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Abstract—In this paper, we consider the problem of spectrum
sensing by using multiple antenna in cognitive radios when the
noise and the primary user signal are assumed as independent
complex zero-mean Gaussian random signals. The optimal multi-
ple antenna spectrum sensing detector needs to know the channel
gains, noise variance, and primary user signal variance. In
practice some or all of these parameters may be unknown, so we
derive the Generalized Likelihood Ratio (GLR) detectors under
these circumstances. The proposed GLR detector, in which all the
parameters are unknown, is a blind and invariant detector with a
low computational complexity. We also analytically compute the
missed detection and false alarm probabilities for the proposed
GLR detectors. The simulation results provide the available
traded-off in using multiple antenna techniques for spectrum
sensing and illustrates the robustness of the proposed GLR
detectors compared to the traditional energy detector whenthere
is some uncertainty in the given noise variance.

Index Terms—Cognitive radio, Spectrum Sensing, Multiple
antenna, Eigenvalue decomposition, Opportunity detection, GLR
detector, Noise variance mismatch.

I. I NTRODUCTION

Recent measurements reveal that many portions of the
licensed spectrum are not used during significant time peri-
ods [1]. Since the number of users and their data rates steadily
increase, the traditional fixed spectrum policy is inefficient
and is no longer a feasible approach. One proposal for al-
leviating the spectrum scarcity is allowing licence-exempted
Secondary Users (SU) to exploit the unused spectrum holes
over some frequency ranges by using Cognitive Radio (CR)
technology [2]. One of the major challenges of implementing
this technology is that the CRs must accurately monitor
and be aware of the presence of the Primary Users (PUs)
over a particular spectrum. To address this challenge, sev-
eral efficient methods have been proposed [3]–[7]. In [7]
the spectrum sensing in a wideband Orthogonal Frequency
Division Multiplexing (OFDM) scenario, when the received
power of PU is unknown and there are different amount of
the priori knowledge about PU signal, has been investigated.
The Energy Detector (ED) (a.k.a. radiometer) is a common
method to detect an unknown signal in additive noise [8].
This method is optimal for white Gaussian noise if the noise
variance is known. Unfortunately, the performance of the ED
is susceptible to errors in the noise variance [9]. It has been
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shown that to achieve a desired probability of detection under
uncertain noise variance, the Signal-to-Noise Ratio (SNR)has
to be above a certain threshold [10]. For the case of unknown
noise variance, the cyclostationarity property of communi-
cation signals is exploited in [5], [11], [12]. In contrast to
noise, which is a wide-sense stationary random signal with
impulse autocorrelation function, in general, the modulated
signals have the periodical mean and autocorrelation function.
These features can be used to distinguish the noise from the
modulated signal. The drawbacks of this method are that the
method requires a significantly long observation time and is
highly computationally complex for practical implementation.

While there has been an intensive work on the spectrum
sensing problem in the case of known noise variance, not
enough attention has been made to the spectrum sensing under
unknown noise variance except [10], [13]–[15].

Multiple antenna techniques currently are used in commu-
nications and their effectiveness have been shown in different
aspects [16]. In the context of dynamic spectrum sharing,
multiple antenna SU can be used for a reliable signal trans-
mission and also spectrum sensing. In fact, using multiple
antenna techniques in CRs is one of possible approaches for
the spectrum sensing by exploiting available spatial domain
observations and has been proposed in [17]–[19]. In [17], the
authors have shown the efficiency of multiple antenna spec-
trum sensing in terms of required sensing time and hardware
by using a two-stage sensing method. In [18], the ED has been
proposed for spectrum sensing by using multiple antennas. The
PU signal has been treated as an unknown deterministic signal
and based on this model the performance of the energy detec-
tor has been evaluated in Rayleigh fading channels. In [19],
it has been shown that a multiple antenna OFDM based CR
scheme, when using the square law combing energy detector,
has better performance than the single antenna scheme, even
at low SNRs. In [20], a blind energy detector based on SNR
maximization has been proposed and its performance has been
evaluated in difference cases.

In this paper, we investigate the spectrum sensing problem
by using multiple antennas when the PU signal can be well
modeled as a complex Gaussian random signal in the presence
of an Additive White Gaussian Noise (AWGN). We derive the
optimum detector structure for spectrum sensing and investi-
gate its performance. The optimal detector needs to know the
noise and PU signal variances, and also the channel gains. In
practice one or more of these parameters may be unknown, so
in what follows we derive the Generalized Likelihood Ratio
(GLR) detector when some or all of these parameters are
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Fig. 1. SU with multiple antennas

unknown.
The remaining of the paper is organized as follows. In

Section II, we describe the system model and the basic as-
sumptions about the PU signal, noise, and channel gain vector.
Conditioned on knowing the noise and PU variances and
channel gain vector, we derive the optimal multiple antenna
detection rule and evaluate its performance analytically.In
Section III, we derive the GLR detectors for three cases,
namely, unknown channel gain, unknown channel gain and
the PU signal variance, and finally unknown all the afore-
mentioned parameters. In this Section, we also show that the
GLR detector when all of the parameters are unknown, is an
invariant detector. In Section IV, we evaluate the performance
of the proposed GLR detectors analytically. In Section V, we
present some numerical results to evaluate the performance
of the GLR detectors based on both analytical derivations
and simulations, and investigate the available tarde-offsin
the GLR detector performance. Also in order to evaluate the
performance of the proposed GLR detectors in a practical
scenario, we compare the performance of the GLR detectors
with the cyclostionarity based detector and ED, when the PU
signal is considered as a DTV signal in IEEE 802.22 standard.
Finally, Section VI concludes the paper.

Throughout this paper, we use boldface letters for column
vectors and boldface capital letters for matrices. We also de-
notexk = [x]k, Xk,l = [X]k,l, andXk = [X]k, respectively,
as the elements of a vectorx, the elements of a matrixX, and
the kth row of a matrixX. We use the notation̂x to denote
the estimation of unknown parameterx, which may be scalar,
vector or matrix.

II. BASIC ASSUMPTIONS ANDOPTIMAL DETECTOR

Suppose that the SU hasM receiving antennas and each
antenna receivesL samples as shown in Figure 1. We assume
that the PU signal samples are independent zero-mean random
variables with complex Gaussian distribution. This assump-
tion, for instance, is valid for an OFDM signal in which each
carrier is modulated by independent data streams. We denote

the hypothesis of the PU signal being active and inactive
(within the range of the CR) byH0, andH1, respectively. We
assume that the additive noise samples at different antennas are
independent zero-mean Gaussian random variables. UnderH1,
we assume that the PU signal and noise are independent. Let
Y = [y1, · · · ,yL] ∈ C

M×L be a complex matrix containing
the observed signals atM antennas. The multiple antenna PU
detection problem can be expressed as the following binary
hypothesis test:
{

H0 : Y ∼ CN (0, σ2
nIM ) if the PU is inactive,

H1 : Y ∼ CN (0, σ2
shhH + σ2

nIM ) if the PU is active.
(1)

whereh ∈ CM×1 denotes the channel gain vector between the
PU andM antennas, andσ2

n andσ2
s are the variances of noise

and PU signal, respectively. We assume that the channel gain
vector, i.e.,h, is a constant parameter at each sensing time. For
the optimal detection, the channel gain vector is assumed tobe
known, and for the other practical detections, we assume that
the channel gain is unknown and we estimate this unknown
parameter, as will be discussed in the following subsections.

A. Optimal Detector

For the optimal detector, the SU knows the channel gains,
noise and PU signal variances. In this case, from (1), underH0

the Probability Density Function (PDF) of observation matrix,
Y, is as follows [21]:

f(Y;H0, σ
2
n) =

L∏

l=1

1

(πσ2
n)M

exp

{
− 1

σ2
n

yH
l yl

}

=
1

(πσ2
n)ML

exp

{
− 1

σ2
n

L∑

l=1

yH
l yl

}

=
1

(πσ2
n)ML

exp

{−tr(YYH)

σ2
n

}
, (2)

where tr(.) denotes the trace of the matrix. By taking log-
arithm of PDF of observations under hypothesisH0, i.e.,
L0(Y) = ln f(Y;H0, σ

2
n), we will have:

L0(Y) = − tr(YYH)

σ2
n

− ML lnπ − ML lnσ2
n. (3)

Similarly, from (1) under the hypothesisH1, the PDF can be
written as [21]:

f(Y;H1,h, σ2
n, σ2

s) =
L∏

l=1

1

πMdet(R)
exp

{
− 1

σ2
n

yH
l R−1yl

}

=
1

πMLdet(R)L
exp

{
− 1

σ2
n

L∑

l=1

yH
l R−1yl

}

=
exp

{
−tr(R−1YYH)

}

πMLdet(R)L
, (4)

whereR , E[YYH |H1] = σ2
shhH + σ2

nI is the covariance
matrix. We can easily show thatdet(R) = (σ2

s‖h‖2 +
σ2

n)(σ2
n)(M−1) and also by using the matrix inversion lemma

[22], we obtain:

R−1 = σ−2
n I − σ−2

n

hhH

σ2
n

σ2
s

+ ‖h‖2
. (5)
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By taking the logarithm from (4) and denotingL1(Y) =
ln f(Y;H1,h, σ2

n, σ2
s), we obtain:

L1(Y) = −tr(R−1YYH) − ML lnπ (6)

−L ln det(σ2
s‖h‖2 + σ2

n) − L(M − 1) ln σ2
n,

which substituting (5) in (6) results in:

L1(Y) = − tr(YYH)

σ2
n

+
‖hHY‖2

(
σ2

n

σ2
s

+ ‖h‖2)σ2
n

(7)

− ML lnπ − L ln(
σ2

s

σ2
n

‖h‖2 + 1) − LM ln σ2
n.

For optimal detector in Neyman-Pearson sense, we need to
compare the Likelihood Ratio (LR) function or Logarithm of
Likelihood Ratio (LLR) function with a threshold. From (6)
and (3), the LLR function is equal to:

LLR = ln
f(Y;H1,h, σ2

s , σ2
n)

f(Y;H0, σ2
n)

= L1(Y) − L0(Y)

=
‖hHY‖2

(
σ2

n

σ2
s

+ ‖h‖2)σ2
n

− L ln(
σ2

s

σ2
n

‖h‖2 + 1). (8)

Comparing the LLR function with a threshold results in the
following optimal decision rule:

‖hHY‖2

(
σ2

n

σ2
s

+ ‖h‖2)σ2
n

− L ln(
σ2

s

σ2
n

‖h‖2 + 1)
H1

≷
H0

η1. (9)

Whereη1 is the decision threshold. Considering that in optimal
detector, the channel gains and noise and PU variance are
known, with some straightforward simplifications, the optimal
decision rule can be rewritten as follows:

Topt = ‖hHY‖2
H1

≷
H0

η, (10)

where η ,
η1+L ln(

σ2
s

σ2
n
‖h‖2+1)

(
σ2

n

σ2
s

+‖h‖2)σ2
n

denotes the threshold of de-

tection. In general, the detection thresholdη is obtained by
solving F (η) = 1 − Pfa, wherePfa denotes the false alarm
probability andF (x) is the Cumulative Distribution Function
(CDF) of the decision statistic. Also, it is possible to find this
threshold by Monte-Carlo simulation method. From (10), the
optimal detector is a maximum ratio combiner, which gives
weights to the observations at the different antennas according
to their corresponding channel gains, where the antenna with
better reception has more contribution in the summation in
(10).

In the context of dynamic spectrum sharing, the false alarm
probability Pfa indicates the probability that a spectrum hole
(a vacant band) is falsely detected as an occupied band, i.e.,
Pfa represents the percentage of the spectrum holes which
are not used. Therefore, the SUs must reduce the false alarm
probability Pfa as much as possible. On the other hand, the
missed detection probability, i.e.,Pm = 1 − Pd, determines
the probability that an occupied band is mistakenly detected
as a spectrum hole. Such a missed detection induces harmful
interference for PU. Thus, the missed detection probability
must be small enough to avoid perceptible performance loss
for the PU.

B. Performance of Optimal Detector

To evaluate the performance of the optimal detector, we
first compute the Complementary Cumulative Distribution
Function (CCDF) of the decision statistic underH0 andH1.
Under hypothesisH0, we notice that the elements of the
observed matrix are i.i.d. Gaussian variables with zero mean
and variance ofσ2

n, i.e. Y ∼ CN (0, σ2
nI). As a result,

conditioned on channel coefficients, the random vectorhHY

has a Gaussian distribution,i.e.,hHY ∼ CN (0, ‖h‖2σ2
nIL).

Then, from (10), the decision statistic under hypothesisH0

has the following distribution:

Topt(Y)

‖h‖2σ2
n

=
‖hHY‖2

‖h‖2σ2
n

∼ χ2
2L. (11)

Therefore, the false alarm probabilityPfa is easily obtained
using CCDF ofTopt(Y) as follows [14]:

Pfa = P [Topt(Y) > η|H0]

=
Γ(L, η

‖h‖2σ2
n
)

Γ(L)
, (12)

whereΓ(a, x) =
∫∞

x ta−1e−tdt and Γ(a) =
∫∞
0 ta−1e−tdt

are the upper incomplete and complete gamma functions,
respectively.

Similarly under hypothesisH1, we have Y ∼
CN (0, σ2

shhH + σ2
nI). Then, again conditioned on the

channel coefficients, we easily conclude that

hHY ∼ CN
(
0, ‖h‖2(‖h‖2σ2

s + σ2
n)IL

)
, (13)

and hence from (10)

Topt(Y)

‖h‖2(‖h‖2σ2
s + σ2

n)
=

‖hHY‖2

‖h‖2(‖h‖2σ2
s + σ2

n)
∼ χ2

2L. (14)

Therefore, the detection probabilityPd is easily evaluated as
follows

Pd = P [Topt(Y) > η|H1]

=
Γ
(
L, η

‖h‖2(‖h‖2σ2
s+σ2

n)

)

Γ(L)
, (15)

which if we define the received SNR at the SU asγ , σ2
s‖h‖2

σ2
n

,
the detection probability can be written as:

Pd =
Γ
(
L, η

‖h‖2σ2
n(1+γ)

)

Γ(L)
. (16)

III. GLR D ETECTORS

The optimal detector needs to know the values of channel
gains, noise and PU variances. In practice, we may have no
knowledge about the values of some or all of these parameters.
In these cases, we can use the GLR test to decide about the
presence or absence of the PU. In this section, we derive
the GLR test in the different cases, in which some or all
of the parameters are unknown. Then, we investigate the
invariancy of the derived GLR tests under several groups of
transformations.
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A. Case 1: Unknown Channel Gains (GLRD1)

In this part, we assume that the SU has knowledge about the
noise and PU signal variances, but the channel gain vectorh

is unknown. In this case, since the variance of noise is known,
the logarithm of PDF of observationsY under hypothesisH0

is computed as (3). Under hypothesisH1 the channel gains
are unknown and in order to derive the GLR test, we first
maximize (4) with respect toh to find the ML estimation of
the channel gains. From (7), by setting∂∂h

L1(Y) = 0, we
have:

(
αI + βhhH

)
YYHh = νh, (17)

where α = 1

(
σ2

n

σ2
s

+‖h‖2)σ2
n

, β = L

(
σ2

n

σ2
s

+‖h‖2)σ2
n

and ν =

1

(
σ2

n

σ2
s

+‖h‖2)σ2
n

. If we defineA ,
(
αI + βhhH

)
, then sinceα

andβ are real positive numbers, the matrixA = αI + βhhH

is a full rank matrix and therefore it has an inverse. Using
matrix inversion lemma and multiplying both sides of (17) by
A−1 = 1

α (I − hh
H

α
β

+‖h‖2 ), we obtain

1

L
YYHh =

ν

L
A−1h

=
ν

Lα
(I − hhH

α
β + ‖h‖2

)h. (18)

This obviously means thath is a eigenvector of̂R , 1
LYYH ,

i.e.,

R̂h = λh (19)

andλ = ν
L ( α

β+α‖h‖2 ) is a real number and the corresponding

eigenvalue of sample covariance matrixR̂ = 1
LYYH . From

(19), it is obvious that the ML estimation of the vectorh is an
eigenvector of̂R. Now we must determine which eigenvectors
of R̂ maximizes the likelihood function. We first normalize
the eigenvectors such that‖h‖2 = 1. From R̂h = λh and
the definition ofR̂, we obtain‖hHY‖2 = Lλ‖h‖2 = Lλ.
Replacing this equation in (6) we obtain

L1(Y) = −L
tr(R̂)

σ2
n

+
Lλ

(
σ2

n

σ2
s

+ 1)σ2
n

(20)

− ML lnπ − L ln(
σ2

s

σ2
n

+ 1) − LM ln σ2
n.

Since the above function is an increasing function with respect
to λ, the ML estimationh is the eigenvector corresponding to
the maximum eigenvalue of the matrix̂R which we denote
this vector byĥ, i.e.

R̂ĥ = λmaxĥ, (21)

where, by assumption, we have‖ĥ‖ = 1. By replacing the
above estimation in (20), we obtain:

L1(Y) = −L
tr(R̂)

σ2
n

+
Lλmax

(
σ2

n

σ2
s

+ 1)σ2
n

(22)

− ML lnπ − L ln(
σ2

s

σ2
n

+ 1) − LM ln σ2
n.

From (3) and (22), the LLR function is equal to:

LLR = L1(Y) − L0(Y)

=
Lλmax

(
σ2

n

σ2
s

+ 1)σ2
n

− L ln(
σ2

s

σ2
n

+ 1). (23)

For decision making, we must compare the LLR in (23) to a
threshold which results in

Lλmax

(
σ2

n

σ2
s

+ 1)σ2
n

− L ln(
σ2

s

σ2
n

+ 1)
H1

≷
H0

η1 ⇒

TGLRD1(Y) =
λmax

σ2
n

H1

≷
H0

η, (24)

whereη = 1
L [η1 + L ln(

σ2
s

σ2
n

+ 1)](
σ2

n

σ2
s

+ 1).

B. Case 2: Unknown Channel Gains and PU Variance
(GLRD2)

In this part, in addition to unknown channel gains, we
assume that the PU variance is also unknown. We maximize
(22) with respect toσ2

s to find the ML estimation of PU
varianceσ2

s . By setting ∂
∂σ2

s
L1(Y) = 0, we obtain

σ̂2
s = λmax − σ2

n. (25)

We now replace (25) in (22), as

L1(Y) = −L
tr(R̂)

σ2
n

+
Lλmax

σ2
n

− L − ML lnπ

−L ln(
λmax

σ2
n

) − LM ln σ2
n. (26)

From (3) and (26), the LLR function is equal to:

LLR = L1(Y) − L0(Y)

=
Lλmax

σ2
n

− L ln(
λmax

σ2
n

) − L. (27)

For decision making, the LLR function must be compared by
a threshold. We easily obtain:

λmax

σ2
n

− ln(
λmax

σ2
n

)
H1

≷
H0

η1. (28)

We notice thatg(x) = x− ln(x) is an increasing function for
x ≥ 1. Under bothH0 andH1 hypotheses, the ratio ofλmax

σ2
n

is greater than one with high probability [23] and hence we
can simplify the GLR detector as the following form:

TGLRD2(Y) =
λmax

σ2
n

H1

≷
H0

η. (29)

Interestingly, the derived GLR detector (GLRD1) has the same
form as the detector given in (24), in which only the channel
gains are unknown (GLRD1). So we can conclude that the
knowledge about the PU variance, when the channel gains are
unknown, does not lead to a better GLR detector. This is also
intuitively expected as this case is equivalent to the case that
the PU variance is one and the channel gain isσsh.
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C. Case 3: Unknown Channel Gains and PU and Noise
Variance (GLRD3 or blind GLRD)

In the following, we derive the GLR detector when all of
the mentioned parameters are unknown. Up to know, we have
obtained the ML estimations of the channel gain vectorh

and σ2
s . In order to derive the GLR test, we maximize the

PDFs in (26) and (3) with respect toσ2
n and then form the

LR function. By maximizing (3) with respect toσ2
n, we obtain

the ML estimation of noise variance under hypothesisH0 as
follows:

H0 : σ̂2
n =

tr(YYH)

ML
=

tr(R̂)

M
, (30)

and hence from (3) and (30), for PDF under hypothesisH0,
we get:

sup
σ2

n

f(Y;H0, σ
2
n) =

(ML)ML

(πe)ML
(
tr(R̂)

)ML
. (31)

Similarly under hypothesisH1, from (26) by setting
∂

∂σ2
n
L1(Y) = 0, we obtain

σ̂2
n =

1

M − 1

(
tr(R̂) − λmax

)
. (32)

From (21), (25) and (32), the ML estimations of unknown
parameters underH1 are summarized as follows

H1 :






σ̂2
n = 1

M−1

(
tr(R̂) − λmax

)
,

σ̂2
s = 1

M−1

(
Mλmax − tr(R̂)

)
,

ĥ = vmax

‖vmax‖

(33)

where vmax denotes the eigenvector corresponding to the
largest eigenvalue. Using the ML estimations in (33) leads
to the following PDF under hypothesisH1:

sup
h,σ2

n,σ2
s

f(Y;H1,h, σ2
n, σ2

s) = (34)

(L(M − 1))L(M−1)LL

(πe)ML(λmax)L(tr(R̂) − λmax)L(M−1)
.

From (31) and (34), the LR function is derived as:

LR(Y) =

sup
(h,σ2

n,σ2
s)

f(Y;H1,h, σ2
n, σ2

s)

sup
σ2

n

f(Y;H0)
(35)

=

(L(M−1))L(M−1)LL

(πe)ML(λmax)L(tr(R̂)−λmax)L(M−1)

(ML)ML

(πe)ML(tr(R̂))ML

=
(M − 1)(M−1)L

MML

(tr(R̂))ML

(λmax)L(tr(R̂) − λmax)L(M−1)
.

If we defineµ
def
= λmax

tr(R̂)
then above LR function can be written

as:

LR(Y) =
(M − 1)(M−1)L

MML

(
1

µ(1 − µ)M−1

)L

. (36)

For decision making, (36) must be compared with a threshold,
i.e.,

(M − 1)(M−1)L

MML

(
1

µ(1 − µ)M−1

)L H1

≷
H0

τ1

=⇒ 1

µ(1 − µ)M−1

H1

≷
H0

τ2, (37)

whereτ2 =
(

MML

(M−1)(M−1)L τ1

) 1
L

.

Let λ1 = λmax ≥ λ2 ≥ · · · ≥ λM denote the eigenvalues of
matrix R̂ in descending order. It can be easily observed that
the supremum and infinimum of the expressionµ = λmax

tr(R̂)
=

λ1∑
M
i=1 λi

are respectively1 and 1
M , i.e., 1

M < µ < 1. Now since
the above LR is an increasing function ofµ in the interval
( 1

M , 1), the GLR test in (37) can be simplified as:

µ =
λ1∑M
i=1 λi

H1

≷
H0

τ, (38)

where we have used the fact thattr(R̂) =
∑M

i=1 λi. As another
form, by manipulation of the above detector, we can express
the GLR detector as the following equivalent form:

TGLRD3(Y) =
λ1∑M
i=2 λi

H1

≷
H0

η, (39)

whereη = τ
1−τ .

D. Computational Complexity

The computational complexity of the proposed detectors
comes from two major operations: computation of sample
covariance matrix and eigenvalue decomposition of the covari-
ance matrix. Here we consider the computational complexity
of a trivial approach (which may be numerically non-efficient)
in which the largest root of the sample covariance matrix is
calculated. For the first part, since the covariance matrix is a
block Toeplitz and Hermitian, we need only to compute its
first block row. HenceM2L multiplications andM2(L − 1)
additions are required. For the second part, in general at most
O(M3) multiplications and additions are needed. Thus the
total computational complexity is as follows1:

M2(2L − 1) + O(M3) (40)

In practice the number of temporal samplesL is usually much
larger than the number of antennasM and the dominant
term is the first term. On the other hand, the ED needs
ML multiplications andM(L − 1) additions and thus the
computational complexity of the proposed detectors is about
M times that of the ED.

1Please note that the considered approaches for the calculations of the
above parameters are not necessarily the best ones, from computational
complexity aspect. For instance, the computational complexity can be reduced
by determining the dominant singular value of the observation matrix Y,
instead of calculating the the largest root of the sample covariance matrix.
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E. Invariancy of the GLR Detectors

In the following, we investigate the invariancy of the GLR
detectors derived in (39), (29) and (24) under two groups of
transformations namely orthogonal transformation and scale:

GQ =
{
gQ|gQ(Y) = QY, ∀Q ∈ C

M×M ,QHQ = IM

}

Gd = {gd|gd(Y) = dY, ∀d > 0} . (41)

The above transformations are groups, since they are closed,
associative, and contain the identity and inverse elements.

The invariancy of the GLR detector under orthogonal trans-
formation indicates that the proposed GLR detector has the
same form if we use the frequency samples instead of temporal
samples. The reason is that taking FFT from the temporal
samples is equal to applying a unitary matrix transformation
to the temporal samples which is an orthogonal transformation.
Also invariancy under scale implies that the received samples
at the antennas can be amplified or attenuated during sensing
process.

In the following, we prove that for blind GLRD, the dis-
tribution of the observations and the parameter spaces remain
invariant under any compositions of the transformation groups
in (41), and the GLRD1 is invariant only under orthogonal
transformation.

1) Orthogonal Transformation: under H0, from Y ∼
CN (0, σ2

nIM ), we get

gQ(Y) = QY ∼ CN (0,QQHσ2
nIM ) = CN (0, σ2

nIM ).

(42)

underH1, Y ∼ CN (0, σ2
shhH + σ2

nIM ) and thus we
get

gQ(Y) = QY ∼ CN (0, σ2
sQhhHQH + QQHσ2

nIM )

= CN (0, σ2
sh

′h′H + σ2
nIM ). (43)

whereh′ = Qh. Since the channel gainh is unknown,
the transformed channel gainh′ is also unknown with
the same unity norm‖h′‖2 = ‖Qh‖2 = hHQHQh =
hHh = ‖h‖2. Hence the distribution family of the
transformed signal is unchanged. The above discussion
is valid for both GLRD1 and blind GLRD. As an-
other approach, we know from linear algebra theory
that the orthogonal transformation does not change the
eigenvalues of a given matrix. Thus, under orthogonal
transformation, the decision statistics of both GLR de-
tectors remain unchanged and they are invariant under
orthogonal transformation.

2) Scale: For blind GLR under H1, from Y ∼
CN (0, σ2

shhH + σ2
nIM ) we obtain

gd(Y) = dY ∼ CN (0, d2σ2
shhH + d2σ2

nIM ). (44)

Sinceσ2
n and σ2

s are unknown, the distribution family
of the transformed signal is not changed. Under the
null hypothesis, the proof is similar. It is obvious that
the GLRD1 is not invariant under scale transformation.
In fact, by scaling the observation matrix, all of the
eigenvalues are scaled and hence their ratio will be
constant for blind GLRD.

IV. A NALYTICAL PERFORMANCEEVALUATION

In this section we evaluate the performance of the GLR
detectors in terms of detection probability,Pd, and false alarm
probability, Pfa. For computing the detection probability, we
need to compute the statistics of the principal components
when the PU signal is present. Also for the false alarm
probability, we need to determine the behavior of eigenvalues
under null hypothesis, i.e.,H0. We evaluate these probabilities
in the following parts.

A. False Alarm Probability

In this part, we first introduce a statistical result for the
eigenvalues of the sample correlation matrix , i.e.,R̂, under
hypothesisH0. We then use the result for the calculation of
Pfa.

Lemma 1: The normalized largest eigenvalue of a complex
correlation matrix, i.e.,λ1/σ2

n, in null case is distributed as
Tracy-Widom distribution of order 2 [24], i.e,

λ1/σ2
n − µLM

σLM
→ W2 ∼ TW2, (45)

where the limit is in distribution, and

µLM =

(
1 +

√
M

L

)2

(46)

σLM =
1√
L

(
1 +

√
M

L

)(
1√
L

+
1√
M

)1/3

. (47)

For the analytical formula ofTW2 refer to [24], and for the
tables of its CDF refer to [25].

In the following parts, we assume that the number of
antennas, i.e.,M , and received sample, i.e.,L, are large
enough and using (45), we compute the false alarm probability
Pfa for different GLR detectors derived in parts IV-B1 and
IV-B2.

We note that the detector derived in (29) is the same as (24)
and thus they have the same performance.

1) GLRD1 (or GLRD2): In this case from (24) and (45),
we have:

Pfa = P [TGLRD1(Y) > η|H0]

= P [λ1/σ2
n > η|H0]

= P [
λ1/σ2

n − µLM

σLM
>

η − µLM

σLM
|H0]

= 1 − FTW2(
η − µLM

σLM
), (48)

whereFTW2(x) is the CDF of Tracy-Widom distribution of
order 2. Now for a givenPfa, the threshold can be easily
obtained as:

η =

(
1 +

√
M

L

)2

+
1

L

(
√

L +
√

M)4/3

(
√

LM)1/3
F−1

TW2(1 − Pfa), (49)

where F−1
TW2(.) denotes the inverse CDF of Tracy-Widom

distribution of order 2. We note that, unlike the optimum
detector, the threshold does not depend on noise variance and
channel gains, and can be pre-computed based only onM , L
andPfa.
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2) GLRD3 (Blind GLRD): In this case, since the distri-
bution of largest eigenvalue is known, from (39) we must
compute the distribution of the summation of other eigenvalues
under hypothesisH0. Under H0, since we have assumed
that the number of antennas and samples are large enough,
the summation 1

M−1

∑M
i=2 λi is approximately constant and

equals to the variance of noise [26], i.e.,

H0 :
1

M − 1

M∑

i=2

λi ≈ σ2
n, (50)

and we conclude that
∑M

i=2 λi ≈ (M−1)σ2
n. Therefore, under

hypothesisH0 the decision statistics can be written as the
following form:

H0 :
λ1∑M
i=2 λi

≈ 1

M − 1

λ1

σ2
n

. (51)

Thus from (45), the false alarm probability can be easily
calculated as:

Pfa = 1 − FTW2

(
η − µLM

M−1
σLM

M−1

)
, (52)

and for a givenPfa, the threshold can be easily obtained as:

η =

(
1 +

√
M
L

)2

M − 1
(53)

+
1

L(M − 1)

(
√

L +
√

M)4/3

(
√

LM)1/3
F−1

TW2(1 − Pfa).

Again, we note that, the threshold does not depends on noise
variance and channel gains and can be pre-computed based
only on M , L andPfa.

B. Detection Probability

Let l1 ≥ l2 ≥ · · · ≥ lM and λ1 ≥ λ2 ≥ · · · ≥ λM

denote the eigenvalues, in the descending order, of the actual
covariance matrixR and the sample covariance matrix̂R
defined in (4) and (18), respectively. Under hypothesisH1,
we have the following lemma for the distribution of the largest
eigenvalue:

Lemma 2: The largest eigenvalue of a sample matrix under
hypothesisH1, i.e.,λ1, has the normal distribution as follows
[23]:

λ1 ∼ N
(

l1 +
(M − 1)l1σ

2
n

L(l1 − σ2
n)

,
l21
L

)
. (54)

Under hypothesisH1, from (4), we haveR = σ2
shhH +

σ2
nI and det(R) = (σ2

s‖h‖2 + σ2
n)(σ2

n)(M−1). Thus, we can
conclude thatl1 = σ2

s‖h‖2+σ2
n andl2 = l3 = · · · = lM = σ2

n.
By using the received SNR definition, i.e.,γ, in (16), (54) can
be rewritten as:

λ1/σ2
n ∼ N

(
(1 + γ)

(
1 +

M − 1

Lγ

)
,
(1 + γ)2

L

)
.(55)

In the following, by using (55), we compute the detection
probability, i.e.,Pd for different scenarios.

1) GLRD1 (or GLRD2): In this case, from (24) and (55),
the probability of detection can be computed as follows:

Pd = P [TGLRD1(Y) > η|H1]

= Q




η − (1 + γ)

(
1 + M−1

Lγ

)

1+γ√
L





= Q

(√
Lη

1 + γ
− M − 1√

Lγ
−
√

L

)
. (56)

The above detection probability is conditional on instan-
taneous SNR, i.e.,γ. In the fading channel, the average
probability of detection can be computed by averaging overγ
distribution, i.e.,fγ(x), as follows:

Pd =

∫ ∞

0

Pd(x)fγ(x)dx (57)

=

∫ ∞

0

Q

(√
Lη

1 + x
− M − 1√

Lx
−
√

L

)
fγ(x)dx,

For instance, in Rayleigh fading channel,fγ(x) = 1
γ e−

x
γ

and the average probability can be computed by numerical
integration.

2) GLRD3 (Blind GLRD): Having the largest eigenvalue
distribution, from (39), we must compute the distribution of
the summation of the other eigenvalues. We have the following
result on the summation of the other eigenvalues:

Lemma 3: Under hypothesisH1, for the averaged summa-
tion of eigenvalues except the largest one, we have [26]:

H1 :
1

M − 1

M∑

i=2

λi ≈ σ2
n − σ2

nl1
L(l1 − σ2

n)
. (58)

Then, we obtain:

M∑

i=2

λi ≈ (M − 1)(1 − 1 + γ

Lγ
)σ2

n, (59)

whereγ is defined in (16). From (55) and (59), the decision
statistic will have a Gaussian distribution as follows:

H1 :
λ1∑M
i=2 λi

∼ (60)

N
(

(1 + γ)(1 + M−1
Lγ )

(M − 1)(1 − 1+γ
Lγ )

,
(1 + γ)2

L(M − 1)2(1 − 1+γ
Lγ )2

)
.

So, the detection probability can be calculated as:

Pd = Q

(
η
√

L(M − 1)(1 − 1+γ
Lγ )

1 + γ
−

√
L

1 + M−1
Lγ

)
, (61)

and in fading channel, the average detection probability can
be computed by averaging the above probability over SNR,
i.e., γ.

Pd = (62)
∫ ∞

0

Q

(
η
√

L(M − 1)(1 − 1+x
Lx )

1 + x
−

√
L

1 + M−1
Lx

)
fγ(x)dx.
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Fig. 2. The probability of missed detection of the GLR detectors, ED and
optimal detector versus SNR forPfa = 10

−2, M = 4 andL = 16.

V. SIMULATION RESULTS AND DISCUSSION

In this section, we present some numerical results to evalu-
ate the performance of the proposed detectors. Figure 2 depicts
the probability of missed detectionPm of the optimal detector,
the proposed GLR detectors and the energy detector versus
SNR at a false alarm rate ofPfa = 10−2, L = 16 and
M = 4 . In order to determine the threshold for a given
false alarm probability, we have generated the decision statistic
randomly according to its distributions for106 independent
trials (in absence of PU signal) and chosen the detection
threshold as100Pfa percentile of the generated data, i.e., for
Pfa = 10−3, 100 × 10−3 = 0.1% of the generated decision
statistic (out of106) are above the determined threshold. As
can be observed, by increasing the SNR the performance of the
detectors improves and the ED which knows the exact value
of noise variance performs only better than the blind GLRD.
Also, the performance of the GLRD12 is better than the ED
and blind GLRD.

Figure 3 show the complementary ROC (Receiver Operating
characteristics) or the probability of missed detection, i.e.Pm,
versus probability of the false alarm, i.e.,Pfa, for different
detectors in AWGN channel for SNR = 5 dB,M = 2,
and L = 8. Also, Figures 4, 5, and 6 show these curves
for average SNR,γ = 5 dB and L = 8, respectively, for
M = 2, M = 4 andM = 6 in Rayleigh fading channel. As
can be observed, the performance of all detectors degrades
slightly in fading channel compared with AWGN channel.
One approach to improve the performance in the fading
channels, is to use collaborative spectrum sensing [3], [4],
[27]. By collaboration among the SUs, the deleterious effect of
fading can be mitigated and a more reliable spectrum sensing
can be achieved. In fact, in collaborative spectrum sensing,
the SUs use the available spatial diversity to improve their

2Please note that the GLRD1 and GLRD2 derived in Sections III-A and
III-B are identical.
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Fig. 3. The complementary ROC (Pm vs. Pfa) of different detectors in
AWGN channel, forSNR = 5 dB, M = 2 andL = 8.
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Fig. 4. The complementary ROC of different detectors in Rayleigh fading
channel, for averageSNR = 5 dB, M = 2 andL = 8.

performance.
As can be seen from Figures 4,5,6 by using more antennas,

like in a collaborative spectrum sensing, the performance
improves due to the spatial diversity provided.

Our further simulation results, which have not provided
here, indicates that by increasing the number of samples,
i.e., L, the performance improves3. However as expected,
the simulation results indicate that increasing the number
of antennas, i.e.,M , compared to increasing the number of
samples, i.e.,L, has more substantial effect on the performance

3Note that, we can not increaseL arbitrarily since L determines the
acquisition time (the waiting time-lag before a decision can be made). Thus
in practice, we have to make a trade-off betweenPfa (the spectrum usage
efficiency),Pm (PU interference protection level) andL (the acquisition time).
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Fig. 5. The complementary ROC of different detectors in Rayleigh fading
channel, for averageSNR = 4 dB, M = 4 andL = 8.
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Fig. 6. The complementary ROC of different detectors in Rayleigh fading
channel, for averageSNR = 5 dB, M = 6 andL = 8.

improvement of the different detectors in fading channels.
In Figure 7, we compare the proposed GLR detectors

with the optimal detector and ED under noise variance
mismatch of 0.5 dB. For noise mismatch, it is assumed
that |10 log10(

σ̃2
n

σ2
n
)| = αdB, where σ̃2

n is the actual noise
variance, andαdB, defined as noise uncertaincy factor, is
considered as a uniform distribution variable in the interval
αdB ∼ U [−0.5, 0.5]. In practice, the noise uncertaincy factor,
i.e., αdB, in receiver is normally 1-2 dB which due to the
existence of interference can be much higher [10], [15]. As
can be realized, the GLR detectors are more robust to the noise
uncertaincy than the optimal detector and ED, and in fact under
noise variance mismatch, the optimal detector performs similar
to the GLRD1. Also, the blind GLRD performs slightly better
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Fig. 7. The effect of noise variance mismatch on the performance of the ED
and GLR and optimal detectors, forαdB=0.5, SNR = 3dB, L = 16 and
M = 4.
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Fig. 8. The Performance of Blind detector, GLRD1, Energy detector (ED) and
cyclostationarity based detector, forαdB=0.5, SNR = −10dB, L = 4096,
andM = 4.

than the GLRD1 in which only the variance of noise is known.
Under a greater noise uncertaincy factor, the performance of
ED and optimal detectors degrades more substantially and the
GLR detectors present a better performance. From this figure
and our further simulations, we conclude that the optimal
detector can outperform the GLR detectors provided that the
optimal detector knows the noise variance accurately enough.
However in practice, there are uncertainty about the noise
variance which under these unavoidable circumstances, the
blind GLRD outperforms the optimal detector and ED. In Fig-
ure 8, we evaluate the performance of the proposed detectors
in a typical practical applications. In IEEE 802.22 standard
(WRAN), the CRs need to detect the presence or absence of
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Fig. 9. Comparison between simulation and analytical performance of GLR
detectors, for SNR= 3 dB,M = 8 andL = 32.

wireless microphone, and digital and analog TV signals which
in north America these signals are respectively FM, NTSC, and
ATSC signals [28]. This figure illustrates the performance of
blind GLR, GLRD1, cyclostationarity based detecor, and ED,
when the PU signals are considered as captured DTV signals
and the parameters are set asαdB = 0.5, SNR = −10dB,
L = 4096, and M = 4. For simulation, the captured DTV
signal samples have been taken from [29]. As can be seen,
in this case even thought the PU signal is not a Gaussian
signal, the performance of the proposed detectors, i.e., blind
detector and GLRD1, are acceptable, and the blind detector
performs like and even slightly better that the cyclostationarity
based detector. We note that the cyclostionarity based detector
uses the available information of DTV signal such as time
duration and waveform and cyclic frequencies, and is highly
computationally complex for practical implementation. Onthe
other hand, as mentioned before, the blind detector can be
implemented easily and does not use any information of PU
signal. Our further simulations indicate similar behaviors for
the other considered IEEE 802.22 potential signals, i.e., for
FM wireless microphone and analog TV signals. In Figure
9, we have presented the performance evaluation of the GLR
detectors based on both analytical and simulations, for SNR
= 3 dB, M = 8, and L = 32. As can be observed, the
simulation results well confirm the analytical derivations. It
is notable that because of asymptotic approximations used in
deriving analytical results, the simulation and analytical results
will well coincide provided that the number of samples and
antennas are large enough. In fact, the available gap between
the analytical and the simulation results will decrease by
increasing the number of samples or the number of antennas.

VI. CONCLUSION

In this paper, we considered the spectrum sensing for the
CRs equipped with multiple antenna receivers. We derived the

optimal detector which needs to know the variances of the
PU signal and noise as well as the channel gains. We also
presented the GLR detectors in which some or all of these
parameters are unknown. We evaluated the performance of
the proposed detectors in terms of false alarm and detection
probabilities. The simulation results revealed that the proposed
GLR detectors perform better than the ED and almost identical
to the optimal detector under noise variance mismatch.
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