
PEACE-ful Web Event Extraction and Processing?

Tim Furche1, Giovanni Grasso1, Michael Huemer2,
Christian Schallhart1, and Michael Schrefl2

1 Department of Computer Science, Oxford University,
Wolfson Building, Parks Road, Oxford OX1 3QD

firstname.lastname@cs.ox.ac.uk
2 Department of Business Informatics – Data & Knowledge Engineering,

Johannes Kepler University, Altenberger Str. 69, Linz, Austria
lastname@dke.uni-linz.ac.at

Abstract. PEACE, our proposed tool, integrates complex event processing and
web extraction into a unified framework to handle web event advertisements and
to run a notification service atop. Its bitemporal schemata distinguish occurrence
and detection time, enabling PEACE to deal with updates and delayed announce-
ments, as often occurring on the web. To consolidate the arising event streams,
PEACE combines simple events into complex ones. Depending on their occur-
rence and detection time, these complex events trigger actions to be executed.
We demonstrate PEACE’s capabilities with a business trip scenario, involving as
raw events business trips, flight bookings, scheduled flights, and flight arrivals and
departures. These events are scrapped from the web and combined into complex
events, triggering actions to be executed, such as updating facebook status mes-
sages. Our demonstrator records and reruns event sequences at different speeds
to show the system dealing with complex scenarios spanning several days.

1 Introduction

If an event is published today, it is published on the web. And if so, the announce-
ment is likely to change over time, as more precise and up-to-date information becomes
available. Checking such continuously changing event streams is tedious and stressful,
especially, if more than one event source is involved, requiring coordination among
individual events. Thus, one would assume that event notification has been addressed
already: On the one hand, there is a clear need for web event processing, as our life
style is more dynamic and interactive than ever before. On the other hand, all necessary
information is readily available, most people wear an Internet enabled mobile device at
all times, and hence, one would suppose that events need only to be extracted, checked
for some application specific criteria, and delivered to the user.

But until now, no integrated solution exists for this task, except for isolated solu-
tions dedicated to specific application domains. We argue that a good solution for web
? The research leading to these results has received funding from the European Research Council

under the European Community’s Seventh Framework Programme (FP7/2007–2013) / ERC
grant agreement DIADEM, no. 246858. Michael Huemer has been supported by a Marietta
Blau Scholarship granted by the Austrian Federal Ministry of Science and Research (BMWF)
for a research stay at Oxford University’s Department of Computer Science.

doc("http://www.flightarrivals.com")

2 //a#panel0/{click /}//form#qbaForm/descendant::field()[1]/{$airport }

/following::field()[3]//option{select }/following::field()[1]/{click /}

4 /(/descendant::a[string(.)=’Next >’][1]/{click /})*
//table#flifo//tr[position()>1]/self():<FlightArrival>

6 [./td[1]:<fromLoc=string(.)>] [./td[2]:<flightNo=string(.)>]

[./td[3]/div:<flightDay=string(.)>] [.:<toLoc=$airport>]

8 [./td[3]/text()[1]:<occTime=toUnixTime(.)>]

Fig. 1: OXPATH Wrapper

event processing needs to integrate complex event processing and web extraction, deal-
ing with frequent changes and retractions. We demonstrate PEACE (Processing Event
Ads into Complex Events) as a possible solution. PEACE takes an event model to deter-
mine available event types and attributes, and based thereupon, (1) wrappers to extract
events from multiple sources, (2) complex event queries to aggregate the raw events
into complex events, and (3) action executors to perform the resulting actions.

Contrasting previous work, PEACE is fully bitemporal, distinguishing detection and
occurrence time, i.e., the time when events are extracted and supposedly take place.
PEACE allows for different reactions, depending on the detection and occurrence time
in relation to the current time. While complex events [3] have been studied extensively,
existing systems like [1, 6] deal only with some aspects of the bitemporality. Most sys-
tems, as [2, 4], drop this distinction in identifying occurrence and detection time.

2 Extracting and Processing Events from the Web with PEACE

Once an event model with its event classes and attributes is fixed, PEACE takes wrap-
pers, complex event specifications and action executors to extract, process and react
upon events. (1) The wrappers for event extraction are given in OXPATH, an XPATH-
based language for highly scalable web data extraction [5]. Aside extracting web events,
we can also integrate other sources for events, such as a local database. (2) The complex
events are specified in BICEPL, our SQL-based language to define complex events as
SELECT statements, extended with constructs for expressing constraints over occurrence
and detection time. BICEPL specifications also include publication events, issued when
complex events are introduced, updated, or revoked. (3) Finally, these publication events
trigger OXPATH action executors, e.g., notifying users or changing a booking.

In the following, we give an example for each those three component types. These
examples are directly taken from the demonstration. Event Extractors. The wrapper
in Figure 1 fetches its target page (Line 1), selects options to obtain all current flight
arrivals at a parameterized airport, and submits the form (Lines 2-3). The wrapper deals
with paginated results by repeatedly clicking on “next” (Line 4). On each result page,
FlightArrival objects are extracted altogether with their attributes (Lines 5–7) for ev-
ery entry on the page. Matching the event model for the scenario, each FlightArrival

results in an event tuple. Complex Event Specifications. In Figure 2 we show the com-
plex event specification for ArrivedAtDestination indicating when a business person ar-

1 CREATE COMPLEX EVENT CLASS ArrivedAtDestination (flightNo TEXT, flightDay

TEXT, location TEXT) ID (flightNo, flightDay)

2 AS SELECT fa.flightNo, fa.flightDay, fa.toLoc

3 FROM BusinessTrip bt, FlightBooking fb, Flight f, FlightArrival fa

4 WHERE bt.tripTitle = fb.tripTitle AND fb.bookingId = f.bookingId AND

5 f.connFlNo = ’NULL’ AND f.connFlDay = ’NULL’ AND

6 f.flightNo = fa.flightNo AND f.flightDay = fa.flightDay

7 OCCURRING AT fa

8 PUBLISH ArrivedAtDestinationOnTime

9 CASE LATE (0s, 1h) ArrivedAtDestinationLate

10 CASE RETROACTIVECHANGE ArrivedAtDestinationChanged

11 CASE REVOKE ArrivedAtDestinationRevoked;

Fig. 2: Event Definition for Complex Event ArrivedAtDestination.

rives at the final trip destination. ArrivedAtDestination has explicit attributes flightNo,
flightDay and location, along with implicit timing information, using flightNo and
flightDay as key (Line 1). In BICEPL a complex event is defined with an extended
SQL SELECT statement involving constituent events. In our example these constituent
events are BusinessTrip, FlightBooking, Flight and FlightArrival (Line 3). These events
are joined and filtered (Lines 4-6) and defined to occur when the constituent FlightArrival
event occurs (Line 7). Further, complex event descriptions contain event publication
statements to control the event published in case the complex event occurs on time, at
maximum one hour late, has retroactively changed, or was revoked (Lines 8-11). Ac-
tion Executors. For each publication event produced, PEACE runs action executors,
such as a parameterized OXPATH expressions filling a form to send an SMS.

3 PEACE-ful Business Trip Management

Our demonstration scenario deals with business travelers and their arrangements. To
keep up with tight schedules, business travelers observe and quickly react upon many
events, e.g., upon learning about flight delays, they need to check for connecting flights,
or change hotel reservations. This can be time consuming and stressful, but having
PEACE, all this hassle can be dealt with automatically! Aside managing the daily dis-
asters of business travel, PEACE can be even configured to keep friends and family
posted about an ongoing trip by updating facebook status messages.

Event Extractors. We implement our scenario with 5 event types from 3 differ-
ent sources, partly extracted from the web via OXPATH wrappers. (1) BusinessTrip

events are extracted from Google Calendar, providing a unique reference for each trip.
(2) FlightBooking and Flight events are stored locally and describe a booking with all
connecting flights of a one-way trip. (3) FlightArrival and FlightDeparture events for
all relevant flights are extracted from flightarrivals.com. We show the wrapper for
FlightArrivals in Figure 1. Complex Event Specifications. Atop these subscribed raw
events, we specify 5 complex event types in BICEPL. (A) E1DaysToBusinessTrip indi-
cates that a trip begins in 1 day; (B) E3DaysToFlightDeparture that a departure is going
to take place in 3 days; (C) MissedConnectingFlights that a connection is unreachable

Fig. 3: PEACE Simulator.

due to a canceled or delayed flight. (D) UncatchableConnection captures connection
flights which are missed. (E) ArrivedAtDestination indicates that a business traveler
supposedly arrived at the destination of the trip. This specification is depicted in Fig-
ure 2. Action Executors. Complex events trigger various actions, for example upon
an E1DaysToBusinessTrip event, the system notifies the business traveler via email, and
upon an ArrivedAtDestination event, the system updates the traveler’s facebook status.
In case of E3DaysToFlightDeparture, the referred flight data is checked to be correct and
still valid. Moreover, action executors control the event extractors currently deployed:
For example, a E3DaysToFlightDeparture event triggers the setup of event extractors for
FlightArrivals and FlightDepartures for the flight under scrutiny.

Simulation and Visualization. We showcase our scenario with the PEACE simula-
tor and visualizer, illustrated in Figure 3. Presenting interesting cases, we not only run
the system live but also on recorded event streams over a couple of days. The simulator
runs the entire system at different speeds, skimming over uneventful phases and care-
fully analyzing more turbulent phases. With the simulator, we trace events, occurring on
event sources, then being extracted, leading to complex events, and thus taken actions.

References

1. Adi, A., Etzion, O.: Amit - the situation manager. VLDB J. 13 (2004)
2. Cugola, G., Margara, A.: TESLA: a formally defined event specification language. In: DEBS.

(2010)
3. Cugola, G., Margara, A.: Processing flows of information: From data stream to complex event

processing. ACM Comput. Surv. 44 (2012)
4. Eckert, M., Bry, F.: Rule-based composite event queries: the language XChangeEQ and its

semantics. Knowl. Inf. Syst. 25 (2010)
5. Furche, T., Gottlob, G., Grasso, G., Schallhart, C., Sellers, A.J.: OXPath: A language for

scalable data extraction, automation, and crawling on the deep web. VLDB J. 22 (2013)
6. Luckham, D.: Event Processing for Business. John Wiley & Sons, Inc. (2012)

