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ABSTRACT 
This paper presents a new manipulation theory for 

controlling compliant motions of a robotic manipulator. In 
previous closed loop control methods, both direct kinematics 
and inverse kinematics of a manipulator must be resolved to 
convert feedback force and position data from Cartesian space 
to joint space. However, in many cases, the solution of direct 
kinematics in a parallel manipulator or the solution of inverse 
kinematics in a serial manipulator is not easily available. In this 
study, the force and position data are packed into one set of 
“motion feedback,” by replacing the force errors with virtual 
motion quantities, or one set of “force feedback,” by replacing 
motion errors with virtual force quantities. The joint torques are 
adjusted based on this combined feed back package. Since only 
Jacobian of direct kinematics or Jacobian of inverse kinematics 
is used in the control scheme, the computational complexity is 
reduced significantly. The applications of this theory are 
demonstrated in simulation experiments with both serial and 
parallel manipulators. 
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INTRODUCTION 
In many applications such as deburring, grinding, scribing 

and contour following, a manipulator is required to follow a 
predefined position trajectory in the tangent direction of a 
surface while maintaining a contact force in the normal 
direction. These tasks need appropriate control of motion and 
force. 

In the beginning, a typical force control strategy was used 
to command an actuator torque. This strategy combined 
feedback of force with feedback of position (and velocity) and 
corrected the error through a common controller [1,2]. In 1981, 
Raibert and Craig proposed a conceptually simple method, 
which is currently referred as Hybrid Control [3]. This method 
employs a selection matrix that separates force and position 
errors and adopts independent controllers for each. This 
scheme avoided the unnecessary burden of "correction cycles" 
introduced by the interference between position errors and 
force errors. This was followed and improved upon by many 
researchers [4,5]. Sources of “kinematic instability” were 
identified and corrected in Raibert and Craig’s method [6,7,8]. 
Fisher and Mujtaba documented some sufficient conditions for 
kinematic stability in hybrid control. A contact model was 
developed using projection matrices to decompose force and 
motion vectors that extended the Raibert Craig model to more 
general tasks, such as intricate two-point contact models [9]. 
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In 1985, Hogan proposed a generalized impedance control 
scheme targeted at controlling a dynamic relation between the 
manipulator and its environment [10,11,12]. It controls the 
manipulator's motion and compensates with a responsive 
actuator torque to deviations from that motion which has the 
form of impedance. Subsequently reported studies of 
impedance control have focused on practical and 
implementation issues [13,14,15,16]. Walker utilized kinematic 
redundancy to alleviate impact problems in manipulator control 
[17]. The effectiveness of his approach depends on the 
manipulator configuration. 

In previous studies, the kinematic solution of a 
manipulator is an important part in the control cycle. For hybrid 
control of force and position, both solutions of forward and 
reverse kinematics of a manipulator are often needed or at least 
an inversion of the system Jacobian is part of the calculation. 
This paper investigates a computationally efficient 
manipulation theory which stems from target tracking method 
developed by Kazerounian and Gupta [18]. 

In the following sections, the formulation of the target 
tracking theory is introduced and two simulation experiments 
are given to demonstrate its applications on a serial manipulator 
and parallel manipulator. 

NOMENCLATURE 
 
J —System Jacobian 
J-1 —Inverse Jacobian 
JT —Transpose Jacobian 
G —Gravity 
X—Position and orientation of end-effector 
F — external force and moment applied on the end-effector 
τ — Joint torques 
q — Joint values 
S —Selection matrix 
I  —Identity matrix 
KI, Kd, Kp—Integral, differential and proportional gains 
H—end-effector (hand) 
θ, Φ, Ψ —XYZ Euler 
Coordinate system Om(Xm-Ym-Zm) –Coordinate system rigid to 
the end effector 
Coordinate system On(Xn-Yn-Zn) –Coordinate system rigid to 
ground 
 
Conventions followed: 
 
Bold letters indicate matrices or vectors. 
Plain letters indicate scalars or constants. 
Superscript d indicates desired values. 
Superscript a indicates actual values. 
Superscript M indicates quantities in end-effector coordinate 
system Om(Xm-Ym-Zm). 
Superscript N indicates quantities in global coordinate system 
On(Xn-Yn-Zn). 
Quantities are in Om system if not indicated explicitly. 
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Subscript e indicates errors. 
All length and position are in unit of Meter(m) . 
All angular values are in radians. 
Forces and torques are in unit of Newton(N) and Newton⋅Meter 
(Nm), respectively. 

 
 

TARGET TRACKING THEORY COMBINING FORCE 
AND POSITION CONTROL 

 
For compliant motion, a manipulator moves its hand along 

a generalized surface in a task space of N-DOF.  It has position 
constraints along the normal directions and force constraints 
along the tangent directions. Correspondingly, the forces along 
normal directions and positions along tangent directions can be 
controlled. Each of these directions can be associated with a 
multiplier δi, (i=1…N) 
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The problem is to track predefined position trajectories and 
force trajectories (each in its own direction) by adjusting 
actuator torque based on output forces, positions, velocities and 
properties of the manipulator. There are two equations relating 
joint rates and joint torques with velocity and force of the end-
effector. 

XJq 1 && −=    (2) 

FJτ T=    (3) 
 
In equations (2) and (3), J is the system Jacobian. The hybrid 
control scheme proposed by Raibert and Craig [3] is shown in 
Fig. 1. The control equation is given in Eq. (4). 
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In hybrid control, the task space is divided into a force control 
subspace and position control subspace by the selection matrix. 
Though each degree of freedom is either in the force control 
loop or the position control loop, the actuators are adjusted 
based on the combined demands of position control and force 
control. In order to calculate the impact of force error and 
position error on the actuator, both Jacobian and inverse 
Jacobian are required. However, It is often the case that one of 
them is not easily available; generally, the inverse Jacobian is 
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difficult to obtain for a serial manipulator and the forward 
Jacobian is difficult to obtain for a parallel manipulator. In 
either case, inversion of Jacobian matrix becomes an inevitable 
step in the control process. 

 
Figure 1: Original hybrid control scheme by Raibert 

and Craig. 
 

Target tracking method developed in this paper aims at 
computational efficiency. Consider a case in which a 
manipulator is to be moved from a current configuration to a 
target configuration while the contact forces are changing to 
the desired values. Instead of feeding back force and position 
quantities through different controllers, the target tracking 
method either introduces an attractive force or velocity that is 
combined with other force or position quantities and fed 
through one controller. The attractive force or velocity is 
defined from the start configuration to the target configuration. 
This process is used to determine the joint torques.   

In the case of serial manipulator forward Jacobian is easily 
obtained. Thus, it is desirable to define an attractive force from 
start position to target position because it would eliminate the 
need of Inverse Jacobian . The control scheme is depicted in 
Fig. 2. 

 
Figure 2: Target Tracking method for a serial 

manipulator. 
 
The joint torque is calculated as 
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The position errors are first converted into imaginary force 

quantities that are then combined with real force quantities on 
the other dimension of the task space to produce the input of 
the controller. 

Alternately for a parallel manipulator, The inverse 
Jacobian is easily obtained, defining a velocity from the start 
position to the target position will eliminate the need of 
forward  Jacobian. The control scheme is as depicted in Fig. 3.  
The Joint torque is calculated as 
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Figure 3: Target Tracking method for parallel 

manipulator. 
 

The force errors are first converted into imaginary position 
quantities that are then combined with real position quantities 
on the other dimension of the task space to produce the input of 
the controller. 

Compared to the Original Hybrid Control schema, in either 
case of Target Tracking method (serial or parallel manipulator), 
The inversion of system Jacobian matrix is replaced by a 
simple function and consequently improved the computation 
efficiency. For a general n by n square matrix, The inversion 
calculation requires a computational complexity of O(n3) 
[19,20] and usually results in the biggest computation burden in 
the programming of control cycles.  

 
 

 
 
TARGET TRACKING THEORY IN AN OPEN LOOP 
MANIPULATOR (3-DOF CASE STUDY) 
 

In this section, we will study a simulation of a simple open 
loop manipulator consisting of a series of 3 links connected to 
3 Copyright © 2005 by ASME 
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each other in a series and to ground by revolute joints.  A 
torque-controlled motor is attached to each joint.  The 
simulation is constructed in Working Model 5 by MSC 
Software, and the control is implemented using Matlab 6.5.  If 
the task is to control position, a constant hand velocity of 
0.4m/s is defined while keeping the hand orientation horizontal 
or at an angle of π/3 radians relative to the wall (see Table 1 for 
more detail).  If the task is to control contact force against a 
rigid wall, a force of 10N is used in the directions depicted 
below.  Cases are studied on a flat wall, on a wall with a ramp 
disturbance, and with a time varying force disturbance. 
Excluding the first two simulations, hybrid and target tracking 
manipulation theories are used for each case (refer to Table 1). 

 
Table 1: Representations of 2D simulations 

performed in Working Model. 

 
 

Table 2: Error comparison between manipulation 
methods for 2D simulations. 

Case 
Number 

Manipulation 
Method 

Force Error 
Function 

Position Error 
Function 

1 Position Control 0 156.4 
1pd Position Control 0 612.5 
2 Force Control 656.8 0 
2fd Force Control 2638 0 
3 Hybrid Control 2409 124.7 
4 Target Tracking 873.5 0.3463 
3pd Hybrid Control 6009 151.6 
4pd Target Tracking 3856 0.9487 
3fd Hybrid Control 5157 200.2 
4fd Target Tracking 3453 0.4684 
5 Hybrid Control 3665 274.0 
6 Target Tracking 2771 0.3489 
7 Hybrid Control 17740 4795 
8 Target Tracking 2539 3.301 
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An objective error function was defined for the simulations 
as the sum of the magnitude of the error vector over a given 
time interval.  These values are presented below in Table 2. 

In all cases, the force and position error are significantly 
reduced by using the target tracking manipulation technique. 
The position error is reduced in the cases with and without the 
position disturbance (for the smooth and bumped wall).  In the 
target tracking scheme, the successful control of position is the 
primary concern because inverse kinematics is not being used.  
The manipulation theory proves to be stable and successful in 
these 2D simulations. 

It should be noted that in these simulations gains for the 
controllers have not been optimized.  The gains are unaltered in 
each simulation using hybrid and target tracking control 
schemes.  So the gains in the force control part of the hybrid 
scheme are used in the target tracking scheme.  These would 
need to be optimized to reduce the settling time and other error 
characteristics for each scheme, but by using the same gains in 
each force controller, a general comparison can be made 
without the influence of the controller gains. 

Next, the results of one particular simulation are presented.  
The setup is shown above in cases 3 and 4 (for hybrid control 
and target tracking respectively).  The wall is smooth and the 
desired force is 10N, but the desired velocity is not constant.  
The position is defined below: 

 
θ = 0, x = x0, 
 

⎪
⎩

⎪
⎨

⎧

>+

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −++

=

12for         4.0

12for     
24

sin12.0

0

0

ty

tty
y

ππ
 

 
As defined, the manipulator will press against a wall and 
oscillate for the first 12 seconds as in a grinding process.  Then 
the manipulator will stop, while maintaining the 10N force.  
The results are shown in Fig. 1 and tabulated in Table 3 for 
hybrid control (HC) and target tracking (TT). 
 

Table 3: Simulation error function results. 
Method Force Error 

Function 
Position Error 
Function 

Hybrid Control (HC) 2198 58.22 
Target Tracking (TT) 970.0 0.4402 

 
As the results of this simulation suggest, the target tracking 

method has an advantage of not only reducing the error 
function, but also eliminates the burden of computing the 
inverse Jacobian thus reducing the computational complexity. 
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Figure 4: Simulation results 

 
 
TARGET TRACKING THEORY IN AN OPEN LOOP 
MANIPULATOR:  APPLICATION ON A PUMA 
 

In the mid-1970’s, Victor Scheinman developed a PUMA 
(Programmable Universal Machine for Assembly) manipulator.  
A general PUMA manipulator (see Fig. 5) has six serial links 
connected to each other and ground by revolute joints.  The 
joints are actuated by motors to move the hand in the 
workspace.  An assortment of tools can be attached to the hand 
of the manipulator for various tasks. 
 

 
Figure 5: A general PUMA manipulator. 

 
There are two fundamental problems in manipulator 

kinematics, direct kinematics and inverse kinematics. Direct 
kinematics is the process of transforming the joint coordinates, 
joint rates, and joint accelerations into position, velocity, and 
acceleration of the end-effector. Alternately, inverse kinematics 
calculates joint parameters in terms of the end-effector 
parameters. The solution of the forward kinematics of the puma 
manipulator is straightforward. On the other hand, the inverse 
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kinematics is extremely complicated and involves solving a set 
of highly nonlinear, coupled equations.  This problem is even 
more difficult if the manipulator is in a singular configuration. 

 
The Jacobian of the serial manipulator is calculated using 

zero-position notation [18].  Referring to Eq. (2), the definition 
of the Jacobian is 

 
qJxH && = ,   (7) 

 
where q&  is the vector of joint rates and Tx ][ HHH v|ω=& .  The 
forward kinematics can be performed by determining the hand 
velocity relative to the base coordinate system.  This results in 
the following 
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j bhP  and kb  is the body vector from joint k 

to k+1 in the current configuration.  Hence the Jacobian is just 
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Similarly, a relation between force at the hand and the joint 
torques can be derived.  It is rewritten from Eq. (3) as 
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In typical hybrid control Eqs. (2) and (10) are used for the 
position and force control loops, respectively.  
 
Case Study 
 

In the following section, the target tracking method will be 
used in a 3-Dimensional example.  A PUMA manipulator 
having the characteristics listed in Table 4 is simulated in 
Matlab.  A wall is simulated by applying a force only in the x-
direction at the hand of the manipulator when the hand moves 
beyond a specified coordinate in the x-axis.  The value of the 
force is dependant on the geometry of the tool and wall.  To 
simulate this force the PISE method is used [21].  The desired 
force is 10N, and the desired position is in the z-direction and 
is a function of time (12 seconds of a sinusoidal motion 
followed by 3 seconds at a constant position). 
5 Copyright © 2005 by ASME 
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Table 4: PUMA Properties 

Link 1 2 3 4 5 6 
Body 
Vector 

0 
10 
0 

17 
0 
0 

0 
0 
-17 

0 
0 
0 

0 
0 
0 

0 
0 
-5 

Joint to 
CG 

0 
5 
0 

8 
2 
0 

0 
0 
-9 

0 
0 
-1 

0 
-1 
0 

0 
0 
-3 

Joint 
Axis 

0 
0 
1 

0 
1 
0 

0 
1 
0 

0 
0 
1 

0 
-1 
0 

0 
0 
-1 

Weight 10 16 12 1 1 6 
Moment 
of 
Inertia 
[Ixx Iyy 
Izz] 

.230 

.005 

.230 

.069 
1.453 
1.394 

1.405 
1.585 
0.034 

.001 

.001 

.0001 

.001 

.0001 

.001 

.069 

.069 
0.01 

 
In the plots that follow, the dashed line is the desired 

value, while the solid line is the actual value.  Force and 
position are shown only in the direction containing the desired 
motion or force.  Two simulations are shown. 

 

 
Figure 6:  Hybrid Control  [Kp=6e3;   Ki=3e2;   

Kd=4e2;   c1=1.67e-2;   c2=3.33e-3] 
 
Fig. 6 is the typical hybrid control, followed by the target 
tracking scheme in Fig. 7.  Errors are displayed in Table 5.  For 
this case, target tracking has less error while maintaining a 
constant force during the process.  In fact, one cannot 
differentiate the dashed from solid line in the position plot of 
Fig. 7.  Note that with these gains, the force control feedback 
gains remain constant for both simulations.  A better position 
accuracy can be achieved by increasing the dependance of the 
attractive force on the position error. 
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Figure 7:  Target Tracking  [Kp=1e2;   Ki=1;   Kd=2e-1; 

c1=2e3;   c2=1e1] 
 
 

Table 5: Simulation error function results. 
Error Functions Hybrid 

Control 
(HC) 

Target 
Tracking 
(TT) 

Sum of Xe in z-
direction 
(Cumulative 
Position Error) 

 
8.4 

 
1.6e-4 

Sum of Fe in x-
direction 
(Cumulative 
Force Error) 

 
2.4e3 

 
7.2e2 

 
 
TARGET TRACKING THEORY IN A CLOSED LOOP 
MANIPULATOR: APPLICATION ON A STEWART 
PLATFORM 
 

The Stewart Platform is a popular six DOF parallel 
manipulator. It was first introduced by Stewart as an airplane 
simulator [22]. The general SP consists of a base link, a coupler 
link and six chains connected in parallel between the base and 
the coupler. Each chain consists of a prismatic (sliding) joint 
with a ball-joint connection to the base and the coupler. Each of 
the prismatic joints serves as an independent input. Stewart 
Platform has the advantages of simplicity, high stiffness, large 
load capacity, quick dynamic response and good accuracy. 

As previously stated, there are two fundamental problems 
in manipulator kinematics, direct kinematics and inverse 
kinematics. In contrast to the serial manipulator, the inverse 
kinematics of the Stewart Platform is easy to solve. However, 
the forward kinematics is extremely complicated and involves 
solving a set of highly nonlinear and coupled equations. The 
following is a kinematic analysis of the Stewart Platform.  
Figure 8 represents Stewart platform of the most general 
geometry. 
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Figure 8: Stewart Platform of General Geometry 

 
Coordinate Om(xm-ym-zm) is rigid to the base platform. 

Coordinate system On(xn-yn-zn) is rigid to the mobile platform. 
Six limbs are connected at six distinct points Ni on coupler 
platform and Mi on the base platform (i=0...5. In this paper, 
unless denoted specifically, index i ranges from 0 to 5). It can 
be observed that the configuration of the platform is completely 
determined by the lengths of the 6 limbs li, i.e. the distance Mi 
Ni. Cartesian coordinate system ON is fixed to the coupler 
platform, whereas OM is fixed to the base platform. The 
coordinates of points Mi, Ni are known in OM and ON 
respectively. Let Ni

N
 =(nN

ix, nN
iy, nN

iz)T, Mi
M

 =(mM
ix, mM

iy, 
mM

iz)T, where the superscripts M and N denote the reference 
coordinate systems. 

In Figure 8, we observe that: 
 

MiNi
M=OmOn+OnNi

 -OmMi    

=p+R⋅OnNi
N-OmMi

M  (k=0…5)     (11) 
 
Where OmOn

M = p describes the position of the origin of the 
end-effector coordinate system as the reference point with 
respect to the base coordinate system. ( )wvuRR == n,0  

is the rotation matrix from the base coordinate system to the 
end-effector system, witch can be defined with the three 
Euler’s angles Denote the values of the six prismatic values to 
be qi, take inner product of both sides of Eq. (11), we have: 
 
qi

2 = MiNi⋅ MiNi       
     = (p + R ⋅ OnNi

N - OmMi
M) ⋅  (p + R ⋅ O\nNi

N - OmMi
M)  

     = p⋅p+2⋅p⋅(R⋅OnNi
N)-2⋅OmMi

M⋅(R⋅OnNi
N)-2⋅p⋅OmMi

M   

        +OmMi
M⋅OmMi

M +OnNi
N⋅OnNi

N                      
(12) 

 
The joint values of the 6 prismatic joints depend uniquely 

on the posture of the Stewart Platform. The direction vector of 
limb I is calculated by Eq. (11) its length can be calculated 
directly from Eq. (12) by taking square root of both sides: 

 
qk

 =(p⋅p+2⋅p⋅(R⋅OnNi
N) –2⋅OmMi

M⋅(R⋅OnNi
N)  
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–2⋅p⋅OmMi
M +OmMi

M⋅OmMi
M +OnNi

N⋅OnNi
N)1/2  (13) 

 
As with the position mapping problem, the velocity 

mapping between actuator and end-effector coordinates is more 
easily found as the inverse map, from the end-effector 
velocities to limb velocities, and we define the inverse Jacobian 
J-1 by: 

.
1

.
xJq ⋅= −    (14) 

where
.
q is the vector of limb joint rates, and Τ

..
)p|(ωx =  is the 

velocity of the velocity of the end-effector consisting of 
translation and rotation components. Let wi be the unit vector 
along MiNi

 , Differentiating Eq. (11)  yields: 
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Since wi is a unit vector, wi ⋅ wi=1, wi ⋅ (dwi/dt)=0, Thus, taking 
the inner product of wi on both sides of (15) yields: 
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Equation 16 reflects the relation between joint rates and end-
effector velocities. Rewrite it in the format of matrix 
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the inverse Jacobian is given by  
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As illustrated above, the inverse kinematics of Stewart 

Platform is quite trivial, However the forward kinematics of 
Stewart Platform is very complicated.  After solutions for some 
special cases were discovered [23,24,25,26,27,28,29,30,31,32], 
Husty derived a closed-form solution of 40 degree polynomial 
equation for the most general Stewart platform [33]. Mu and 
Kazerounian developed a numerical method to look for all 40 
solutions efficiently [34]. However, considering time 
efficiency, all of these direct kinematic solutions involved 
numerical root finding process for polynomial equations and 
are not suitable for being used in a real-time target tracking 
control. 
 
Case study 
 

In this section we demonstrate the target tracking 
algorithm on a Stewart Platform that has the following 
properties: The six points Mi (i=0…5), which connect legs with 
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Dow
the base platform, are in plane xm-Om-ym. M0, M2, M4 coincide 
with M1, M3 and M5 respectively. There is one prismatic joint 
(referred as top joint) in plan xn-On-yn. Six prismatic joints 
(referred as leg joints) M0N0, M1N1, M2N2, M3N3, M4N4, and 
M5N5 connect the base platform at M0~1, M2~3, M4~5. The 
position of Mi and Ni in System Om and On are specified by the 
distance of OmMi and OnNi and their angles with respect to axis 
xm and xn. On N0 is actually the joint value of q01. They are 
given in the following tables,   

Table 6: Position of Ni 
I 0 1 2 3 4 5 
OnNI 0.7 0.7 0.7 0.7 0.7 0.7 
∠ XnOnNi -π/6 Π/6 π/2 5π/6 7π/6 3π/2 
 

Table 7: Position of Mi 
I 0 1 2 3 4 5 
OnMi 1.0 1.0 1.0 1.0 1.0 1.0 
∠ XmOmMi 0 0 2π/3 2π/3 4π/3 4π/3 
 

The end-effector of the Stewart platform is mounted at the 
center On of the mobile platform, Denote it with H (coincided 
with On). The Stewart Platform is expected to move H along a 
sine trajectory for 12 seconds. The end-effector is in contact 
with a planar surface P.  Denote time with t (8≥t≥0), In Om 
system, Define end-effector’s actual position Xa=(Xa, Ya,  Za, 
θa, Φa, Ψa)T where θ a, Φ a, Ψ a are the XYZ Euler angle of 
coordinate system On(xn-yn-zn) with respect to coordinate 
system Om(xm-ym-zm); actual velocity Va=(Vx

a, Vy
a, Vz

a, ωx
a, 

ωy
a, ωz

a)T; actual contact force Fa=(Fx
a, Fy

a, Fz
a, Tx

a, Ty
a, Tz

a)T; 
desired position Xd=(Xd, Yd,  Zd, θd, Φd, Ψd); desired velocity 
Vd=(Vx

d, Vy
d, Vz

d, ωx
d, ωy

d, ωz
d)T; desired contact force Fd=(Td

 

x, Td
 y, Td

 z, Fd
x, Fd

y, Fd
z)T; the trajectory is described as: 
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During the motion, x, y position and orientation of the end-
effector are controlled, but position in z direction is not 
controlled, it is just equal to Za. Similarly, the contact force in z 
direction at the between end-effector and plan P is controlled to 
be Fd, but Fx, Fy, Tx, Ty, Tz are not controlled. At t=0, H is at 
position (0, 0, 1); θ=0 , Φ =0, Ψ=0. Assume that there is no 
friction on the surface P, and that P only generates a reaction 
force in the negative zm direction. The task is simulated with 
software package Matlab 6.5 and VisualNastran 4D. In the 
experiment, the real reaction force Fz

a of plan P is simulated 
according to Fz

a= -100(za-1). 
The joint torques are calculated by Eq. (6). All feedback 

gains and constants are chosen empirically to provide stable 
and accurate control. The detailed calculation steps are listed in 
appendix. 
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Figure 9:  Position and force trajectories with Target 

Tracking method 
 
 

 
Figure 10:  Position and force errors Hybrid Control 

 
Figures 9 and 10 showed the position and force trajectories 

of the simulation result with the target tracking method and 
Hybrid Control respectively. In either case, the end-effector 
follow both desired force trajectory and position trajectory 
smoothly. all errors are with accuracy tolerance . The following 
table displays error function results in all six dimensions. 

 
Table 8: Simulation error function results. 

Method Hybrid Control 
(HC) 

Target Tracking 
(TT) 

Sum of xe 5.0984 44.6526 
Sum of ye 0 0 
Sum of Fe 2.3428 174.4670 
Sum of φe 0 0 
Sum of θe 0.0012 11.0496 
Sum of Ψe 0 0 
 
 
CONCLUSION 
 

A target tracking manipulation method is developed which 
realized hybrid position/force control of robotic manipulator 
without requirements of solution of both direct kinematics and 
inverse kinematics. In serial manipulators, the direct kinematics 
is easy to solve but the inverse kinematics is generally difficult. 
In parallel manipulators, the reverse is true. For a compliant 
motion task with a serial manipulator, virtual forces are applied 
in the direction of position errors and converted into joint 
torque space only through the forward system Jacobian. 
Similarly, for a compliant motion task with parallel 
manipulator, virtual position errors are constructed to replace 
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the force error and converted into joint torque space only 
through the inverse system Jacobian. The computational burden 
is reduced significantly since the inversion of the Jacobian 
matrix is eliminated. The strategies for applying the virtual 
force or virtual motion are independent of the control scheme 
and can be designed separately. This method inherited the 
conceptual simplicity of hybrid control [3] to satisfy both 
position and force constraints simultaneously. In the 
position/force tracking process, only the kineto-static model is 
required and no dynamic calculations are involved.  Simulation 
experiments are presented to demonstrate the application of this 
method on a serial and parallel manipulator. The results show 
the tracking processes are accurate and stable along both 
position trajectory and force trajectory.  
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APPENDIX 
In the experiment of the target tracking of Stewart Platform, the 
joint torque is calculated by 
 

dtcK

KcK
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The integral, KI=1 Nm/ Kp=100, Kd=10,CF= -0.05. 
S is the selection matrix, 
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Then force error is:   Fe=Fd-Fa 

Velocity error is:   Ve=Vd-Va 
Position error is calculated as follows: 
Displacement error: 

∆Pos=(Xd-Xa, Yd-Ya, Zd-Za)T 

Angular error: 
∆Ang=(θd-θa, Φd-Φa, Ψd-Ψa)T 

 
B matrix for XYZ Euler angle is: 
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Let ∆Ang′=CA⋅ B ⋅∆Ang, CA is the scaling factor for angular 
quantities. Then: 
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