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Derivatives and the

Price of Risk

Nicolas P. B. Bollen

INTRODUCTION

Risk-neutral derivative valuation often requires the input of an unob-
servable market price of risk. Fortunately, the risk-neutral approach pro-
vides two useful results that can help identify the price of risk. First, the
price of risk is equal across all derivatives contingent on the same sto-
chastic variable. This allows one to extract information from traded se-
curities and to use the information to value other assets, though any
inference about the price of risk requires an assumption about its spec-
ification. Second, the approach provides a partial-differential equation
that includes the price of risk, the solution of which is the value of the
derivative under investigation. However, the precise form of the equation,
and therefore the calculated derivative value, is affected by the assumed
specification of the price of risk. This article illustrates the potential for
valuation error when the price of risk is specified incorrectly.

Researchers have assumed a variety of risk specifications. Vasicek
(1977), for example, assumes that the price of interest-rate risk is con-
stant. Similarly, Gibson and Schwartz (1990) assume that the price of
crude oil convenience yield risk is constant. Hull and White (1990) as-
sume that the price of interest-rate risk is specified as in the Cox, Inger-
soll, and Ross (1985) model. This article provides two examples that dem-
onstrate that these seemingly innocuous assumptions can have a dramatic
impact on derivative valuation. First, several widely used specifications of
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the price of interest-rate risk are calibrated with a common data set of
discount bond prices. Coupon bonds and bond options are then valued,
and it is found that values vary significantly across risk specifications.
Second, risk specifications are calibrated with the use of Eurodollar fu-
tures options data are calibrated. It is found that a term structure of risk
tightens in-sample fit and reduces out-of-sample valuation error. These
results highlight the importance of testing assumptions about the price
of risk when risk-neutral valuation is used.

Some researchers have avoided the problem of risk misspecification.
Cox et al. (1985) develop a general equilibrium model of interest rates
that yields a fully specified market price of risk and analytic derivative
values; however, their model requires layers of assumptions regarding the
economy and its participants. Heath, Jarrow, and Morton (1990) and
Stapleton and Subrahmanyam (1993) develop alternative techniques that
avoid both the price of risk and the numerous assumptions necessary for
a general equilibrium model. Risk-neutral valuation remains alluring,
though, due to its intuitive appeal.

The rest of this article is organized as follows. Section 1 derives the
familiar partial differential equation, that forms the basis of the risk-
neutral approach to valuing derivative securities. The derivation includes
a discussion of the price of risk. Section 2 shows how several popular risk
specifications can result in dramatically different derivative values. Sec-
tion 3 tests a term structure of risk with the use of Eurodollar futures
options data. Section 4 concludes the article.

RISK-NEUTRAL DERIVATIVE VALUATION
This section summarizes the risk-neutral approach to derivative valuation.
Brennan and Schwartz (1979) presented a similar discussion over 15
years ago, and Hull (1989) reviews it in his textbook. Because the market
price of risk is central to this article, a review of its derivation is warranted.
For purposes of exposition, a model with one stochastic variable, and
hence one market price of risk, is used. The derivation could be expanded
to the multifactor case with little difficulty.

Suppose a series of derivatives have payoffs contingent on a random
variable, h, which is governed by the following stochastic differential
equation:

dh 4 l(h, t) h dt ` r(h, t) h dz (1)

where dz is an increment to a Wiener process. When l and r are constant,
eq. (1) describes geometric Brownian motion, the familiar Black and
Scholes (1973) process for stock prices. Consider two derivatives with
payoffs contingent on h. Let fi denote the value of derivative i. With the
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use of Ito’s lemma, the stochastic process governing changes in the value
of each derivative is

2]f ]f 1 ] f ]fi i i i2 2df 4 ` lh ` r h dt ` rh dz (2)i 23 4]t ]h 2 ]h ]h

where the arguments of l and r are suppressed for brevity. Let mi and si

denote the expected change in the value of derivative, i, and the volatility
of changes in the value of derivative, i, respectively. With the use of eq.
(2), these two functions are defined as

2]f ]f 1 ] fi i i 2 2m 4 ` lh ` r h (3)i 23 4]t ]h 2 ]h

and

]fis 4 rh (4)i ]h

With the use of these definitions, eq. (2) can be rewritten as follows:

df 4 m dt ` s dz (5)i i i

Let fi equal the natural logarithm of fi, so that changes in fi correspond
to the continuous return of the derivative. Ito’s lemma can be applied to
(5) to yield the stochastic process governing changes in fi:

df 4 l dt ` r dz (6)i i i

where

1 1 12l 4 m 1 s and r 4 s . (7)i i i i i2f 2f fi i i

Now consider a portfolio, P, formed by combining the two derivatives.
Let x1 and x2 denote the relative weights of the derivatives in the portfolio,
such that the sum of x1 and x2 equals unity. Let fP denote the natural
logarithm of the portfolio value. The stochastic process governing fP can
be expressed as a linear combination of the two derivatives’ processes:

df 4 [x l ` x l ] dt ` [x r ` x r ] dz (8)P 1 1 2 2 1 1 2 2

If x1 4 1r2/(r1 1 r2), then some algebra shows that the portfolio’s
volatility is always 0, in which case the return of P is certain and the
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portfolio is riskless. The drift of the natural logarithm of the portfolio at
any instant must then equal the riskless rate of interest:

x l ` x l 4 r (9)1 1 2 2

where r is the riskless rate of interest. After substituting the particular
portfolio weights, which are required for eq. (9) to hold [x1 4 1r2/(r1

1 r2) and x2 4 r1/(r1 1 r2)], eq. (9) can be rewritten as

l 1 r l 1 r1 24 (10)
r r1 2

One interpretation of eq. (10) is that the derivatives’ expected premia
per unit of risk (often referred to as Sharpe ratios) are equal. This result
is intuitive, because the derivatives’ underlying source of risk is the same:
The random variable, h. The ratio is the same for all derivatives contingent
on h. The ratio is called the market price of risk of h, and is usually
denoted by k. The equality in eq. (10) holds only instantaneously, because
the portfolio is riskless only instantaneously; hence, k is a function with
a value that changes constantly. The arguments of k are usually limited
to h and t, though they need not be. In fact, the price of risk can depend
on anything that might affect investor attitudes. The only restriction im-
plied by the statistical model is that the price of risk is equal at any point
in time across all derivatives contingent on the same stochastic variable.

The relation between the risk premium demanded by investors for
holding derivative i and the price of risk can be expressed as

l 1 r 4 kr (11)i i

Thus, the derivative’s risk premium can be interpreted as the market price
of risk, k, times the amount of risk derivative i holds, ri.

The definition of the market price of risk implies that an investor
will accept a reduction in the return of derivative i equal to kri in ex-
change for eliminating the volatility of the derivative. With the use of (7),
this is equivalent to a reduction of ksi in the drift of the derivative value.
The drift will then equal the riskless rate of interest, because the deriv-
ative is now riskless. This implies the following relation between the ad-
justed drift of the value of the derivative and the riskless rate:

2]f ]f 1 ] fi i i 2 2` h(l 1 kr) ` r h 4 rf (12)i2]t ]h 2 ]h

where (4) is used to establish the relation between r and si. This partial
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differential equation, along with the definition of the market price of risk,
forms the basis of the risk-neutral approach to derivative valuation. The
value of all derivatives with payoffs contingent on h must satisfy this
equation.

When the underlying variable is a traded asset, the Black and Scholes
(1973) argument eliminates the need for the market price of risk. Con-
sider a portfolio consisting of one unit of a derivative, f, and 1]f/]h units
of the underlying variable, h. The value of the portfolio is given by

]f
P 4 1 h ` f (13)

]h

and the stochastic equation describing the evolution of the value of the
portfolio is given by

2]f 1 ] f 2 2dP 4 ` r h dt (14)23 4]t 2 ]h

Because the portfolio weights eliminate uncertain returns, the drift of the
portfolio must equal the riskless rate of interest times the value of the
portfolio. Thus, the following equation must be satisfied by all derivatives:

2]f 1 ] f ]f2 2` r h 4 r f 1 h (15)2 1 2]t 2 ]h ]h

In addition, because the drift of h does not appear in eq. (15), any risk
preference will yield the same solution. Therefore, risk-neutral valuation
is justified without introducing the market price of risk.

When the underlying variable is not a traded asset, the risk-neutral
approach to derivative valuation requires a risk adjustment to the sto-
chastic process, as expressed in eq. (12). The solution to the differential
equation is the value of the derivative. The solution to the equation de-
pends on the assumed specification for the price of risk, k, however. Re-
call that the only restriction implied by the model is that k is equal at any
instant across derivatives on the same variable. As shown in the next
section, different assumed risk specifications can result in widely varying
derivative values.

SPECIFICATION ERROR

Much recent literature1 addresses the problem of pricing interest-rate
derivatives assuming a one-factor model of interest rates where the short

1See, for example, Black, Derman, and Toy (1990), Heath et al. (1990), Ho and Lee (1986), and
Hull and White (1990, 1993). This list is a small subset of the existing literature.
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rate is the factor. If the stochastic process governing changes in the short
rate is one of several simple forms, analytic solutions for derivatives with
simple payoffs exist. To allow for a more flexible short rate process, the
Hull and White (1990) methodology is used for numerically valuing de-
rivatives. It is assumed that the Cox et al. (1985) square-root process
governs interest rates:

dr 4 a(b 1 r) dt ` r r dz (16)!

Derivative valuation within a Cox et al. (1985) model has been studied
extensively,2 though the impact of misspecifying the price of risk has been
given little attention. The most common approach is to specify the price
of risk as in the Cox et al. (1985) general equilibrium:

k 4 g r (17)!

This section illustrates the impact of misspecifying the price of risk. A
common data set of discount bond prices is used to calibrate alternatives
to (17). A series of coupon bonds and coupon bond options are valued
with the use of the competing specifications to gauge the impact risk
specification has on derivative values.

In this example, the parameters of the short rate process used in
Hull and White (1990) are assumed. This allows direct comparison to
their results. Thus, (16) is parametrized with a 4 0.4, b 4 0.1, and r 4

0.06. The value of a implies a half-life of disturbances of 1.7 years, the
value of b implies a mean rate of 10%, and the value of r implies a stan-
dard deviation of about 2% when the short rate is at its mean. To value
derivatives, the following four specifications of the price of risk are
considered:

1 1 3
j o o ok 4 gr , j 4 0, , , (18)4 2 4

This setup nests the Vasicek (1977) assumption, j 4 0, and the Cox et
al. (1985) model, j 4 1⁄2. To value interest-rate derivatives, the only un-
known parameter is g.

To estimate the remaining parameter, g, a series of discount bond
prices is assumed. The risk parameter can then be inferred by finding the
value that satisfies the differential equation (12) for each risk specifica-
tion. These parameters are used to value coupon bonds and options on
coupon bonds.3 There are several ways of inferring market risk parame-

2See, for example, Chen and Scott (1992) and Pearson and Sun (1994).
3This calibration approach is a popular method of estimating the price of risk. For example, Gibson
and Schwartz (1990) assume that the market price of crude oil convenience yield risk is an intertem-
poral constant. They then use traded futures contracts to estimate the value of the price of risk.
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TABLE I

Risk Parameters Implied by the Yield Curve

The panels below list risk parameters implied from 5-year zero-coupon yields assuming a one-factor model
of interest rates where short rate is the factor. The following Cox et al. (1985) square-root process governs
the evolution of the short rate:

dr 4 0.4(0.1 1 r) dt ` .06 r dz.!

The initial short rate is 10%. The market price of risk is of the form:

jk 4 gr .

Parameters are estimated using numerical procedures as in Hull and White (1990).

Panel A: Implied g

5-Year Yield

j

0.00 0.25 0.50 0.75

6% 1.85 3.67 7.27 14.36
10% 10.03 10.05 10.08 10.14
14% 11.33 12.22 13.67 16.07

Panel B: Implied k

5-Year Yield

j

0.00 0.25 0.50 0.75

6% 1.85 2.06 2.30 2.55
10% 10.03 10.03 10.03 10.03
14% 11.33 11.25 11.16 11.08

ters from existing prices. In a sense, they all involve solving the partial
differential equation (12), except instead of solving for the value of the
derivative, one solves for the market risk parameters. Hull and White
(1990) use a trinomial lattice to model the Cox et al. (1985) square-root
process. This study extends the Hull and White approach by allowing the
market price of risk to vary as specified in eq. (18).

Panel A of Table I shows the inferred g values for a range of 5-year
discount bond prices and the four values of j. The bond prices are chosen
to show the relation between the zero-coupon yield curve and the market
price of risk. Recall for this example an initial short rate of 10% is as-
sumed. The bond prices correspond to 5-year zero-coupon yields of 6%,
10%, and 14%, corresponding to downward-sloping, flat, and upward-
sloping yield curves. The identity used is simply

1lTP 4 e (19)

Note in Panel A that g decreases as the 5-year yield increases, and is close
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to 0 when the 5-year yield equals the current short rate.4 Because g dic-
tates the sign of the market price of risk, this means that the price of risk
is positive for downward-sloping yield curves and negative for upward-
sloping yield curves. Implied market prices of risk are listed in Panel B
of Table I.

To interpret the economic meaning of these results, recall the rela-
tion between the risk premium and the market price of risk for deriva-
tive i:

l 1 r 4 kr (20)i i

From Ito’s lemma, one can replace the volatility of the return of derivative
i in (20) with the partial derivative of the derivative security with respect
to the stochastic variable times the variable’s volatility:

]fil 1 r 4 k rh (21)i ]h

For upward sloping yield curves, the LHS of (21) is positive. For bonds,
the partial derivative is negative, r and h are both positive, so k must be
negative. For interest-rate-sensitive securities with values that are posi-
tively related to changes in the short rate, this implies a negative risk
premium. For further discussion of why the market price of interest-rate
risk is negative, see Hull (1989).

Inferred values of g are used to value coupon bonds and options on
coupon bonds to illustrate the impact of different specifications of k on
derivative values. Assume the bonds pay coupons of 10% continuously
and have 5 years to maturity. Assume the options are American style and
have 3 years to maturity. The options have three exercise prices. The
middle exercise price is equal to the bond price when j 4 1⁄2 rounded to
the nearest dollar. The low exercise price is $4.00 less, and the high
exercise price is $4.00 more. These exercise prices are chosen much as
an exchange would choose exercise prices: one at-the-money and others
in a range around the at-the-money.

Table II lists implied bond and bond option values. The securities
are valued for each initial 5-year yield of 6%, 10%, and 14%, correspond-
ing to downward-sloping, flat, and upward-sloping zero-coupon yield
curves. The columns show the values for different specifications of the
market price of risk, that is, different choices for j. For the bonds, the
specification of the market price of risk does not appear to matter much.

4The price of risk is not equal to zero exactly, because the bond price is calculated with the use of
continuous compounding, whereas the lattice discounts discretely.
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TABLE II

Values of Coupon Bonds and Call Options under Alternative Risk Specifications

The panels below list the prices of coupon bonds and call options when the following Cox et al, (1985)
square-root process governs the evolution of the short rate:

dr 4 0.4(0.1 1 r) dt ` 0.06 r dz.!

The initial short rate is 10%. The market price of risk is of the form

jk 4 gr .

Bonds pay coupons continuously at a rate of 10% annually and have five years to maturity. Options
have three years to maturity and are American style. Securities are valued numerically as in Hull and
White (1990).

Panel A: Bond Prices

5-Year Yield

j

0.00 0.25 0.50 0.75

6% 116.34 116.40 116.46 116.51
10% 99.90 99.90 99.90 99.90
14% 86.46 86.50 86.55 86.59

Panel B: Option Prices

Ex

5-Year Yield: 6%
j

0.00 0.25 0.50 0.75

112 4.77 4.77 4.78 4.79
116 1.41 1.29 1.20 1.13
120 0.04 0.01 0.00 0.00

Ex

5-Year Yield: 10%
j

0.00 0.25 0.50 0.75

96 4.56 4.56 4.56 4.56
100 1.63 1.63 1.63 1.64
104 0.20 0.20 0.20 0.20

Ex

5-Year Yield: 14%
j

0.00 0.25 0.50 0.75

83 5.04 5.03 5.03 5.06
87 2.40 2.42 2.47 2.55
91 0.62 0.69 0.77 0.88
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When the 5-year yield is 10%, for example, the specification does not
affect the bond value at all. The bond prices are close to par, as expected
for bonds with coupon rates equal to the discount rate. As the 5-year rate
diverges from 10%, the specification matters more, but in no case is there
more than a $0.17 difference among the specifications on the $100 par
bond. For the options, the specification can matter significantly. When
the 5-year yield is 14%, for example, the out-of-money option values vary
by 42% across risk specifications. When the 5-year yield is 6%, the at-
the-money options vary by 25% across risk specifications. When the 5-
year yield is 10%, the option values do not vary significantly across risk
specifications.

The results show that variation in option values resulting from al-
ternative specifications of the market price is minimal when the yield
curve is flat, but is significant otherwise. Because the yield curve is usually
not flat, the variation means that the assumed risk specification can have
an important impact on derivative valuation. When assumptions about
risk are necessary, they need to be tested when possible. The next section
illustrates an approach to testing competing specifications with the use
of Eurodollar futures options prices.

A TERM STRUCTURE OF RISK

Just as parameters of an assumed specification for the price of risk can
be estimated with the use of market data, the specification itself can be
tested with the use of existing derivative prices. This section tests the
ability of different specifications of the price of interest-rate risk to fit
market prices in sample and to value options accurately out of sample.
In this experiment, cross sections of Eurodollar futures options prices are
used to estimate the parameters of the stochastic process governing in-
terest rates and the parameters of a variety of risk specifications. The
parameters are chosen to minimize the sum of squared valuation errors
between the fitted option values and the market prices. The pricing error
gives an indication of the ability of different specifications of the price of
risk to fit market data. To control for overfitting, the estimated parameters
are used to value the same options 1 month later. The discrepancy be-
tween the predicted option values and the market prices measures the
ability of different specifications to accurately capture the risk prefer-
ences of investors. This out-of-sample performance is relevant for hedg-
ing interest-rate risk.
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Data

Monthly observations of Eurodollar futures options prices and 3-month
Eurodollar deposit rates are from the Wall Street Journal. Thirty-six sets
of observations are recorded from January, 1993 to December, 1995. To
reduce measurement error, prices of less than 0.10 were discarded, be-
cause the Journal only records two digits after the decimal. For purposes
of estimation, options with less than 20 or more than 200 days to maturity
are also discarded. The number of remaining futures options prices is
493, and the number of prices each month range from 7 to 20. Weekly
observations of 3-month Eurodollar deposit rates are from Datastream for
the period January, 1976–September, 1995. These are used to test the
validity of alternative interest-rate processes.

Interest-Rate Process

In this example derivative prices are used to estimate the parameters of
the stochastic process governing interest-rate changes as well as the pa-
rameters of the market price of risk. Because the number of derivatives
used is limited, parsimony of specification is desirable. Chan, Karolyi,
Longstaff, and Sanders (1992) present a framework for estimating param-
eters for alternative specifications of the short rate’s stochastic process.
They nest competing specifications in the following general expression:

cdr 4 a(b 1 r) dt ` rr (22)

Different specifications of the process restrict subsets of the four free
parameters a, b, r, and c. Competing specifications can be tested in a
generalized method-of-moments system. With the use of the Chan et al.
framework and weekly observations of 3-month Eurodollar deposit rates,
Dothan’s model is tested:

dr 4 rr dz (23)

The Dothan process implies that changes in interest rates are distributed
mean zero, but with volatility proportional to the level of interest rates.
Because it has only one parameter, it achieves the desired level of
parsimony.

The discretized version of Dothan’s model implies the following mo-
ment restrictions:

0r 1 rt t11
E 4 0 (24)t11 (r 1 r )rt t11 t113 4 3 4

2 2 2 0(r 1 r ) 1 r rt t11 t11
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TABLE III

Estimates of the Dothan Interest-Rate Model

Listed below are parameter estimates and test statistics for the Dothan model of interest-rate changes:

dr 4 rr dz.

The data are 3-month Eurodollar deposits rates from Datastream. Parameters are estimated with the
use of the generalized method of moments. The test for parameter significance uses the asymptotic
normal distribution of parameter estimates. The parameters are estimated from the following discrete-
time moment conditions:

r 1 r 4 et`1 t t`1

2 2 2E[e ] 4 0, E[e r ] 4 0, E[e ] 4 r r .t`1 t`1 t t`1 t

Period 1/76–1292 1/90–9/95

No. of observations 887 300
r estimate 0.312 0.147
p value 0.000 0.000
v2 test 1.601 3.284
p value 0.449 0.194
d.f. 2 2

With the use of the results of Hansen (1982), the asymptotic normal
distribution of parameter estimates can be used to test for their signifi-
cance and for the performance of the model. Table III shows the results
of the estimation for two periods. The first spans January, 1976–Decem-
ber, 1992, a total of 887 weekly observations of 3-month Eurodollar de-
posit rates. The second spans January, 1990–September, 1995, a total of
300 observations. The second period is used because it overlaps with the
futures options prices, so it will serve as a benchmark for the parameters
inferred from the derivative prices. For both periods, the overidentifying
statistic fails to reject the model. The volatility parameter estimate is
0.3116 for the larger period and 0.1472 for the other, reflecting the recent
history of interest-rate volatility.5

Inferring Parameters from Futures Options Prices

The goal of this experiment is to test alternative risk specifications by
fitting futures options prices in sample, then testing valuation perfor-
mance out of sample. In-sample fit is achieved by choosing parameter
values that minimize the squared pricing error between fitted values and
market data. Thus, a means of valuing the derivatives, given a vector of

5The volatility estimate is annualized by multiplying by 521/2.
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parameter values, is needed. This is accomplished by estimating the so-
lution to the partial differential equation in (12), subject to appropriate
boundary conditions. The solution is estimated with the use of an explicit
finite-difference method. The boundary conditions for the futures options
prices include terminal payoffs, where the option is worth the maximum
of zero and exercise proceeds, and the value of rational early exercise at
each point in time over the option’s life, because Eurodollar futures op-
tions are American style. The expectations used in the option valuation
reflect a risk adjustment consistent with the risk specification in question,
such that discounting can occur at the riskless rate.

The risk-neutral Dothan model is

jdr 4 1krr dt ` rr dz, where k 4 gr (25)

The natural logarithm of interest rates is modelled to ease estimation,
because the volatility is then constant. Let f denote the natural logarithm
of r. Applying Ito’s lemma to (25) yields

2r
df 4 1 kr ` dt ` r dz (26)3 42

A grid is constructed consistent with the process in (26). Note that though
the volatility is constant, the mean varies with the level of the interest
rate through the risk adjustment. For this reason a trinomial lattice is
used to allow for sufficient flexibility. Terminal nodes in the lattice give a
range of terminal interest rates. Futures prices are calculated directly
from these, the futures price is simply the present value of the par value
of the deposit, discounted at the current rate. Option payoffs are then
calculated as the maximum of zero and exercise proceeds at each node.
By folding back through the lattice, the expected discounted option payoff
at each node is calculated by taking expectations consistent with (26) and
discounting at the current rate. Early exercise payoffs are calculated by
setting the forward rate used to determine the futures price equal to the
expected terminal interest rate. The expectations take into account a risk
adjustment, again through (26).

Results

Two sets of risk specifications are tested. The restricted set uses the same
parameter values for all options on a given day. The unrestricted set uses
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one risk parameter for options with less than 100 days to maturity, and
another for options with longer times to expiration. The unrestricted
model thus allows for a term structure of risk. For the restricted model,
the average volatility parameter estimate is about 0.19; whereas the un-
restricted model’s average volatility parameter is about .18. These values
are roughly consistent with the estimate from the GMM procedure with
the use of Eurodollar deposit rates from January, 1990 to September,
1995.

The ability of the different risk specifications to fit Eurodollar futures
options prices in sample is illustrated in Panel A of Table IV. Of course,
one expects the greater degree of freedom in the unrestricted model to
enhance the in-sample fit. The root-mean-squared valuation error is
about $0.02 for the restricted estimation and about $0.007 for the un-
restricted models over the entire sample, a reduction of about 65%.
Though the performance does not vary much across specifications, it ap-
pears that a term structure of risk fits the options prices much tighter
than a restricted model.

To determine whether the term structure of risk overfits the data, an
out-of-sample experiment is performed. Starting with the second month
of options prices, the in-sample parameters from the prior month are used
to value those options that are still listed in the current month. Panel B
of Table IV lists the results. Again, the restricted risk specifications do
not differ much in their ability to value the options, but the term structure
of risk enhances the fit significantly. The restricted specifications have a
root-mean-squared valuation error of about $0.035 versus about $0.031
for the unrestricted set, a reduction of about 10%. A term structure of
risk thus could be useful for improving hedging effectiveness.

CONCLUSION

Risk-neutral valuation is an alluring technique for valuing derivative se-
curities, because it is based on the observed stochastic process of the
underlying variable, which is readily estimated by using historical data.
However, unless the underlying asset is traded, another input to the risk-
neutral approach is the market price of risk of the underlying variable.
The price of risk is actually an unobservable function with a value that
changes constantly. Researchers often assume a specification: Vasicek
(1977), for example, assumes it is a constant, and Hull and White (1990)
assume the Cox et al. (1985) specification. This article shows that an
incorrect specification can have dramatic consequences for derivative
valuation.
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TABLE IV

Performance of Alternative Risk Specifications

For the in-sample test, the interest-rate volatility and risk parameters are chosen once per month to
minimize the sum of squared valuation errors between fitted values and market prices of Eurodollar
futures options. Monthly observations of the cross section of futures options prices are used from
January, 1993 to December, 1995. For the out-of-sample test, parameters from the prior month are
used to value options that are still listed 1 month later. The Dothan model governs interest-arate
changes:

dr 4 rr dz.

The market price of risk is assumed to be of the following form:

jk 4 gr

The restricted model uses one value of g for each month’s options. the unrestricted model uses two,
one for options with less than 100 days to maturity, the other for options with longer maturities. Listed
in both panels are the root-mean-squared valuation errors for competing specifications, and the per-
centage reduction achieved with the unrestricted models.

Panel A: In Sample
j Restricted Unrestricted % Reduction

0.00 0.0192 0.0069 64.08%
0.25 0.0197 0.0069 65.01%
0.50 0.0203 0.0070 65.69%
0.75 0.0209 0.0071 66.10%

Panel B: Out of Sample
j Restricted Unrestricted % Reduction

0.00 0.0348 0.0314 9.67%
0.25 0.0348 0.0314 9.82%
0.50 0.0350 0.0315 9.87%
0.75 0.0352 0.0318 9.78%

In an example extending the work of Hull and White (1990), cal-
culated derivative values are shown to vary dramatically with the choice
of alternative, plausible specifications of the market price of risk. Even
when the functional form of the price of risk is restricted to a certain
class, varying one of the unknown parameters can cause option values to
vary significantly. In addition, in an experiment with the use of Eurodollar
futures options prices, a term structure of risk is shown to outperform
specifications that restrict the price of risk to be time invariant. These
results clearly have implications for the way investors value derivatives.
When the risk-neutral approach described in the article is used, the as-
sumed specification of the market price of risk must be justified. When
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possible, different specifications can be tested with the use of existing
derivative prices.
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