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Abstract. In the paper a new way of Kinetic Force Methogl@ation for modeling rarefied gas flows is suggés This
way is founded on a kinetic equation for auxiliamo-particle distribution function of quasipartigbairs. One-particle
distribution function satisfying the classical Baftznn equation can be obtained from the auxiliasyrithution function
by a simple integration. The using of quasipartférs guarantees energy and momentum consenatibe course of
the rarefied gas flows modeling automatically. Coriguen of the results obtained by Kinetic Force Mettand DSMC
method is carried out on the examples of numesgallations of the homogeneous relaxation and #oawvm pump
micro flows.
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INTRODUCTION

In papers [1,2], the Boltzmann collision integrahsarewritten in a divergence form. It allows coesidg a
distribution function of molecules as a densityqofsiparticles, which are moving under influencehef sum of
external force and “kinetic force” along smoothj@ctories in the phase space. Replacement of reldcues by
quasiparticles has opened new opportunities foremioal simulations. In the present time the firatiants of the
algorithms of Kinetic Force Method have been dewetband the principal correctness of the approashbeen
shown in [3,4].

In our paper we propose the way of application @ieic Force Method that uses an auxiliary two-pket
distribution function. In our second paper [5] meted to the RGD27 conference, a kinetic equatiomwo-particle
distribution function of molecules with the lineszattering operator and the chaos projector instédde collision
integral is presented. This equation allows usingsiparticle pairs instead of single quasipartiét@snumerical
simulations of gas flows. The using of quasipagtiphirs instead of single quasiparticles guaranteesgy and
momentum conservation in the course of the rarefaiflow modeling automatically without speciatreations.

Before discussing the numerical modeling we poirttthe main ideas on which the algorithm of Kindtmrce
Method for quasiparticle pairs is based [5]. Lethegyin from the homogeneous relaxation problem edbaity

distribution function in a rarefied gas. An auxiliatwo-particle distribution functionF('v,'u,) of pairs of
quasiparticlefv,, u,) 7 = 1...N in the velocity space is obtained by filteringastual distributionﬁ’('v, u,t)
of N pairs of quasiparticles
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by the small scales reduction transformation:


https://core.ac.uk/display/357353604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

F(v,u) = G_F(v,u) = iz e 25 . )

where
k= (1—6_27)143,, v, =¢ v, + (1—6_7)'08, u, =e u + (1—6_7)1;8,

2
("), = (®), (), )

The one-particle distribution functioqf('v, t) can be obtained from auxiliary two-particle distition function
F(v,u) by integration:
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For recalculation the quasiparticles pairs velesitin the time step we use the rotation matrix w&ifgular velocity
Q(v,u):

v (t+dt)=v(t)+ L - cos(Q.dt) £ X + sin(Q.dt) 2 x v.(t) —u.(t)],
2 2 2 1 QQ 13 Q 1 1
’ ’ @
u, (t + dt) = u,(t) —% (1 — cos(Ql.dt)) L ;292 . + sin(.dt) Q;Z'X [vi(t) - ui(t)],

where the vector of angular veloci@('v, 'u,) is obtained by using the angular velocity operszbras follows [5]:
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RESULTSOF SIMULATIONS

To illustrate the Kinetic Force Method for quasipide pairs we have considered two kinds of prolde®ne of
them is the problem of homogeneous relaxation okxwdl’'s molecules to the equilibrium. The differeattcross

. . . . do o . .
section for Maxwell’'s moleculeso(v = v = const) is taken to be ISOtrOpICéz_Q = —, where v is a relative
4T

velocity of molecules. As well known, the exact ¢irdependence of the distribution function momeiats be
obtained from the Boltzmann equation for Maxwelt®slecules exactly. It gives us an opportunity tonpare the
exact moments with the moments calculated in thessof modeling and thus to check up the abiliEéshe
Method. In this problem for convenience, we usesystem of units, in which the mean free time betweollisions

1

and number density are equal to unity=n" T 1, n = 1. The initial velocity distribution function is tek

to be:

v
v, v,

v 1 1
f('l)w>:2—6€Xp _T ) f(v:u):?éexp _T y f(’l)z>:2—6€Xp —7 , (6)

whered = 0.5, k = 0.01.

The graph of initial distribution functionf('vx) (6) and the graph of the actual distribution fimctof
quasiparticles filtered according to (2) in thetialimoment are presented in figurez)l(Coincidence in details of
the graphs depends on the choice of smoothing deam : evidently, for the better coincidence we neetbte

the smaller value of this parameter and to incrélasavhole quantity of particles simultaneouslyolir numerical
example we use 10000 pairs of quasiparticles.

v v
1.00 f ( :L‘) 1.00 f ( ;zr)
0.75 ) 0.75
fod
0.50 0.50
0.25 \ 0.25 h
/ /4 N
\

0.00 0.00 A N

-2.50 -1.25 0.00 1.25 2.50 250 Lias 0.00 .25 2.50

v, v,

4 2 2 a) b)

v v
2.8 >/ < > 020 S
25 0.15

\

X
22 N\ 0.10
19 NS 0.05
\\“
i

1.6 0.00 —

0.0 25 5.0 7.5 10.0 0.0 25 5.0 7.5 10.0

time time
o d)

FIGURE 1. (@) The exact initial distribution functiop”(vz) (dotted line) and reconstructed one (solid line).

(b) The velocity distribution function at the differtetime momentst = 0.0, 2.0, 4.0, ...
(c) The exact fourth dimensionless moment of theibtistion function of Maxwell's molecules (firm line
and simulated one (dots}l) (The magnitude of the mean angular velocity.



The evolution of the distribution functioyf(vx) to Maxwell’s distribution function is presentedfigure 1p).

Due to the smoothness of quasiparticles trajectarie choose the comparative large time step. fnekample it is
equal to 0.1.

2
Figure 1€) shows the comparison of the exact fourth dimemnieis momen<q;4> / <1)2> of the distribution

function of Maxwell’s molecules and its values cddded by Kinetic Force Method in the course ohxakion. One
can see satisfactory coincidence of exact and siediimoments and an absence of fluctuations.

The graph of the averaged angular velocity is prieskin figure 1q). The angular velocity is monotonously
decreasing in the relaxation process. As it shbeldin the equilibrium state the angular veloc#yegual to zero. It
means that kinetic force and accelerations of gaaticles decrease on time and turn to zero irethalibrium.

In the second example of the homogeneous relaxatiooonsidered a mixture of gases of Maxwell’s rooles
having the different temperatures in the initialmemt: R7, = 0.2, RT, = 2.0. We generated quasiparticles in the

initial moment in accordance with the following tilsution:

f(v):gfl(v)Jr%A(v), (7)
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fl('v>:—§exp _2;—T , f2('v>:—§exp _2;T : (8)
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Figure 2 illustrates the comparison of the resoékulated by Kinetic Force Method and by DSMC fiois
problem. Figures 2 and 2b) present a dimensionless fourth momém> / <1,2>2 obtained by these two methods.

Figures 34) and 3p) present the evolution of the distribution funatig (”1) to equilibrium in this example. The

equilibrium distribution function is the Maxwellia»mithRT1 = 1.0. Both Methods give actually the same results.
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FIGURE 2. The exact dimensionless fourth moment for two terafures mixture of Maxwell’'s molecules:
(a) is obtained by DSMC methody)(is obtained by Kinetic Force Method. In figurdRfirm line illustrates the exact
dimensionless fourth moment and dots illustratesthmilated one.
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FIGURE 3. The velocity distribution function for two tempéuges mixture of Maxwell's molecules
at the different time<:= 0.0, 2.0, 4.0, ...: ) is obtained by DSMC}) is obtained by Kinetic Force Method.

Let's go on to the consideration of a non homogargwoblem. As an example we have chosen micro ifioav
vacuum pump. The scheme of the vacuum pump is miexben Figure 4. The vacuum pump consists of two
horizontal plates disposed one above another odigtienceh . Down plate is moving with the speed in the right
direction.

FIGURE 4. The scheme of the vacuum pump.

This problem has a practical importance. Receittlyas found experimentally that the friction beemea partly
polished diamond coating and a metal surface wastidally reduced as a relative speed of slidingasas was
increased [6]. It seems that diamond coating floatthe air above metal surface. This phenomenawstihe
possibility of new air lubrication systems. Also [8] the floating mechanism was simulated by usimg DSMC

method.
The problem is formulated as follows. In the iditisoment there is no air in the channel betweerptates. Air

molecules, which are coming into channel have thieowing parameters: a mean free path is estimated
A =6.5-10"%m, temperaturel’ = 273K , number density,, = 2.68- 10®m 2. We choose the differential cross

section of molecules as the cross section of sgfideres. The down plate moves rightward with theedp
u =10 m / s. We assume that the Knudsen numbgr = \ /h = 0.1.
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FIGURE 5. The averaged over the height pressure along tenet
(a) is obtained by DSMC Methodp)is obtained by Kinetic Force Method.



Kinetic Force is averaged over the height of thanctel, but the moving of quasiparticles is threeatisional.
Molecules are reflected by the plates accordingliffese reflection model.

Figures 58) and 5b) present the results of numerical simulations haf &ir pressure in the vacuum pump
obtained by DSMC Method and by Kinetic Force Meth&tjures 64) and 6p) present the number density
distribution along the pump calculated by thesehm@s$. These results are coinciding well enoughcations
show that temperature is almost uniform in the ehand pressure is proportional to the number tensi
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FIGURE 6. The averaged over the height number density alemghannel:
(a) is obtained by DSMC Methodb)is obtained by Kinetic Force Method.

CONCLUSIONS

We have performed simulations of rarefied gas flioysboth DSMC and Kinetic Force Method. The DSMC
method has been dominant numerical method for mwibgisolutions of the Boltzmann equation for thet B0 years.
Kinetic Force Method is a new one. Our algorithnore of the first attempts of applying the ideaagresentation
the Boltzmann collision integral in a divergencenfcand substituting real molecules by quasipadifbe numerical
simulations. Of course, considerable resourcesnpfdvement the effectiveness of our method arkastdilable.
We hope that Kinetic Force Method will give goodukts in the nearest future.
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