
 ISSN : 2347 - 8446 (Online)
 ISSN : 2347 - 9817 (Print)

www.ijarcst.com

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

© All Rights Reserved, IJARCST 2014361

Vol. 2 Issue Special 1 Jan-March 2014

Eliminate Sql Injection Using LINQ
IV. Vilasini, IIP. Chellamal

IME II CSE, JJ College of Engineering and Technology, Thiruchirapalli, India
IIAssistant Professor, JJ College of Engineering and Technology, Thiruchirapalli, India

I. Introduction
Many developers have learned that the most effective way to build
secure applications and prevent damaging attacks is to design
and implement the applications securely from the beginning.
Unfortunately, development teams often lack the training and
resources to make educated design decisions about application
security. As developers assume more of the security burden, the
first web application vulnerability that many developers learn
about is a particularly dangerous form of command injection
known as SQL injection. Command injection in its archetypal form
is any vulnerability that allows an attacker to run an unintended
command on your server by providing unanticipated input that
alters the way you intended the web application to run. Because
it’s so well-known, SQL injection attacks are common, dangerous,
and pervasive. Fortunately, you can prevent SQL injection easily
once you understand the problem. Even better, a new Microsoft
data access technology offers .NET developers the opportunity
to eliminate SQL injection vulnerabilities altogether—when used
properly. That technology is called Language Integrated Query
(LINQ). This paper explores LINQ’s potential for hardening your
web application’s data access code so that it’s impossible to attack
through SQL Injection.

II. Overview
SQL injection is a type of web application security vulnerability
whereby an attacker supplies malicious data to the application,
tricking it into executing unanticipated SQL commands on the
server. These attacks are fairly easy to prevent, but they’re also
both common and pernicious because they allow attackers to run
database commands directly against your production data. In the
most extreme cases, attackers can not only gain unfettered access
to all of your data, but can also drop tables and databases or even
gain control of the database server itself. If these attacks are easy
to prevent, then why are they so dangerous? First, your application
database is a very attractive target for obvious reasons and garners
a lot of attention from attackers. When SQL injection is possible
in a web application, it is very easy for an attacker to detect it and
to then exploit it. So it stands to reason that even if SQL injection
mistakes are not the most frequent security mistakes made by
developers, they very well may be the most frequently uncovered
and exploited in the wild.
One easy way to detect SQL injection vulnerability is to insert a
meta character into an input that you know an application will use

to craft a database access statement. For example, on any web site
that contains a search input field, an attacker can input a database
meta character such as a tick mark (‘) and click the Search button
to submit the input. If the application returns a database error
message, the attacker not only knows that he has found a database-
driven portion of the application, but also that he may be able to
inject more meaningful commands and have your server execute
them. Application security researcher Michael Sutton recently
emphasized the ease of discovering web applications vulnerable
to SQL injection by identifying hundreds of potentially vulnerable
sites in a matter of minutes using the Google search API .

A. Anatomy of SQL Injection
Here’s a simple SQL injection example walkthrough to demonstrate
both how easy the mistakes are to make and how simple they can be
to prevent with some design and programming rigor. The sample
web application contains a simple customer data search page
named SQLInjection.aspx that is vulnerable to SQL injection.
The page contains a Company Name input server control and a
data grid control to display the search results from the Microsoft
sample Northwind database that ships with SQL Server 2005
Express Edition. The query executed during the search includes
a very common mistake in application design—it dynamically
builds a SQL query from user-provided input. This is the cardinal
sin of web application data access because it implicitly trusts what
the user posts, and sends it straight to your database. The query
looks like this when initiated from the Search button click event:

 protected void btnSearch_Click(object sender, EventArgs e)
 {
 String cmd = “SELECT [CustomerID], [CompanyName],
[ContactName]
 FROM [Customers] WHERE CompanyName =’” +
txtCompanyName.Text
 + “’”;

 SqlDataSource1.SelectCommand = cmd;
 GridView1.Visible = true;
 }
In the intended scenario, if a user inputs “Ernst Handel” as the
company and clicks the Search button, the response shows the
customer record for that company, as expected. But an attacker could
easily manipulate this dynamic query, for example, by inserting

Abstract
As web application security breaches and attempts rise, developers are increasingly being asked to take more responsibility for the
security of their applications. In fact security-related concerns are hard to apply as they involve adding complexity to already complex
code. In this paper, we have proposed a lightweight approach to prevent SQL Injection attacks, that it can actually be well defended
by using LINQ (Language Integrated Query) .LINQ to SQL, when used exclusively for data access, eliminates the possibility of SQL
injection in your application for one simple reason: every SQL query that LINQ executes on your behalf is parameterized. Internally,
it means that when LINQ to SQL queries the database, instead of using plain values, it passes them as SQL parameters, which means
they can never be treated as executable code by the database. This is also true for most (if not all) ORM mappers out there.

Keywords
SQL Injection Attacks , LINQ, Web security, Injection prevention, OWASP

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357353451?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ISSN : 2347 - 8446 (Online)
 ISSN : 2347 - 9817 (Print)

www.ijarcst.com

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

© 2014, IJARCST All Rights Reserved 362

Vol. 2 Issue Special 1 Jan-March 2014

a UNION clause and terminating the rest of the intended statement
with comment marks (—). In other words, instead of entering
“Ernst Handel,” the attacker would input the following:
 Ernst Handel’ UNION SELECT CustomerID, ShipName,
ShipAddress
 FROM ORDERS--
The result is that the SQL statement executed on the server ends
up appending the malicious request. It transforms the dynamic
SQL to this:
SELECT [CustomerID], [CompanyName],
 [ContactName] FROM [Customers]
 WHERE CompanyName =’Ernst Handel’
 UNION SELECT CustomerID, ShipName,
 ShipAddress FROM ORDERS--’
This is a perfectly legal SQL statement that will execute on the
application database, returning all the customers in the Orders table
who have processed orders through the application.

B. Kinds of SQL injection

1. In-band
Also called Error-based or Union based SQL Injection or first
order Injection. Here communication between the attacker and
the application happens through a single channel.

2. Out-band
This kind of an attack uses two different channels for communication
between attacker and the application.

3. Inferred
Also known as Blind – SQL – Injection. Here the server doesn’t
respond with any syntax error or other means of notification.The
attacker needs to retrieve the data by asking true or false questions
through SQL commands.

C. Typical SQL Safeguards
You can see now how easy it is to both create a SQL injection
vulnerability in your application and to exploit it. Fortunately, as
mentioned before, SQL injection can usually be prevented easily
with a few simple countermeasures. The most common and cost
effective way to prevent SQL injection is to properly validate all
inputs in the application that are ultimately used as data access.
Any input that originates with users—either directly through the
web application or persisted in a data store—must be validated on
the server for type, length, format and range before processing your
data-access commands on the server. Unfortunately, code-based
countermeasures are not foolproof and can fail when:

Validation routines aren’t properly designed.•
Validation is performed only on the client layer.•
Validation misses even a single field in the application.•

An additional layer of defense to prevent SQL injections involves
properly parameterizing all the SQL queries in your application,
whether in dynamic SQL statements or stored procedures. For
example, the code would have been safe if it had structured the
query like the following:
SELECT [CustomerID], [CompanyName], [ContactName]
FROM [Customers]
WHERE CompanyName = @CompanyName

Parameterized queries treat input as a literal value when executed
as part of the SQL statement; thereby making it impossible for

the server to treat parameterized input as executable code. Even
if you use stored procedures, you must still take this extra step
to parameterize input, because stored procedures provide no
inherent protection from SQL injection over embedded queries.
Even with these simple fixes, SQL injection is still a big problem
for many organizations. The challenge in your development team
is to educate every developer about these types of vulnerabilities,
put meaningful and effective security standards in place to prevent
attacks, enforce the standards and conduct security assessments to
validate that nothing was missed. This introduces a lot of variables
in your efforts to secure your applications, so you would be much
more productive if you were to select a data-access technology
that renders these SQL injection attacks impossible. This is where
LINQ comes in.

III. LINQ Overview
At its simplest, LINQ adds standard patterns for querying and
updating data in any type of data store—from SQL databases to
XML documents to .NET objects. When building database-driven
applications, the component of LINQ that enables developers to
manage relational data as objects in C# or VB is known as “LINQ
to SQL,” which is considered part of the ADO.NET family of data
technologies. When originally introduced in CTP form, LINQ to
SQL was known as DLINQ.

Fig. 1: Execution Architecture

LINQ to SQL enables you to treat data in your applications as native
objects in the programming language you are using, abstracting
the complexity of relational data management and database
connections. In fact, you can display and manipulate database
data through LINQ without writing a single SQL statement. At
runtime, LINQ to SQL translates queries embedded or “integrated”
in your code into SQL, and executes them on the database. LINQ
to SQL returns the query results to the application as objects,
completely abstracting your interaction with the database and
SQL. There is no faster way to eliminate the possibilities of SQL
injection in web applications than to eliminate SQL from your
application. With LINQ to SQL, you can do that.

 ISSN : 2347 - 8446 (Online)
 ISSN : 2347 - 9817 (Print)

www.ijarcst.com

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

© All Rights Reserved, IJARCST 2014363

Vol. 2 Issue Special 1 Jan-March 2014

IV. Securing Data Access with LINQ
LINQ to SQL, when used exclusively for data access, eliminates
the possibility of SQL injection in your application for one simple
reason: every SQL query that LINQ executes on your behalf is
parameterized. Any input provided to the query from any source
is treated as a literal when LINQ builds the SQL query from
your embedded query syntax. Furthermore, LINQ’s integration
with Visual Studio Orcas assists developers in building valid
queries through IntelliSense and compile-time syntax checking.
The compiler catches a lot of query misuse that might introduce
functional defects or other types of vulnerabilities into your
application. In contrast, SQL statements you write are parsed
and interpreted on the database only at runtime before you know
whether it is correct or not. The only attack vector against LINQ
to SQL is for an attacker to try to trick LINQ into forming illegal
or unintended SQL. Fortunately, the languages and compilers are
designed to protect you from that.
With that in mind, here’s how you can implement the customer
search example using LINQ to SQL to protect against SQL
injection attacks. The first step is to create the object model of
the relational data in the database. Visual Studio Orcas includes a
new Object Relational Designer (O/R Designer) that enables you
to generate the full object model for your database by dragging
tables onto the design surface and defining relationships. To build
the object model for our Northwind Customers table, you create a
LINQ to SQL database file in your application by selecting “Add
New Item…” on your project and choosing the “LINQ to SQL
File” template, which opens in the O/R Designer. To automatically
build the complete object model for the Customers table, select
that table in the Server Explorer and drag it on to the O/R Designer
design surface. In this example, the O/R Designer adds a file
named Customers.designer.cs that defines the classes you’ll
use in code rather than writing code to interact directly with the
database.
After defining the object model classes for the data in
the Customers table, you can query the data directly in code
for the customer data search page. The Page_Load method for
the LINQ-powered page (LINQtoSQL.aspx.cs), instantiates the
CustomersDataContext class created by the O/R Designer, reusing
the same connection string used previously in the SQLInjection.
aspx page. The LINQ query below retrieves a collection of
Customer objects that match my where clause:
protected void Page_Load(object sender, EventArgs e)
 {
 string connectionString =
 ConfigurationManager.ConnectionStrings
 [“northwndConnectionString1”].ConnectionString;

 CustomersDataContext db = new
 CustomersDataContext(connectionString);

 GridView1.DataSource =
 from customer in db.Customers
 where customer.CompanyName ==
 txtCompanyName.Text
 orderby customer.CompanyName
 select customer;
 GridView1.DataBind();
 }
 Using LINQ to SQL, if I provide “Ernst Handel” as
the Search value, the SQL statement generated by LINQ

at runtime and executed on the server looks like this:

 SELECT [t0].[CustomerID], [t0].[CompanyName],
 [t0].[ContactName],[t0].[ContactTitle],[t0].[Address],
 [t0].[City], [t0].[Region], [t0].[PostalCode], [t0].[Country],
 [t0].[Phone], [t0].[Fax]
 FROM [dbo].[Customers] AS [t0]
 WHERE [t0].[CompanyName] = @p0
 ORDER BY [t0].[CompanyName]}
As you can see, the WHERE clause is parameterized automatically;
therefore, it’s impervious to attack with conventional SQL injection
attacks. No matter what values a user provides as input to the search
page, this query is type-safe and will not allow input to execute
commands on the server. If you input the attack string used earlier
for the SQL injection exploit, the query returns no rows. In fact,
the most harm that a user could do with this query is to perform
a brute force attack, using the search function to enumerate all
the company records in the Customers table by guessing every
possible value. But even that only provides the Customers values
already exposed on that page, and gives attackers no opportunity
to inject commands that provide access to additional tables or
data in the database.

V. Conclusion
As the examples have shown, it’s easy to introduce SQL injection
vulnerabilities into web applications, and easy to fix them with
proper diligence. But nothing inherently protects developers
from making these simple, yet dangerous mistakes. However,
Microsoft’s LINQ to SQL technology removes the possibility
of SQL injection attacks from database applications by letting
developers interact directly with object models generated from
relational data rather than directly with the database itself.
The LINQ infrastructure built into C# and Visual Basic takes
care of formulating legal and safe SQL statements, preventing
SQL injection attacks and enabling developers to focus on the
programming language most natural to them.

References
[1] Atefeh Tajpour and Maslin Massrum, “Comparison of SQL

Injection Detection and Prevention Techniques,” in 201O
2nd International Conference on Education Technology and
Computer (ICETC).

[2] Debabrata Kar and Suvasini Panigrahi, “Prevention of SQL
Injection Attack Using Query Transformation and Hashing”in
2013 3rd IEEE International Advance Computing Conference
(IACC).

[3] Diallo Abdoulaye Kindy and Al-Sakib Khan Pathan, “A
Survey On Sql Injection: Vulnerabilities, Attacks, And
Prevention Techniques” in 2011 IEEE 15th International
Symposium on Consumer Electronics.

[4] David Byers, Nahid Shahmehri, “Unified modeling of
attacks, vulnerabilities and security activities,” Proc. 2010
ICSE Workshop on Software Engineering for Secure Systems,
IEEE, 2010.

[5] Elizabeth Fong, Romain Gaucher, Vadim Okun, Paul
E.Black, Eric Dalci, “Building a test suite for web application
scanners,” Proc. Annual Hawaii International Conference
on System Sciences, IEEE.

[6] Ezumalai.R and Aghila.G,“ Combinatorial Approach for
Preventing SQL Injection Attacks ” in 2009 IEEE International
Advance Computing Conference (IACC 2009).

 ISSN : 2347 - 8446 (Online)
 ISSN : 2347 - 9817 (Print)

www.ijarcst.com

International Journal of Advanced Research in
Computer Science & Technology (IJARCST 2014)

© 2014, IJARCST All Rights Reserved 364

Vol. 2 Issue Special 1 Jan-March 2014

[7] Jason Bau, Elie Bursztein,Divij Gupta,John Mitchel, “State of
the Art: Automated Black-Box Web Application Vulnerability
Testing,” 2010 IEEE Symposium on Security and Privacy.
IEEE, 2010.

[8] Jie Wang, Raphael C.-W. Phan, John N. Whitley, David J.
Parish, “Augmented Attack Tree Modeling of SQL Injection
Attacks,” Proc. 2nd IEEE International Conference on
Information Management and Engineering, IEEE, 2010.

[9] Ke Wei, M. Muthuprasanna and Suraj Kothari. Preventing
SQL Injection Attacks in Stored Procedures. IEEE, 2006.

[10] Lwin Khin Shar and Hee Beng Kuan Tan, “Mining Input
Sanitization Patterns for Predicting SQL Injection and Cross
Site Scripting Vulnerabilities,” in ICSE 2012.

[11] MeiJunjin, “ An approach for SQL Injection vulnerability
detection” IEEE,2009.

[12] Nuno Antunes and Marco Vieira, “ Detecting SQL Injection
vulnerabilities in web services” IEEE,2009.

[13] TIAN Wei, YANG Ju-Feng and XU Jing, SI Guan-Nan,
“Attack model based penetration test for SQL injection
vulnerability,” 2012 IEEE 36th International Conference
on Computer Software and Applications Workshops.

[14] Robert Dollinger and Kent Thomas,“Using LINQ
Transformation Patterns to evaluate SQL Queries”in 2011
IEEE.

