation 49 6.5%
Serenity 103 13.7%
Protection 137 18.2%
Conquest 152 20.2%
Wealth 15 2.0%
Ability 8 1.1%
Equipment 139 18.5%

Table 3: Distribution of observed NPC motivations.

2

game by preferring one form of quest motivation over an-
other.

The NPC delivering the quest to the player does so using
from 2-7 specific strategies specific to its motivation. Each
strategy can be described by a verb-noun pair, for example,
“kill pests”, “steal supplies”, or “rescue NPC”. The full list of
strategies with their corresponding motivations from Table 2
is given in Table 4.

For each strategy there is a sequence of from 1 to 6 actions
that the player must undertake in sequence to implement
the strategy. Each action can be either a simple atomic
action that be achieved by the player (see Table 5, or can
be expressed recursively as a sequence of other actions or
action variants (see able 6). We will express quest structure
in the form of a grammar in which the terminal symbols are
atomic actions.

Actions can therefore be expressed as an infinite set of
trees, the leaves of which are atomic actions that can be
performed by the player, and the internal nodes of which
represent tasks that must be achieved along the way. A
list of the leaves in the order visited by pre-order traversal
of the tree gives the sequence of atomic actions required to
achieve the quest. For example, Table 6 gives a partial action
structure in the form of a grammar in Backus-Naur Form.
An RPG quest then starts with a choice of NPC motivation:

<QUEST> ::= <Knowledge> | <Comfort> |
<Reputation> | <Serenity> |
<Protection> | <Conquest> |
<Wealth> | <Ability> | <Equipment>

A Comfort quest, for example, (lines 7 and 8 of Table 4)
can then be described as:

<Comfort> ::= <Obtain Luxuries>
<Obtain Luxuries> ::= <get> <goto> <give>

Next, in Section 4, we will use these rules to analyze the
quest “Cure for Lempeck Hargrin” from Everquest as an ex-
ample of how our rules can describe quests from existing
RPGs. After a brief description of our quest generator in
Section 5, we will in Section 6 give an example of a quest
generated from the rules.

4. QUEST ANALYSIS EXAMPLE
To demonstrate how a sample human-designed quest from

a popular RPG fits into our classification scheme (refer back
to Figure 1(ii)), consider the quest “Cure for Lempeck Har-
grin” from the game Everquest. The quest begins in Qeynos
with NPC0, who asks the player to travel to a remote town
and obtain an ingredient needed to cure an ailing NPC
named Lempeck Hargrin. The player is required to travel
from Qeynos to Rivervale, talk to NPC1 there, follow his di-
rections to visit NPC2 who is injured, and give NPC2 ban-
dages in return for honeycombs. The honeycombs are then
taken to NPC1 in Rivervale and traded for honey jum. This
honey jum is then taken to the originating NPC0 in Qeynos
and used to make a curative potion. The player takes this
potion to Lempeck Hargrin who exchanges a scythe for the
potion and is cured. The player delivers the donated scythe
to NPC0 and is then granted a reward (the Shining Star of
Life).

Figure 2: Key to Figures 3 and 5.

Figure 3: Analysis of “Cure for Lempeck Hargrin”
from Everquest.

Since the primary motivation for asking the player’s help is
the need to cure an NPC, this quest is motivated by Protec-
tion. The strategy chosen by the NPC assigning this quest
to the player is Treat or Repair (1). This strategy breaks
down into the sequence of actions (see Table 4):

<Serenity> ::= <Treat or Repair (1)>
<Treat or Repair (1)> ::= <get> <goto> use

The tree is then recursively filled out to Figure 3. Figure 2
gives the key to Figure 3. Nonterminal symbols are shown in
white boxes with circled numbers showing the corresponding
production rule from Table 6. Terminal symbols are shown
in gray boxes with numbers in hexagons showing the corre-
sponding action from Table 5. Numbers in diamonds show
the order in which actions are performed, obtained from a
pre-order traversal of the tree. These numbers correspond
to the numbers in the following analysis:

1. <Treat or Repair (1)>: Receive quest from NPC1. Con-
sult Table 4, Line 18 to get the sequence of actions.

3

Motivation Strategy Sequence of Actions

Knowledge Deliver item for study <get> <goto> give
Spy <spy>
Interview NPC <goto> listen <goto> report
Use an item in the field <get> <goto> use <goto> <give>

Comfort Obtain luxuries <get> <goto> <give>
Kill pests <goto> damage <goto> report

Reputation Obtain rare items <get> <goto> <give>
Kill enemies <goto> <kill> <goto> report
Visit a dangerous place <goto> <goto> report

Serenity Revenge, Justice <goto> damage
Capture Criminal(1) <get> <goto> use <goto> <give>
Capture Criminal(2) <get> <goto> use capture <goto> <give>
Check on NPC(1) <goto> listen <goto> report
Check on NPC(2) <goto> take <goto> give
Recover lost/stolen item <get> <goto> <give>
Rescue captured NPC <goto> damage escort <goto> report

Protection Attack threatening entities <goto> damage <goto> report
Treat or repair (1) <get> <goto> use
Treat or repair (2) <goto> repair
Create Diversion <get> <goto> use
Create Diversion <goto> damage
Assemble fortification <goto> repair
Guard Entity <goto> defend

Conquest Attack enemy <goto> damage
Steal stuff <goto> <steal> <goto> give

Wealth Gather raw materials <goto> <get>
Steal valuables for resale <goto> <steal>
Make valuables for resale repair

Ability Assemble tool for new skill repair use
Obtain training materials <get> use
Use existing tools use
Practice combat damage
Practice skill use
Research a skill(1) <get> use
Research a skill(2) <get> experiment

Equipment Assemble repair
Deliver supplies <get> <goto> <give>
Steal supplies <steal>
Trade for supplies <goto> exchange

Table 4: Strategies for each of the NPC motivations from Table 2 using actions from Table 5.

4

Action Pre-condition Post-condition

1. ε None. None.
2. capture Somebody is there. They are your prisoner.
3. damage Somebody or something is there. It is more damaged.
4. defend Somebody or something is there Attempts to damage it have failed.
5. escort Somebody is there They will now accompany you.
6. exchange Somebody is there, they and you have something. You have theirs and they have yours.
7. experiment Something is there. Perhaps you have learned what it is for.
8. explore None. Wander around at random.
9. gather Something is there. You have it.

10. give Somebody is there, you have something. They have it, and you don’t.
11. goto You know where to go and how to get there. You are there.
12. kill Somebody is there. They’re dead.
13. listen Somebody is there. You have some of their information.
14. read Something is there. You have information from it.
15. repair Something is there. It is less damaged.
16. report Somebody is there. They have information that you have.
17. spy Somebody or something is there. You have information about it.
18. stealth Somebody is there. Sneak up on them.
19. take Somebody is there, they have something. You have it and they don’t.
20. use There is something there. It has affected characters or environment.

Table 5: Atomic actions.

Rule Explanation

1. <subquest> ::= <goto> Subquest could be just to go someplace.
2. <subquest> ::= <goto> <QUEST> goto Go perform a quest and return.
3. <goto> ::= ε You are already there.
4. <goto> ::= explore Just wander around and look.
5. <goto> ::= <learn> goto Find out where to go and go there.
6. <learn> ::= ε You already know it.
7. <learn> ::= <goto> <subquest> listen Go someplace, perform subquest, get info from NPC.
8. <learn> ::= <goto> <get> read Go someplace, get something, and read what is written on it.
9. <learn> ::= <get> <subquest> give listen Get something, perform subquest, give to NPC in return for info.

10. <get> ::= ε You already have it.
11. <get> ::= <steal> Steal it from somebody.
12. <get> ::= <goto> gather Go someplace and pick something up that’s lying around there.
13. <get> ::= <goto> <get> <goto> Go someplace, get something, do a subquest for somebody,

<subquest> exchange return and exchange.
14. <steal> ::= <goto> stealth take Go someplace, sneak up on somebody, and take something.
15. <steal> ::= <goto> <kill> take Go someplace, kill somebody and take something.
16. <spy> ::= <goto> spy <goto> report Go someplace, spy on somebody, return and report.
17. <capture> ::= <get> <goto> capture Get something, go someplace and use it to capture somebody.
18. <kill> ::= <goto> kill Go someplace and kill somebody.

Table 6: Action rules in BNF.

5

2. <get>(potion): You need to get the potion. You’ve
been told to travel to Rivervale and ask for honeyjum.
Apply Rule 13 from Table 6.

3. goto(Rivervale): You know where it is, so go there.
This is Action 11 from Table 5.

4. <get>(honeyjum): You ask for honeyjum, but you are
told to get honeycomb. Apply Rule 13 from Table 6.

5. <goto>(honeycomb location): You want to go to the
honeycomb, but you don’t know where that is. Apply
Rule 5 from Table 6.

6. <learn>(honeycomb location): First you need to learn
where the honeycomb is. You know that NPC2 knows.
Apply Rule 9 from Table 6.

7. get(bandage): NPC2 is injured and needs a bandage.
Go to a bandage store and get it. Apply Rule 12 from
Table 6.

8. goto(bandage location): You know where to get a ban-
dage, so go there. This is Action 11 from Table 5.

9. gather(bandage): Gather a bandage, may need to pur-
chase it or just pick it up. This is Action 9 from Ta-
ble 5.

10. Your subquest is to go to NPC2. Apply Rule 1 from
Table 6.

11. You go to NPC2. This is Action 11 from Table 5.
12. give(bandage to NPC2): You give the bandage to NPC2.

This is Action 10 from Table 5.
13. listen(NPC2): NPC2 says to get honeycomb from bix-

ies. This is Action 13 from Table 5.
14. goto(bixies): You go to where the bixies are. This is

Action 11 from Table 5.
15. <get>(honeycomb): You want to get the honeycomb

from them. Apply Rule 11 from Table 6.
16. <steal>(honeycomb): You must steal it from them.

Apply Rule 15 from Table 6.
17. (Empty <goto>, you’re already there.)
18. kill(bixies): You kill the bixies. This is Action 12 from

Table 5.
19. take(honeycomb): You take their honeycomb. This is

Action 19 from Table 5.
20. (No subquest.)
21. goto(NPC2): You take the honeycomb to NPC2. This

is Action 11 from Table 5.
22. exchange: NPC2 exchanges honeycomb for honeyjum.

This is Action 6 from Table 5.
23. (No subquest.)
24. goto(Queynos): You return to NPC1 in Qeynos. This

is Action 11 from Table 5.
25. exchange: NPC1 exchanges honeyjum for potion. This

is Action 6 from Table 5.
26. goto(Lempeck Hargrin): Deliver the potion. This is

Action 11 from Table 5.
27. use(potion): Quest over. He’s cured. This is Action 20

from Table 5.

5. QUEST GENERATOR
We have used our quest structure to create a generator ca-

pable of creating random quests (refer back to Figure 1(iii)).
It starts with an NPC motivation from the list in Table 2
and a random number generator seed. We accept seeds from
the user to allow quests to be reproduced for documentation.
The seed 0 is used to request that the generator be seeded us-
ing system state (such as time) resulting in an unpredictable
quest.

From the motivation, the generator consults a list of root
strategies such as the list of alternatives for the “Ability”
motivation shown in Table 4. The generator selects one
of these strategies and creates a quest that addresses the
motivation provided by the user. The sequence of actions
can be viewed as leaves in a tree, with the root representing
the entire quest. Most of these actions may be replaced by
subquests made up of the same set of actions. By repeatedly
replacing nodes with subquests, a tree of arbitrary depth and
complexity may be created. Individual quests differ from
each other in the order of actions the player is expected to
perform (the leaves of the tree). Random trees will tend to
have unique leaves, resulting in unique quests. The choice
between alternate rules in Table 6 is made based on what
the player is assumed to know and what the state of the
game is at that time, and if alternatives remain, then one of
them is chosen at random. Thus for example, the generator
avoids having the player go on a quest for something they
already have, or assumes knowledge that cannot possibly be
obtained by the player given the current game state.

Specific details of the quest are randomly assigned as the
quest tree is being expanded, resulting in differences between
quests with the same structure. A simple delivery quest
may be repeatedly used when one changes the item being
delivered, the source of the item, and the item’s destination.
Games such as Everquest and World of Warcraft routinely
reuse this same structure with different details, creating a
large number of similar but distinct quests. Our generator
is capable of recreating this variety of quests using a single
structure. The popularity of this replacement technique in
actual games demonstrates how much may be accomplished
by just changing details, and suggests that a generator that
changes both details and structure will produce useful con-
tent.

Our generator is written in Prolog, and we have provided a
Java applet front-end as shown in Figure 4. Our choice of the
Prolog language was based on Prolog’s ability to automat-
ically backtrack and try alternative solutions to a problem.
This means that if our generator is unable to successfully
expand part of a tree, that it will automatically abandon
the effort and try something different.

Our generator’s output consists of a terse tree of actions
demonstrating quest structure, and a narrative describing
the players actions while completing the quest. The nar-
rative includes simple boilerplate dialog for NPCs, which
provides a better feel for how the quest will appear than a
pure description of actions.

6. GENERATED QUEST EXAMPLE
Now we will analyze a sample quest from our procedural

quest generator (refer back to Figure 1(iv)). Our example
starts with an NPC named Steve who is motivated by the
need for Knowledge from Table 2. Steve picks the strategy
Spy from Table 4, which requires a sequence of actions start-
ing at <spy> from Table 6. The quest generator randomly
chooses to fill out the quest as shown in Figure 5, using the
production rules from Table 6 (refer back to Figure 2 for
the key to Figure 5). As before, numbers in diamonds show
the order in which actions are performed, obtained from a
pre-order traversal of the tree. These numbers correspond
to the numbers in the following analysis:

1. <Spy>: Receive quest from Steve. Consult Table 4,

6

Figure 4: Screen shot of a prototype quest generator

Figure 5: Analysis of a procedurally generated spy
quest.

Line 2 to get the sequence of actions.
2. <spy>(goblin): Steve has told you to spy on a goblin.

Apply Rule 16 from Table 6.
3. <goto>(goblin): You need to go to the goblin. But

you don’t know where the goblin is. Apply Rule 5
from Table 6.

4. <learn>(goblin location): You need to find out where
the Goblin is. You know that Tomas has a letter that
will tell you that. Apply Rule 8 from Table 6.

5. <goto>(Tomas): You must go to Tomas, but you don’t
know where he is. Apply Rule 5 from Table 6.

6. <learn>(Tomas’ location): You need to find out where
Tomas is. You know that Denros knows that. Apply
Rule 7 from Table 6.

7. <goto>(Denros): You need to go to Denros, but you
don’t know where he is. Apply Rule 5 from Table 6.

8. <learn>(Denros’ location): You need to find out where
Denros is. You know that Angie knows that. Apply
Rule 7 from Table 6.

9. <goto>(Angie): You need to go to Angie, but you
don’t know where she is. Apply Rule 5 from Table 6.

10. <learn>(Angie’s location): You need to find out where
Angie is. You know that Adon knows that. Apply
Rule 7 from Table 6.

11. goto(Adon): You go to Adon. This is Action 7 from
Table 5.

12. (Adon does not give you a subquest.)
13. listen: Adon tells you Angie’s location. This is Action 9

from Table 5.
14. goto(Angie): You’ve finished learning Angie’s location,

so you go there. This is Action 7 from Table 5.
15. (Angie does not give you a subquest.)
16. listen: Angie tells you Denros’ location. This is Ac-

tion 9 from Table 5.
17. goto(Denros): You’ve finished learning Denros’ loca-

tion, so you go there. This is Action 7 from Table 5.
18. (Denros does not give you a subquest.)
19. listen: Denros tells you Tomas’ location. This is Ac-

tion 9 from Table 5.
20. goto(Tomas): You’ve finished learning Tomas’ loca-

tion, so you go there. This is Action 7 from Table 5.
21. <get>(letter): You want to get the letter from Tomas.

Tomas tells you he will sell it to you. Apply Rule 13
from Table 6.

22. (You don’t need to go anyplace, get anything, or per-
form a subquest to get it.)

23. exchange: You buy the letter from Tomas. This is
Action 3 from Table 5.

24. read: You read the letter and it tells you where the
goblin is. This is Action 10 from Table 5.

25. goto(goblin location): You go to where the goblin is.
This is Action 7 from Table 5.

26. spy(goblin): You spy on the goblin. This is Action 12
from Table 5.

27. goto(Steve): You go back to Steve, who gave you the
quest. This is Action 7 from Table 5.

28. report: You tell Steve where the goblin is. This is
Action 11 from Table 5. The quest is complete.

7. CONCLUSION AND FURTHER WORK
Based on a study of over 750 quests from four MMORPGs

we have found that quests have a well defined structure. We
have inferred motivations for NPC’s to grant these quests,

7

and believe that using this information to control generation
will lead to a greater sense of realism. We have a prototype
quest generator based on our analysis at [10]. However, fur-
ther work is needed before we can demonstrate its ability to
generate quests equal in quality to hand-crafted quests.

8. REFERENCES
[1] Allakhazam MMO Quest Databases, Retrieved June

2009. http://zam.com.

[2] MMODB Quest Databases, Retrieved June 2009.
http://www.mmodb.com.

[3] Silky Venom Vanguard Wiki, Retrieved June 2009.
http://wiki.silkyvenom.com/index.php/Main_Page.

[4] Thottbot World of Warcraft Database, Retrieved June
2009. http://thottbot.com.

[5] Eve Info Mission Database, Retrieved October 2010.
http://eveinfo.com/missions.

[6] E. Aarseth. From Hunt the Wumpus to EverQuest:
Introduction to Quest Theory. In F. Kishino, Y. Kato,
and H. Nagata, editors, Proc. ICEC 2005, Lecture
Notes in Computer Science, volume 3711, pages
496–506, 2005.

[7] C. Ahsmore and M. Nitsche. The Quest in a
Generated World. In Proc. DiGRA 2007, 2007.

[8] T. Bylander. Complexity Results for Planning. In
Proc. Twelfth International Joint Conference on

Artificial Intelligence, volume 1, pages 274–279.
Morgan Kaufmann, 1991.

[9] M. Dickey. Game Design and Learning: A Conjectural
Analysis of How Massively Multiple Online
Role-Playing Games (MMORPGs) Foster Intrinsic
Motivation. Educational Technology Research and
Development, 55(3):253–273, 2007.

[10] J. Doran and I. Parberry. Quest Generation.
http://www.eng.unt.edu/ian/research/quests/.

[11] J. Doran and I. Parberry. Towards Procedural Quest
Generation: A Structural Analysis of RPG Quests.
Technical Report LARC-2010-02, Laboratory for
Recreational Computing, Dept. of Computer Science
& Engineering, University of North Texas, May 2010.

[12] A. Sullivan. Gender-Inclusive Quest Design in
Massively Multiplayer Online Role-Playing Games. In
Proc. 4th International Conference on Foundations of
Digital Games, pages 354–356. ACM, 2009.

[13] A. Sullivan, M. Mateas, and N. Wardrip-Fruin.
QuestBrowser: Making Quests Playable with
Computer-Assisted Design. In Digital Arts and Culture
2009, UC Irvine: Digital Arts and Culture 2009, 2009.

[14] A. Tychsen, S. Tosca, and T. Brolund. Personalizing
the Player Experience in MMORPGs. Lecture Notes
in Computer Science, 4326:253–264, 2006.

[15] J. Walker. A Network of Quests in World of Warcraft.
MIT Press, 2007.

8

