
Language Stability and Stabilizability of Discrete Event
Dynamical Systems 1

Ratnesh Kumar
Department of Electrical Engineering

University of Kentucky
Lexington, KY 40506-0046

Vijay Garg
Department of Electrical and Computer Engineering

University of Texas at Austin
Austin, TX 78712-1084

Steven I. Marcus
Department of EE and System Research Center

University of Maryland
College Park, MD 20742

November 20, 2005

1This research was supported in part by the Advanced Technology Program of the State of Texas
under Grant 003658-093, in part by the Air Force of Scientific Research under Grant AFOSR-
86-0029, in part by the National Science Foundation under Grant ECS-8617860, in part by the
Air Force Office of Scientific Research (AFSC) under Contract F49620-89-C-0044, and in part by
National Science Foundation under the Grant CCR-9110605.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357353371?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

This paper studies the stability and stabilizability of Discrete Event Dynamical Systems
(DEDS’s) modeled by state machines. We define stability and stabilizability in terms of the
behavior of the DEDS’s, i.e. the language generated by the state machines (SM’s). This
generalizes earlier work where they were defined in terms of legal and illegal states rather
than strings. The notion of reversal of languages is used to obtain algorithms for determining
the stability and stabilizability of a given system. The notion of stability is then generalized
to define the stability of infinite or sequential behavior of a DEDS modeled by a Büchi
automaton. The relationship between the stability of finite and stability of infinite behavior
is obtained and a test for stability of infinite behavior is obtained in terms of the test for
stability of finite behavior. We present an algorithm of linear complexity for computing the
regions of attraction which is used for determining the stability and stabilizability of a given
system defined in terms of legal states. This algorithm is then used to obtain efficient tests
for checking sufficient conditions for language stability and stabilizability.

Keywords: Discrete Event Dynamical Systems, Automata Theory, Supervisory Control,
Stability, Stabilizability

AMS(MOS) Subject Classification: 93

1 Introduction

Ramadge and Wonham in their work [19] on supervisory control of discrete event dy-
namical systems (DEDS) have modeled a DEDS, also called a plant, by a State Machine
(SM), the event set of which is finite and is partitioned into sets of controllable and uncon-
trollable events. The language generated by such a SM is used as a model to describe the
behavior of the plant at the logical level. The control task is formulated as that of synthesis
of a controller, also called a supervisor. The way a supervisor exercises closed-loop control
over the plant is by disabling some of the controllable events in order that the plant may
achieve a certain prescribed behavior, also called the legal behavior. Supervisors designed
for closed-loop control, so that none of the uncontrollable events that can occur in the plant
behavior are prevented from occurring in the closed loop system, are called complete.

Since all uncontrollable events that can occur in the plant, can also occur in the closed
loop system, there may not always exist a complete supervisor such that the closed loop
system has a prespecified desired behavior. We then restrict our attention to designing a
complete supervisor that is minimally restrictive [19, 21, 10, 1, 11] so that the closed loop
system can engage in some maximal behavior and still maintain the prescribed behavioral
constraint. Thus the control objective is usually described as the synthesis of a minimally
restrictive supervisor so that the controlled system has a maximally permissive legal behavior.

Sometimes such a constraint on the system behavior leads to the design of a supervisor
which results in a very restrictive behavior [14]. Recently there has been work [14] on posing
a supervisory control problem that allows the system to engage in some illegal behavior which
can be tolerated. In this paper, we also allow the possibility of the system behaving illegally.
The supervisor is synthesized so that the behavior of the supervised system is “asymptotically
legal”. In other words, the system is initially allowed to make illegal transitions but after
a finite number of transitions the supervised system makes only legal transitions. With the
above motivation, we define the stability and stabilizability of DEDS’s in terms of their legal
behavior.

In [15, 17, 4, 3, 2] the notion of stability and stabilizability of DEDS’s has been presented
in terms of the legal and illegal states of the system. In [4, 2] a stable system is one that
starts from any arbitrary initial state and after finitely many transitions goes to one of the
legal states and stays there; a stabilizable system is one for which there exists a supervisor
so that the supervised system is stable. In [17] a system is said to be stable if after starting
from any arbitrary initial state it visits the legal subset of states infinitely often; a system
that can be made stable in the above context by the synthesis of an appropriate supervisor
is called stabilizable. We define a system to be language-stable if its eventual behavior
remains confined to the legal behavior; if a supervisor exists such that the supervised system
is language-stable, then the system is called language- stabilizable. Thus the notion of
stability presented here differs from those in [17, 4, 2] in the sense that there need not be
any fixed set of legal states. A state can eventually be reached by legal as well as illegal
strings, so none of the states can be predefined to be legal.

In [17, 4, 2], the supervisors considered for stabilizing a system are assumed to be of

1

static feedback type in which the next control actions are determined just on the basis of the
current state of the system. In general, however, a supervisor can be of dynamic feedback
type, where the next control action is determined by the history of the system evolution. We
refine the notion of stability and stabilizability by defining it in terms of languages rather
than states and show that static feedback type supervisor cannot stabilize the system. In
[15], the stability of systems under partial observation is studied. In this case, the supervisor
is taken to be of dynamic feedback type; it can be represented as a cascade of a dynamic
state observer followed by a static feedback type controller. The supervisor considered for
eventually restrictable systems in [16] is also of dynamic feedback type.

We start with the description of DEDS’s and present some of the notions of stability
defined in terms of states. The computational complexity of the algorithms presented in
[4, 2] for determining the stability and stabilizability of DEDS’s based on computing the
regions of attraction is quadratic in the number of states of the system. We present an
algorithm that is linear in the number of states of the system and is thus computationally
more efficient. We then introduce the notion of stability in terms of languages and provide
algorithms for determining the stability and stabilizability of a given system by considering
an equivalent problem defined in terms of reversal of languages. We also discuss the com-
putational complexity of these algorithms. Later, we provide computationally more efficient
algorithms for testing the sufficiency of stability and stabilizability of systems based on our
algorithm for computing the regions of attraction. In all this, we assume that perfect ob-
servation of the system behavior is possible so that the control actions are determined on
the basis of observing the system evolution perfectly. We also introduce a weaker notion of
language stability that is preserved under union and provide a technique for constructing
the minimally restrictive stabilizing supervisor in this weaker sense of language stability.

The notion of language stability is then generalized to study the stability of sequen-
tial behaviors of DEDS’s modeled by Büchi automata. The notions of ω-stability and ω-
stabilizability are introduced in this context, and tests for verifying stability and stabiliz-
ability of sequential behavior are obtained by reducing the problem of testing them to the
problem of testing language stability. We introduce a equivalence relation on the space of
infinite strings and obtain a necessary condition of ω-stability in terms of this equivalence
relation.

2 Notation and Terminology

A DEDS to be controlled, called a plant, is modeled as a deterministic trim [8] state
machine (SM) following the framework of [19]. Let the quintuple

P
def
= (X, Σ, α, x0, Xm)

denote a SM representing a plant, where X denotes the state set; Σ denotes the finite event
or alphabet set; α : Σ × X → X denotes the partial state transition function; x0 ∈ X
denotes the initial state; and Xm ⊆ X denotes the set of marked states. The transition

2

function α(·, ·) is extended to Σ? × X in the natural way, where Σ? denotes the set of all
finite sequences of events belonging to Σ. The notation ε ∈ Σ? is used to denote the empty
string. The behavior of P is described by the language L(P) ⊆ Σ? that it generates and
Lm(P) ⊆ L(P) that it marks or recognizes. Formally,

L(P) = {s ∈ Σ? | α(s, x0)!}; Lm(P) = {s ∈ L(P) | α(s, x0) ∈ Xm},

where the notation “!” is used to denote “is defined”. By definition, L(P) is prefix closed
and also since P is trim, Lm(P) = L(P) [8].

The event set is partitioned into Σ = Σu ∪ Σc, the set of uncontrollable and controllable
events. A supervisor S for controlling a plant is another DEDS, also represented as a SM,

S
def
= (Y, Σ, β, y0, Ym)

S operates synchronously with P , thus allowing only the synchronous transitions to occur
in the closed loop system described by the SM [10, 11]

P2S
def
= (Z, Σ, γ, z0, Zm)

, where Z ⊆ X × Y ; z0 = (x0, y0); Zm ⊆ Xm × Ym; and for s ∈ Σ?, γ : Σ? ×Z → Z is defined
as: γ(s, z0)) = (α(s, x0), β(s, y0)) if α(s, x0)! and β(s, y0)!, undefined otherwise.

The following states the control achieved by the synchronous operation of P and S.

Remark 2.1 [11, 10] Let L(P2S) be the language generated and Lm(P2S) the language
marked by P2S; then L(P2S) = L(P) ∩ L(S), and Lm(P2S) = Lm(P) ∩ Lm(S), where
L(S), Lm(S) denote the languages generated, recognized by S respectively.

Also, since S can disallow only the controllable events from occurring, L(P) ∩ Σ?
u ⊆

L(P2S), where Σ?
u is the set of finite sequences of events belonging to Σu.

The supervisor as defined above represents a closed loop control policy. This differs from
open loop control policy in which control actions are all prespecified; in closed loop control,
control actions are determined by observing all or part of the history of the system evolution.

Definition 2.2 Let the map f : L(P) → 2Σ denote a control policy as described in [19], i.e.
for each string s ∈ L(P) generated by the plant P , f(s) ⊆ Σ is the set of events that are
not disabled by a supervisor. Then the control exercised by the synchronous operation of
a supervisor and the plant, as described above, defines the following control policy over the
set of strings generated by the plant:

f(s)
def
=

{

{σ ∈ Σ|γ(sσ, z0)!} if γ(s, z0)!
undefined otherwise

where the string s ∈ L(P).

3

Closed loop controllers can further be classified into static and dynamic control type.

Given a deterministic SM, V
def
= (Q, Σ, δ, q0, Qm), there is a natural equivalence relation RV

[8, 6, 11, 10] induced by V on Σ?, which is defined by s ∼= t(RV) ⇔ δ(s, q0) = δ(t, q0) (this
is meant to include the condition that δ(s, q0) is undefined ⇔ δ(t, q0) is undefined), where
s, t ∈ Σ?. Thus all those strings which upon execution result in the same state in V belong
to the same equivalence class. We use [s](RV) to denote the equivalence class under the
equivalence relation RV , containing the string s.

Definition 2.3 Consider the control policy f : L(P) → 2Σ defined by the synchronous
composition operator as described in Definition 2.2. We say that a closed loop control policy
is static if s ∼= t(RP) ⇒ f(s) = f(t) whenever both f(s), f(t) are defined.

In other words, in a static feedback type control, the same control action is applied after
the execution of all strings that lead to the same state in the plant. Next we show that if a
supervisor exercises a static closed loop control, then it can be represented as a SM having
structure similar to that of the plant.

Definition 2.4 Let V1
def
= (Q1, Σ, δ1, q01

, Qm1
) and V2

def
= (Q2, Σ, δ2, q02

, Qm2
) be two SM’s.

V1 is said to be a subautomaton [5] of V2 if there exists a one-to-one map h : Q1 → Q2 such
that h(δ1(s, q01

)) = δ2(s, q02
) for each s ∈ L(V1).

Thus if V1 is a subautomaton of V2, then L(V1) ⊆ L(V2). Note that if the map h in
Definition 2.3 is also onto, then V1 and V2 are structurally identical.

Proposition 2.5 [9] The following are true:

1. If S is a subautomaton of P , then the control policy f : L(P) → 2Σ defined by S is
static.

2. If f : L(P) → 2Σ is a static control policy, then there exists S which defines the same
control policy as f and is a subautomaton of P .

Definition 2.6 A closed loop control policy is said to be dynamic if it is not static.

Example 2.7 Consider for example a plant P, with language L(P) = (a + b)? defined over
the event set Σ = {a, b}. Assume that Σc = Σ (see Figure 1; “©” denotes the states,
an entering arrow “−→” to “©” represents the initial state, and “©” denotes the marked
states). Then the language generated by the coupled system under a static feedback control
policy could be one of the following: L(P2S) = (a + b)? or a? or b? or ε depending on
whether the events disabled in the only state of the system are ∅, {b}, {a} or {a, b}.

On the other hand, the language marked by the coupled system can be made to be any
sublanguage K ⊆ (a + b)? by using a dynamic feedback control policy. This can be done
because all the events are controllable [10, 11] (pick the supervisor S, so that L(S) = K). An
example for the case K = (ab)? is shown in Figure 1.

4

Lm(P2S) = Lm(S) = (ab)?

aa

P

a, b b

S P2S

b

Figure 1: Diagram illustrating Example 2.7

3 Stability: Region of Attraction

With the above introduction on our supervisory control model, we next consider the
stability issues for DEDS’s. First we discuss the definitions and results of some of the earlier
works, in which the stability is defined in terms of a set of legal states of the system. Later,
we present our own notions of stability defined in terms legal behavior of the system.

Consider a plant P
def
= (X, Σ, α, x0, Xm). Let X̂ ⊆ X be the prescribed subset of states

or the legal states. The notions of strong and weak attraction [4, 2] are defined as follows:

Definition 3.1 A state x ∈ X is said to be strongly attractable to X̂, if after starting from
the state x, the system always reaches a state in the set X̂ after a finite number of transitions.
The set of all the strongly attractable states is called the region of strong attraction of X̂
and is denoted by Ω(X̂).

Formally, let for s ∈ Σ?, |s| denote the length of s, and for X ′ ⊆ X, |X ′| denote the
number of states in the set X ′. x ∈ X is strongly attractable to X̂ if for all s such that
α(s, x)! and |s| ≥ |X − X̂| there exists a prefix us ∈ Σ? of s with |us| ≤ |X − X̂| so that
α(us, x) ∈ X̂ [4, 2].

Definition 3.2 A state x ∈ X is said to be weakly attractable to X̂, if there exists a
supervisor S such that x is strongly attractable to X̂ in the coupled system P2S. The set
of all the weakly attractable states is called the region of weak attraction and is denoted by
Λ(X̂).

Clearly, Ω(X̂) ⊆ Λ(X̂). If Ω(X̂) = X, then P is said to be stable with respect to X̂
and if Λ(X̂) = X, then P is said to be stabilizable with respect to X̂. The definitions of
strongly and weakly attractable states are the same as those of prestable and prestabilizable
states, respectively [17]. Thus in order to test whether a given system is stable (stabilizable)
with respect to a given set of legal states, one needs to compute the region of strong (weak)
attraction.

Remark 3.3 Algorithms of quadratic time complexity in number of states of the system
are presented in [17, 4, 2]. An algorithm of linear time complexity in number of states of
the system for constructing the regions of strong and weak attraction is presented in the
Appendix A of this paper.

5

4 Language-Stability

So far we have discussed stability of DEDS’s defined in terms of their legal states and
provided an efficient algorithm for testing it by computing the regions of attraction. Next
we provide motivation for a more general notion of stability which we call language-stability
and discuss some of the issues related to stability in this framework.

In some cases, it might be desirable that the eventual behavior (rather than the whole
behavior) of the system be legal, so the whole behavior of the system need not be confined
to a legal language as in [19, 21]. Thus in these cases the control task can be formulated as
the synthesis of a supervisor such that the behavior of the supervised system is eventually
legal. This leads to the design of supervisors that are less restrictive and as a result, the
behavior of the supervised system is a larger language. Hence, we will formalize the notion of
eventual behavior of the systems and define stability and stabilizability of systems in terms
of their behavior. As discussed in the previous sections, the notions of stability defined in
terms of languages can also be viewed as a generalization to the ones defined in terms of
states [17, 15, 4, 3, 2].

Example 4.1 Consider the machine P shown in Figure 2. P can either be in “idle”, “work-
ing”, “broken” or “display” state. Assume that initially it is in the idle state and goes to
the working state when the action “start” is executed. While in the working state, P can
either “stop” and go back to the idle state or can “fail” and go to the broken state. In
the broken state it can execute either the action “repair” and go to the display state or the
action “replace” and get back to the initial idle state. While in the display state, the action
“reject” or “approve” can be executed, so the resulting state of P can either be broken (if
reject is executed) or idle (if approve is executed).

display

broken working

idle

replace

approve

reject

repair

fail

stop start

Figure 2: Machine P of Example 4.1

Consider the above example for the stability analysis in the framework of [17, 15, 4, 3, 2].
The states idle and working are the “good” or legal states of P. The actions start, repair and
replace are the controllable actions, whereas the actions stop, fail, reject and approve are the
uncontrollable actions. Clearly, P is not stable with respect to its legal states (once P executes

6

fail, it is not guaranteed to get back to the legal states). To show that P is stabilizable: once
it executes fail and goes to the broken state, it must execute the controllable action replace
to go back to the legal state either permanently (as in [3, 4, 2]) or temporarily (as in [17]).
Suppose instead, it executes the controllable action repair and goes to the display state;
there it might not execute the uncontrollable action approve in which case it would remain
in the illegal state. Hence the only way P can be stabilized is by executing the action replace
after it executes fail. This however, may not be desired, for replacing (and not repairing) P
whenever it fails might be cost ineffective. Thus in this example, the framework of [17, 15, 2]
may be too restrictive for stabilizing the machine P.

We would like the desired behavior of P to be such that it allows P to execute the repair–
reject sequence for a finite number of times. In other words, the desired behavior of P is that
if it executes fail, it should execute replace or approve after a finite number of executions
of the repair–reject sequence; otherwise it should execute the start–stop sequence. The way
P is designed, after executing fail, it might never execute replace or approve and continue
executing the repair–reject sequence, in which case the desired behavior is not achieved. We
note that the desired behavior of P as described above cannot be achieved by use of a static
feedback controller.

Moreover, in the above example, P is allowed to execute “illegal” actions (the repair–
reject sequence) after it executes fail, provided it eventually executes one of the “legal”
actions (replace or approve). Thus the whole behavior of the system need not always be
confined to a legal language as in [19, 21]. With these motivations, the notions of stability
of systems is formally defined in terms of their legal behavior:

With this motivation, we formally define stability of systems in terms of their legal
behavior. For n ∈ N , let Σn denote the set of strings, each of length n, of events belonging
to Σ. We use Σ≤N to denote

⋃

n≤N Σn for each N ∈ N .

Definition 4.2 Let L,K ⊆ Σ? be two languages. L is said to be language stable (`-stable)
with respect to K if there exists N ∈ N such that L ⊆ Σ≤NK.

Since Σ≤N ⊆ Σ≤N ′

whenever N ≤ N ′ (N,N ′ ∈ N), it follows that if L is `-stable with
respect to K, then there exists a smallest integer N0 ∈ N such that L ⊆ Σ≤N0K. Consider
s ∈ Σ?. Assume that for n ∈ N ,n ≤ |s|, s can be written as s = unvn, where un, vn ∈ Σ?

and |un| = n. We define a map Πn : Σ? → Σ? in the following manner:

Πn(s) =

{

vn for |s| > n
ε otherwise

Thus the effect of the map Πn(·) on a string s is to remove the initial n symbols of s.
It follows from Definition 4.2 that L ⊆ Σ? is `-stable with respect to K ⊆ Σ? if and only

if there exists N ∈ N such that for every string s ∈ L there exists a prefix us ∈ Σ? of s with
|us| ≤ N such that Π|us|(s) ∈ K. Thus L is `-stable with respect to K if after removing a
prefix of length at most N from a string in L, it matches some string in K. The language L
can be thought to be representing the plant behavior and the language K can be thought to

7

be representing the eventual legal behavior of plant. If L is not `-stable with respect to K,
then it is said to be `-stabilizable with respect to K if there exists a supervisor S such that
the closed loop behavior is `-stable with respect to K. Formally,

Definition 4.3 Consider L,K ⊆ Σ?. L is said to be `-stabilizable with respect to K if there
exists a nonempty controllable [19, 21, 10, 1, 11] sublanguage H ⊆ L such that H is `-stable
with respect to K.

Assume that L is recognized by a plant P, i. e. Lm(P) = L. Let S be a supervisor such
that the language recognized by the closed loop system Lm(P2S) is `-stable with respect to
K; then clearly L is `-stabilizable with respect to K with H = Lm(P2S). Thus Definition
4.3 can equivalently be stated as: L is said to be `-stabilizable with respect to K if there
exists a supervisor S such that Lm(P2S) is `-stable with respect to K. If S is complete,
then H is controllable with respect to L [10, 11].

Proposition 4.4 If P
def
= (X, Σ, α, x0, Xm) is stable (stabilizable) with respect to X̂ ⊆ X,

then Lm(P) is `-stable (`-stabilizable) with respect to
⋃

x∈X̂ Lm(P, x), where Lm(P, x) is the
language marked by P assuming the initial state to be x.

Proof: Assume that the SM, P
def
= (X, Σ, α, x0, Xm) is stable with respect to the legal set

X̂ ⊆ X. Let L = Lm(P), and K =
⋃

x∈X̂ Lm(P, x). Define N
def
= |X − X̂|. We will show

that L ⊆ Σ≤NK. Consider s ∈ L. If |s| ≤ N , then s ∈ Σ≤N . Hence s ∈ Σ≤NK. If
|s| > N , then there exists a prefix us < s, |us| ≤ N , such that α(us, x0) ∈ X̂ (follows from
the definition that x0 is strongly attractable to X̂). Thus Π|us|(s) ∈ K (by definition of K).
Hence s ∈ Σ≤nK; which shows that L is `-stable with respect to K.

Similarly, it can be shown that if P is stabilizable with respect to X̂, then L is `-
stabilizable with respect to K. 2

Proposition 4.4 shows that stability (stabilizability) in terms of states in some sense
implies `-stability (`-stabilizability). We show in the next example that the converse does
not necessarily hold, thus showing that the notion of `-stability (`-stabilizability) is finer
than that of stability (stabilizability).

Example 4.5 Let Σ = Σu = {a, b, c, d}. Consider the languages L,K ⊆ Σ? given by:

L = (ab)?cd? and K = d? + b(ab)i(ab)?cd?, where i ∈ N , i ≥ 1. Letting N
def
= 2i + 1, it

can be easily verified that L ⊆ Σ≤NK and also that N is the smallest integer for which the
last inclusion holds. Since L is `-stable with respect to K it follows that L is `-stabilizable
with respect to K. Let P, V be the minimal SM’s generating L,K respectively. Then P, V
must have 3, 2i + 5 states respectively. It can also be easily shown that P is not stable with
respect to any of its subset of states. Since Σu = Σ, P is not stabilizable with respect to any
of its subset of states either.

Example 4.6 Consider the languages L = (ac + b)a(a + b)? and K = (ab)? defined over
Σ = Σc = {a, b, c}. We will show that L is not `-stable with respect to K, i.e. there exists
no N ∈ N such that L ⊆ Σ≤NK. To prove this, we assume for contradiction that there

8

exists N0 ∈ N is such that L ⊆ Σ≤N0K. Consider the string baaN0 ∈ L. Any substring of
it obtained by removing an initial finite segment of length less than N0 does not match any
string in K (a string in K contains the symbol b at the end, whereas the string baaN0 ends
with the symbol a).

b

a

Generator for H = (ac + b)a(ab)?

Generator for K = (ab)?

Generator for L = (ac + b)a(a + b)?

b a

a, b

a

c

b

aa

b

c

a

Figure 3: Diagram illustrating Example 4.6

Consider a supervisor S such that Lm(S) = (ac+b)a(ab)? (such a supervisor exists because
all the events are controllable [10, 11]) as shown in Figure 3. Then Lm(P2S) = (ac+b)a(ab)?

is `-stable with respect to K = (ab)? (consider any string from Lm(P2S) and remove the
initial segment, either aca or ba, whichever is appropriate; the resulting string belongs to
K). Thus L is `-stabilizable to K.

In this example, it is clear that a dynamic feedback type supervisor has been used to
`-stabilize the given language. A static feedback type control cannot be used to stabilize
L = (ac + b)a(a + b)? with respect to K = (ab)?. This follows since any string in K contains
an equal number of a’s and b’s, and L cannot be restricted to a language H ⊆ L with all its
strings having an equal number of a’s and b’s at its end by using a static supervisor (refer
to Example 2.7). In [17, 4, 2], where stability is defined in terms of the legal states, the
supervisors considered for stabilizing DEDS’s are all assumed to be of static feedback type.
Thus a more general type of control is needed to `-stabilize the behavior of a given system,
which also shows that the notion of `-stability (`-stabilizability) is a finer notion.

Next we present algorithms for testing `-stability and `-stabilizability of a language L
with respect to another language K.

4.1 Algorithms for testing `-stability and `-stabilizability

In order to test whether a language L is `-stable (`-stabilizable) with respect to another
language K, we need to test whether there exists an integer N ∈ N such that L ⊆ Σ≤NK

9

(H ⊆ Σ≤NK, where H ⊆ L). This problem can equivalently be posed in terms of the
reversal [1] of languages that we define next.

Definition 4.7 Given a string s ∈ Σ?, its reversal sR ∈ Σ?, is the string obtained by

reversing s. Given a language L ⊆ Σ?, its reversal LR ⊆ Σ? is defined to be: LR def
= {sR ∈

Σ?|s ∈ L}.

Next we discuss some of the properties of the reversal operator. We use L,L1, L2 to
denotes languages defined on Σ.

Lemma 4.8

1. Reversal preserves regularity, i.e. if L is regular, then so is LR.

2. (LR)R = L.

3. Reversal is monotone, i.e. if L1 ⊆ L2, then LR
1 ⊆ LR

2 .

4. (L1L2)
R = LR

2 LR
1 .

Proof: 1. The proof is based on constructing a FSM that recognizes LR using a FSM
realization for L, and can be found in [1].

2. Follows from the definition of the reversal of languages and the fact that for any string
s ∈ Σ?, (sR)R = s.

3. Pick s ∈ LR
1 ; then sR ∈ L1. Since L1 ⊆ L2, it follows that sR ∈ L2, i.e. (sR)R = s ∈ LR

2 .

4. We first show that (L1L2)
R ⊆ LR

2 LR
1 . Pick s ∈ (L1L2)

R; then sR ∈ L1L2, i.e. there exist
us ∈ L1 and vs ∈ L2 such that usvs = sR. Hence s = (sR)R = (usvs)

R = vR
s uR

s ∈ LR
2 LR

1 .
Next we show that LR

2 LR
1 ⊆ (L1L2)

R. Pick s ∈ LR
2 LR

1 ; then there exist vs ∈ L2 and
us ∈ L1 such that vR

s uR
s = s. Hence s = (sR)R = ((vR

s uR
s)R)R = (usvs)

R ∈ (L1L2)
R. 2

Corollary 4.9 L ⊆ Σ≤NK if and only if LR ⊆ KRΣ≤N , where L,K ⊆ Σ? and N ∈ N .

Proof: Assume that L ⊆ Σ≤NK; then it follows from part 3 of Lemma 4.8 LR ⊆ (Σ≤NK)R.
Since (Σ≤N)R = Σ≤N , it follows from part 4 of Lemma 4.8 that LR ⊆ KRΣ≤N .

Assume next that LR ⊆ KRΣ≤N ; then from part 3 of Lemma 4.8 it follows that (LR)R ⊆
(KRΣ≤N)R. Thus from part 4 of Lemma 4.8 we obtain (LR)R ⊆ Σ≤N(KR)R. It then follows
from part 2 of Lemma 4.8 that L ⊆ Σ≤NK. 2

Thus the problem of testing `-stability of a language L with respect to another language
K can be equivalently posed as that of determining an integer N ∈ N , if it exists, such
that LR ⊆ KRΣ≤N . Hence, given two languages L,K ⊆ Σ?, we next analyze the problem of
determining an integer N ∈ N , if it exists, such that LR ⊆ KRΣ≤N .

Let P
def
= (X, Σ, α, x0, Xm) and V

def
= (Q, Σ, δ, q0, Qm) be two SM’s such that Lm(P) = LR

and Lm(V) = KR. Assume further that P is trim [1] so that L(P) = Lm(P) = LR, and
V is such that L(V) = Σ?, i.e. V is a SM that recognizes KR and has an additional dump

10

state in order to generate Σ?. Consider the synchronous composition P2V of SM’s P and
V given by the following 5-tuple:

P2V
def
= {R, Σ, ρ, r0, Rm}

where the state set R, the transition function ρ(·, ·), the initial state r0 are as defined above
(refer to the definition of synchronous composition), and Rm ⊆ Xm × Q (this is a slight
variation to the earlier definition of the marked states in synchronous composition of two
machines).

Note that all the transitions are present in V , i.e. given any event σ ∈ Σ and any state
q ∈ Q, δ(σ, q)!. Hence for any event σ ∈ Σ and state r = (x, q) ∈ R, ρ(σ, (x, q)) is defined if
and only if α(σ, x) is defined.

Lemma 4.10 Let P and V be the two SM’s as defined above. Then Lm(P2V) = Lm(P),
and L(P2V) = L(P).

Proof: First we show that Lm(P2V) ⊆ Lm(P). Pick s ∈ Lm(P2V); then ρ(s, r0)! and
ρ(s, r0) ∈ Rm. Since ρ(s, r0) is defined if only if α(s, x0) is defined and Rm ⊆ Xm × Q, it
follows that α(s, x0)! and α(s, x0) ∈ Xm. Thus s ∈ Lm(P). Next we show that Lm(P) ⊆
Lm(P2V). Pick s ∈ Lm(P); then α(s, x0)! and α(s, x0) ∈ Xm. It follows from the definitions
of ρ(·, ·) and Rm that ρ(s, r0)! and ρ(s, r0) ∈ Rm. Thus s ∈ Lm(P2V).

Since L(P2V) = L(P) ∩ L(V) = L(P) ∩ Σ?=L(P), the other result follows. 2 Given
two languages L,K ⊆ Σ?, next we present a necessary and sufficient condition to determine
whether there exists an integer N ∈ N such that LR ⊆ KRΣ≤N in terms of the graphical
structure of SM’s recognizing the languages LR, KR.

Consider R, the state set of P2V . Let R? denote the set of all finite sequences of states
belonging to R. Consider p ∈ R? such that p = (r1r2 . . . ri . . . rn) ∈ R?, where ri ∈ R for each
1 ≤ i ≤ n and n ∈ N . Then p is said to be a path starting at r1 and ending at rn in P2V ,
if there exist a string sp ∈ Σ?, sp = σ1σ2 . . . σi . . . σn−1, where σi ∈ Σ for each 1 ≤ i ≤ n − 1,
such that ρ((σ1 . . . σi−1), r1) = ri for each 1 < i ≤ n. sp ∈ Σ? as described above is called
the string corresponding to path p. Thus given a path p in P2V , there exists at least one
string sp ∈ Σ? corresponding to p. A state r ∈ R is said to be a path-state of the path p if
r = ri for some 1 ≤ i ≤ n. p is said to be a loop-path if there exist i, j with 1 ≤ i < j ≤ n
such that ri = rj; in which case the portion ri . . . rj of p is called the loop-portion of p. p is
said to be a loopfree-path if p is not a loop-path.

Theorem 4.11 Let LR, KR ⊆ Σ? be the languages recognized by the SM’s P, V respectively
as described above. Then there exists an integer N ∈ N such that LR ⊆ KRΣ≤N if and only
if the following hold in the SM P2V :

C1 For each rm ∈ Rm and for every path p in P2V that starts at r0 and ends at rm, there
exists a path-state r = (x, q) ∈ X × Q of p such that q ∈ Qm.

C2 For each r = (x, q) ∈ X × Qm and each rm ∈ Rm, if a path p in P2V that starts at r
and ends at rm has none of its path-states in X × Qm (other than the one at which it
starts), then p is a loop-free path.

11

Proof: Assume that there exists an integer N ∈ N such that LR ⊆ KRΣ≤N ; then we first
show that C1 holds.

Fix a path p in P2V such that p starts at r0 and ends at rm ∈ Rm. Then there exists
a string sp ∈ Lm(P2V) such that ρ(sp, r0) = rm. Since Lm(P2V) = Lm(P) = LR (Lemma
4.8 and definition of P), sp ∈ LR. Thus it follows from the assumption that sp ∈ KRΣ≤N ,
i.e. there exist usp

∈ KR and vsp
∈ Σ≤N such that sp = usp

vsp
. Consider the path-state

r = (x, q) = ρ(usp
, r0) of p. Since usp

∈ KR, the state q reached by accepting usp
in V

belongs to Qm, i.e. r = (x, q) ∈ X × Qm.
Next we show that C2 holds. Fix a path p in P2V such that p starts at r = (x, q) ∈

X × Qm and ends at rm ∈ Rm and none of the path-states of p other than the first one
are in X × Qm. Assume for contradiction that C2 is false, i.e. p is a loop-path. Consider
the string s ∈ L(P2V) such that ρ(s, r0) = r = (x, q). Since q ∈ Qm, s ∈ Lm(V) = KR.
Let tp = upvpwp ∈ Σ? be a string corresponding to the path p, where vp represents the
string corresponding to the loop-portion of p. Then stp = supvpwp ∈ Lm(P2V) = LR (since
ρ(stp, r0) = rm ∈ Rm). Hence the string tup(vp)

N+1wp ∈ LR. Then there exists no prefix
s′ ∈ KR of the string sup(vp)

N+1wp such that Π|s′|(sup(vp)
N+1wp) ∈ Σ≤N , which contradicts

the fact that LR ⊆ KRΣ≤N . This completes the proof of the fact that C1 and C2 are
necessary conditions for an integer N ∈ N to exist such that LR ⊆ KRΣ≤N . It remains to
show that C1 and C2 are sufficient conditions also.

Assume then that C1 and C2 hold for SM P2V . Since C2 holds, any path p in P2V ,
that starts at r = (x, q) ∈ X × Qm and ends at rm ∈ Rm with none of its path-states
(other than the first one) in X × Qm, is a loopfree-path. Let P denote the collection of all

such paths (paths that satisfy condition C2). Define N
def
= maxp∈P |p|, where |p| denotes the

length of path p. Then we will show that LR ⊆ KRΣ≤N . Note that since C2 holds, all the
paths p ∈ P are loopfree-paths, hence the maximum in the definition of N exists. In order
to show that LR ⊆ KRΣ≤N , pick s ∈ LR. Then s ∈ Lm(P2V). Let ρ(s, r0) = rm ∈ Rm.
Consider the path ps in P2V corresponding to string s. Since P2V is deterministic, ps is
unique. Also, ps starts at r0 and ends at rm ∈ Rm. Hence by C1, there exists a path-state
r = (x, q) of ps such that r = (x, q) ∈ X × Qm. Let r′ be the last such path-state of ps,
i.e. r′ ∈ X × Qm and all the path-states of ps that follow r′ do not belong to X × Qm. Let
the portion of ps that starts at r′ and ends at rm be denoted by p′; then from C2 p′ is a
loopfree-path, also p′ ∈ P . It follows from the definition of N that |p′| ≤ N . Let u′ ∈ Σ?

be such that ρ(u′, r0) = r′, then u′ ∈ K (since r′ ∈ X × Qm), and Π|u′|(s) ∈ Σ≤N . Thus
s ∈ KRΣ≤N . This completes the proof of Theorem 4.11. 2

Remark 4.12 The conditions C1 and C2 can be tested in P2V in the following manner:

1. Consider the state set R of P2V and remove all the states r = (x, q) ∈ R (and the
transitions entering or leaving these states) for which q ∈ Qm. Then for C1 to hold,
there must not exist any path connecting r0 to any rm ∈ Rm in the machine obtained
by removing the above states. Thus C1 can be verified by doing a connectivity test on
the reduced machine as described above.

12

2. Next fix a state r = (x, q) ∈ R with q ∈ Qm and remove from P2V all the other states
r′ = (x′, q′) ∈ R (and the transitions entering or leaving these states) having q ′ ∈ Qm.
Then for C2 to hold for this state r, any path connecting r to any rm ∈ Rm in the
machine obtained by removing the above states must be acyclic. Repeat the above for
every state r′′ = (x′′, q′′) ∈ R with q′′ ∈ Qm and test for acyclicity.

Letting |P2V | denote the number of states in P2V , it follows from above that C1 and
C2 can be tested in O(|P2V |2) time. Let m,n ∈ N be the number of states in the minimal
SM’s recognizing L,K respectively, then the number of states in SM’s P, V recognizing
LR, KR respectively is 2m, 2n respectively (reversal operation requires nondeterministic to
deterministic conversion of SM’s). Hence the computational complexity of testing `-stability
of L with respect to K is O(22(m+n)).

Corollary 4.13 Consider two regular languages L,K ⊆ Σ?. Let m,n ∈ N be the number
of states in the minimal SM’s recognizing L,K respectively. If L is `-stable with respect to
K, then there exists an integer N ∈ N , N ≤ 2m+n such that L ⊆ Σ≤NK.

Proof: By Corollary 4.9, L ⊆ Σ≤NK if and only if LR ⊆ KRΣ≤N . Since the number of
states in SM’s recognizing L,K is m,n respectively, the number of states in SM’s recognizing
LR, KR is 2m, 2n respectively (reversal operation requires nondeterministic to deterministic
conversion of SM’s [1]). Thus it follows from Theorem 4.11 that N ≤ (2m)(2n) = 2m+n. 2

Remark 4.14 Thus `-stability of a given language L with respect to another language K
can also be determined by testing whether L ⊆ Σ≤2m+n

K, where m,n ∈ N are the numbers
of states present in SM’s recognizing L,K respectively.

Next we consider the problem of testing `-stabilizability of a given language L ⊆ Σ?

with respect to another language K ⊆ Σ?. Let P, V be the SM’s recognizing language
L,K respectively. The supervisor that disables all the controllable transitions of P (treated
as a plant) is called the maximally restrictive supervisor. The behavior of P under the
maximally restrictive control is given by L ∩ Σ?

u. Note that since L ∩ Σ?
u is the closed loop

behavior under the control of the maximally restrictive supervisor, given any nonempty
controllable sublanguage H ⊆ L, L ∩ Σ?

u ⊆ H. Also, note that L ∩ Σ?
u is controllable, for

(L ∩ Σ?
u)Σu ∩ L(P) = L ∩ Σ?

u.

Theorem 4.15 L is `-stabilizable with respect to K if and only if L ∩Σ?
u is nonempty and

`-stable with respect to K.

Proof: Assume that L is `-stabilizable with respect to K. Then there exists N ∈ N and a
nonempty controllable sublanguage H ⊆ L such that H ⊆ Σ≤NK. Note that L ∩ Σ?

u ⊆ H
(by definition of maximally restrictive control). Hence L ∩ Σ?

u ⊆ Σ≤NK. Thus L ∩ Σ?
u is

`-stable with respect to K.
Next assume that L ∩ Σ?

u is nonempty and `-stable with respect to K. Since L ∩ Σ?
u is

controllable, it follows that L is `-stabilizable with respect to K. 2

13

Remark 4.16 Thus `-stabilizability of a given language L with respect to another language
K can be determined by testing whether L ∩ Σ?

u is nonempty and `-stable with respect to
K.

As stated in Remark 4.12, the algorithm for testing `-stability of L with respect K is of
computational complexity that is exponential in the number of states present in SM’s recog-
nizing L and K. Hence so is the complexity of the algorithm that tests the `-stabilizability
of L with respect to K. Next we present a sufficient condition for `-stability of L with

respect to K that can be tested in polynomial time. Let P
def
= (X, Σ, α, x0, Xm) and

V
def
= (Q, Σ, δ, q0, Qm) be two SM’s recognizing L and K respectively. Define the follow-

ing subset of states XS ⊆ X:

XS = {x ∈ X | Lm(P, x) ⊆ K}

where Lm(P, x) is the language recognized by P assuming its initial state to be x ∈ X.

Proposition 4.17 Consider SM’s P, V as defined above. If x0 ∈ Ω(XS), then L is `-stable
with respect to K.

Proof: Define N
def
= |X − XS|; then to prove `-stability of L with respect to K, we need to

show that L ⊆ Σ≤NK. Consider s ∈ L. If |s| ≤ N , then clearly s ∈ Σ≤NK. So let s ∈ L
be such that |s| > N . Then it follows from the definition of region of strong attraction that
there exists a prefix us ∈ Σ?, |us| ≤ N , of s such that α(us, x0) ∈ XS. Also, by the definition
of XS, Π|us|(s) ∈ K, which shows that s ∈ Σ≤NK. 2

Thus if x0 is strongly attractable to a state in XS, then P after starting from x0 reaches
a state in XS in at most |X −XS| transitions, and then onwards follows a string in K. The
following algorithm checks the sufficient condition of Proposition 4.17:

Algorithm 4.18

1. Determine the subset of states XS ⊆ X defined above.

2. Compute Ω(XS) using Algorithm A.1.

3. If x0 ∈ Ω(XS), then L is `-stable with respect to K.

Let P, V be the minimal SM’s recognizing L,K respectively and let m,n ∈ N be the
number of states in P, V respectively. Then step 1 of Algorithm 4.18 can be determined in
O(m2n) time, and step 2 and 3 can both be determined in O(m) time (refer to Theorem A.2).
Hence the computational complexity of Algorithm 4.18 is O(m2n) which is polynomial in
m,n. Note that Algorithm 4.18 tests only for the sufficiency condition of `-stability. Hence
if the condition in step 3 of Algorithm 4.18 is not satisfied, `-stability of L with respect to K
is determined by testing conditions C1 and C2 of Theorem 4.11 as described in Remark 4.12.
Next we present a sufficient condition for `-stabilizability of L with respect to K, which can
also be tested in polynomial time.

14

Proposition 4.19 Consider the SM’s P, V . Let X ′
S

def
= {x ∈ X | Lm(P |Σu

, x) ⊆ K}, where
Lm(P |Σu

, x) = Lm(P, x) ∩ Σ?
u. If x0 ∈ Λ(X ′

S), then L is `-stabilizable with respect to K.

Proof: Similar to the proof of Proposition 4.17. 2

The following algorithm will test the condition of Proposition 4.19:

Algorithm 4.20

1. Compute X ′
S ⊆ X.

2. Compute Λ(X ′
S) using the modification to Algorithm A.1 described in Remark A.3.

3. If x0 ∈ Λ(X ′
S), then L is `-stabilizable with respect to K.

The computational complexity of Algorithm 4.20 is also O(m2n), where m,n is the num-
ber of states in P, V respectively.

5 On Stabilizing Supervisors

In the previous section we showed that given a plant P with physical behavior L ⊆ Σ?

and desired eventual behavior K ⊆ Σ?, it can be verified whether or not L is `-stable or `-
stabilizable with respect to K. In case L is `-stable with respect to K, the eventual behavior
of P is contained in K; hence no supervisor is needed. If L is not `-stable but is `-stabilizable
with respect to K, then a supervisor must be constructed to insure that the eventual closed
loop behavior of the system is a sublanguage of K. The `-stabilizability of L guarantees the
existence of a stabilizing supervisor, but a minimally restrictive stabilizing supervisor need
not in general exist. This is evident from the following proposition:

Proposition 5.1 `-stability is not preserved under union.

Proof: We show by the following example that `-stabilizability is not preserved under union.
Let Σ = Σc = {a, b}, L = a?b? denote the plant behavior and K = b? denote the desired
eventual behavior. Then there does not exist any integer N ∈ N such that L ⊆ Σ≤NK, i.e.
L is not `-stable with respect to K.

Next consider the following family of sublanguages {Li}i∈N of L with Li = aib? for each
i ∈ N . Then it is clear that for each i ∈ N , Li is controllable (since Σc = Σ) and also
`-stable (since Li ⊆ Σ≤iK) sublanguage of L. But

⋃

i∈N Li = L is not `-stable with respect
to K; thus showing that `-stability is not preserved under union. 2

The implication of Proposition 5.1 is that if the plant behavior L is not `-stable with
respect to the desired eventual behavior K, then the minimally restrictive stabilizing supervi-
sor, which will restrict the plant behavior to the supremal `-stable sublanguage of L, cannot
in general be constructed. Next we define a weaker notion of language stability that we call
weak `-stability which is preserved under union so that the minimally restrictive stabilizing
supervisor can be constructed.

15

Definition 5.2 A language L ⊆ Σ? is said to be weakly `-stable with respect to another
language K ⊆ Σ? if L ⊆ Σ?K. If there exists a nonempty controllable sublanguage H ⊆ L
such that H is weakly `-stable with respect to K, then L is said to be weakly `-stabilizable
with respect to K.

Thus if L is weakly `-stable with respect to K, then every string in L after removing a
prefix from it, matches some string in K. Notice that here no uniform bound on the size of
prefix to be removed from a string in L is assumed.

Remark 5.3 Since Σ≤N ⊆ Σ? for any N ∈ N , it follows that `-stability implies weak `-
stability. However, the converse does not hold in general. Consider for example the languages
L = a?b? and K = b? defined over the event set Σ = {a, b}. Then as stated in the proof of
Proposition 5.1, L is not `-stable with respect to K. But clearly L is weakly `-stable with
respect to K, for a?b? ⊆ Σ?b?.

The following result analogous to that stated in Theorem 4.15 holds also for weak `-
stabilizability.

Theorem 5.4 L is weakly `-stabilizable with respect to K if and only if L∩Σ?
u is nonempty

and weakly `-stable respect to K.

Proof: Similar to the proof of Theorem 4.15. 2

Next we discuss how to verify weak `-stability and weak `-stabilizability of a given plant

behavior with respect to its desired eventual behavior. Let P
def
= (X, Σ, α, x0, Xm), V

def
=

(Q, Σ, δ, q0, Qm) be the minimal SM’s recognizing the languages L,K respectively. Assuming
that the languages L,K are regular, let m,n be the number of states in P, V respectively. A
SM that recognizes Σ?K is constructed by first adding the self-loop corresponding to Σ? at
the initial state of V and then converting it to a deterministic SM. Let this SM be denoted
by V ′; then the number of states in V ′ is 2n.

Remark 5.5 The weak `-stability of L with respect to K can be verified by determining
whether Lm(P) ⊆ Lm(V ′). Since the number of states in P, V ′ is m, 2n respectively, the
computational complexity of verifying weak `-stability of L with respect to K is O(m2n).
It also follows, in view of Theorem 5.4, that the computational complexity of testing weak
`-stabilizability of L with respect to K is again O(m2n).

Since `-stability (`-stabilizability) implies weak `-stability (weak `-stabilizability), the
condition in Proposition 4.17 (Proposition 4.19) is sufficient for weak `-stability (weak `-
stabilizability). Thus Algorithm 4.18 (Algorithm 4.20) can be employed to test this sufficient
condition for weak `-stability (weak `-stabilizability), the computational complexity of which
is polynomial in m,n.

Thus given a plant behavior L and desired eventual behavior K, we first verify whether or
not L is `-stable with respect to K. If L is `-stable with respect to K, then no supervisor is
needed; otherwise, we check whether L is weakly `-stabilizable with respect to K. Note that
since `-stabilizability is not preserved under union, it is not possible in general to construct

16

a minimally restrictive supervisor so that the closed loop behavior of the system is `-stable
with respect to K. Hence whenever L is not `-stable with respect to K, we check for the
weak `-stabilizability (instead of `-stabilizability) of L with respect to K. Next we prove
that weak `-stability is preserved under union, i.e. the supremal weakly `-stable sublanguage
of a given language exists.

Proposition 5.6 The supremal weakly `-stable sublanguage of a given language exists and
is unique.

Proof: Let L,K denote the plant, desired eventual behavior respectively. Let Λ be an
indexing set such that the family of weakly `-stable sublanguages of L is given by {Lλ}λ∈Λ,
i.e. Lλ is weakly `-stable sublanguage of L for each λ ∈ Λ. Such a family is nonempty

because ∅ is weakly `-stable sublanguage of L. Consider the language H
def
=

⋃

λ∈Λ Lλ; then
clearly H ⊆ L and H is weakly `-stable. The last assertion follows from the fact that
Lλ ⊆ Σ?K for each λ ∈ Λ which implies that

⋃

λ∈Λ Lλ = H ⊆ Σ?K. This completes the
proof of Proposition 5.6. 2

Corollary 5.7 The supremal controllable and weakly `-stable sublanguage of a given lan-
guage exists and is unique.

Proof: Follows from Proposition 5.6 and the fact that controllability is preserved under
union [19, 21]. 2

We proved the existence and uniqueness of the supremal controllable and weakly `-stable
sublanguage of a given language. Next we present a closed form expression for it. We use the
notation H↑ to denote the supremal controllable sublanguage of a given language H ⊆ Σ?

[21, 1, 10].

Theorem 5.8 Let L,K ⊆ Σ? denote the plant, desired eventual behavior respectively. Then
the supremal controllable and weakly `-stable sublanguage of L is given by (L ∩ Σ?K)↑.

Proof: Let H ⊆ Σ? denote the supremal controllable and weakly `-stable sublanguage of L
with respect to K. Then we need to show that H = (L ∩ Σ?K)↑.

First we show that (L ∩ Σ?K)↑ ⊆ H. Since H is the supremal controllable and weakly
`-stable sublanguage of L, it suffices to show that (L ∩ Σ?K)↑ is a controllable and weakly
`-stable sublanguage of L. By its definition, (L ∩ Σ?K)↑ is a controllable sublanguage of L.
Also, since (L ∩ Σ?K)↑ ⊆ L ∩ Σ?K ⊆ Σ?K, it follows that (L ∩ Σ?K)↑ is weakly `-stable
with respect to K. Thus (L∩Σ?K)↑ is a controllable and weakly `-stable sublanguage of L.

Next we prove that H ⊆ (L∩Σ?K)↑. Since H is weakly `-stable, it follows that H ⊆ Σ?K;
also, H ⊆ L, hence H ⊆ L ∩ Σ?K. Note that H is controllable also. Thus H is controllable
and is contained in L ∩ Σ?K. Since (L ∩ Σ?K)↑ is the supremal controllable sublanguage
contained in L ∩ Σ?K, it follows that H ⊆ (L ∩ Σ?K)↑. 2

Thus if L is not `-stable with respect to K, but is weakly `-stabilizable with respect to K,
then a minimally restrictive stabilizing supervisor can be constructed so that the behavior
of the closed loop system is given by (L∩Σ?K)↑. Algorithms for constructing the supremal
controllable sublanguages are described in [21, 1, 11].

17

6 Stability of Sequential Behavior

So far we have discussed the stability of the finite behavior of a DEDS. We will show
how the notions of `-stability and `-stabilizability defined above can be easily generalized
to describe the stability of infinite or sequential behaviors of DEDS’s. In this section, we
introduce the notion of ω-stability for formally describing the the notion of eventual sequential
behavior.

In [18, 20, 13, 12, 22] the supervisory control problem for controlling the sequential behav-
ior of a DEDS is studied, and conditions under which a supervisor can be constructed so that
the sequential behavior of the controlled system is equal to some desired sequential behavior
are obtained. As discussed above, such a control problem formulation may lead to synthesis
of a very restrictive supervisor. In some cases, it might suffice to design a supervisor which
would ensure that the sequential behavior of the controlled system is eventually contained in
the desired sequential behavior. So we introduce the notion of the desired eventual sequen-
tial behavior and obtain conditions under which the plant’s sequential behavior is eventually
contained in this sequential behavior. We follow the framework of [18] for addressing the
supervisory control problem of sequential behavior.

Let Σω denote the set of all infinite strings of events belonging to Σ. An infinite or
ω-language is a sublanguage of Σω. Let en ∈ Σ? denote the prefix of size n of the infinite
string e ∈ Σω. A suitable metric can be defined on the space Σω [7]. Given two infinite
strings e1, e2 ∈ Σω, the distance d(e1, e2) between the two infinite strings is defined to be:

d(e1, e2)
def
=

{

1/(n + 1) if en
1 = en

2 and en+1
1 6= en+1

2 (n ∈ N)
0 if e1 = e2

Given a language L ⊆ Σ?, its limit, denoted as L∞, is the ω-language defined as:

L∞ def
= {e ∈ Σω | en ∈ L for infinitely many n ∈ N}

We will use t ≤ s to denote that t ∈ Σ? is a prefix of s ∈ Σ? ∪ Σω. If t is a proper prefix of
s, then it is written as t < s. Given an infinite sequence of strings s1 < s2 < . . . < sn < . . .
with sn ∈ Σ? for each n, there exists a unique infinite string e ∈ Σω such that sn < e for each
n. In this case, the infinite string e is also written as e = limn→∞ sn. Given an ω-language
L ⊆ Σω, its prefix, denoted by prL, is the language:

prL
def
= {s ∈ Σ? | ∃e ∈ L s.t. s < e}

Note that prL = prL, where L denotes the topological closure1 of L in the metric space
(Σω, d) [7]. It can be proved [7] that for a ω-language L ⊆ Σω,

(prL)∞ = L

1The notation L is used to denote topological closure whenever L ⊆ Σ
ω, and the notation L is used to

denote the prefix closure whenever L ⊆ Σ?.

18

With the above preliminary notions we can address the issue of stability of the infinite
behavior of a given DEDS. Let P ≡ (X, Σ, α, x0, Xm) denote the plant. Then as defined
above, Lm(P), L(P) ⊆ Σ? denote its (finite) marked, generated languages respectively. The
ω-language generated by P, denoted by L(P), is defined to be:

L(P)
def
= {e ∈ (L(P))∞ | ∃ infinitely many n ∈ N s.t. α(en, x) ∈ Xm} = (Lm(P))∞

Note that the ω-language L(P) generated by P as defined above is also the ω-language
generated by P viewed as a Büchi automaton [7]. P is said to nonblocking if prL(P) = L(P).
Let S ≡ (Y, Σ, β, y0, Ym) denote the supervisor that controls P by synchronization as defined
above. Then the ω-language generated by the closed loop system P2S is defined to be:

L(P2S)
def
= (L(P2S))∞ ∩ L(P)

Let K ⊆ L(P) be the desired ω-language. It is shown in [18] that a complete, nonblocking
supervisor exists for achieving the desired sequential behavior if and only if K is ω-controllable
with respect to P .

Definition 6.1 An ω-language K ⊆ Σω is said to be ω-controllable with respect to the plant
P if prK is controllable with respect to P , and K is topologically closed with respect to L(P);
i. e.

1. pr(K)Σu ∩ L(P) ⊆ prK, and

2. K ∩ L(P) = K.

It is further shown in [18] that if K is not ω-controllable, but is topologically closed with
respect to L(P), then the supremal ω-controllable sublanguage, denoted by K↑, of K exists2.
Thus the construction of the minimally restrictive supervisor is possible. A closed form
expression for the supremal ω-controllable sublanguage, as well as an efficient algorithm for
computing it, is presented in [13, 12].

Next, let K ⊆ Σω represent the desired eventual sequential behavior of the plant P ≡
(X, Σ, α, x0, Xm). The notion of ω-stability is defined as follows:

Definition 6.2 The plant sequential behavior L(P) is said to be ω-stable with respect to
the desired eventual sequential behavior K if there exists an integer N ∈ N such that
L(P) ⊆ Σ≤NK. L(P) is said to be ω-stabilizable with respect to K if there exists a nonempty
ω-controllable sublanguage H ⊆ L(P) such that H is ω-stable with respect to K.

Let e ∈ Σω be a infinite string and for each n ∈ N , let fn ∈ Σω be such that e = enf .
Then the projection operator Πn : Σω → Σω (n ∈ N) is defined in the following manner:

Πn(e) = fn

2The notation K↑ is used to denote the supremal ω-controllable sublanguage of K ⊆ Σ
ω, and the notation

K
↑ is used to denote the supremal controllable sublanguage of K ⊆ Σ?.

19

In other words, given a infinite string e ∈ Σω, its projection Πn(e) is obtained by deleting its
prefix of size n from it. Thus if L(P) is ω-stable with respect to K, then for each e ∈ L(P)
there exists an integer ne ≤ N such that Πne

(e) ∈ K. In other words, each infinite string
in L(P) after removing a prefix of size at most N matches a infinite string in K. The
ω-language K thus can be thought of to be representing the desired eventual sequential
behavior. If L(P) is not ω-stable but ω-stabilizable with respect to K, then there exists a
nonempty ω-controllable sublanguage H ⊆ L(P) which is ω-stable with respect to K also.
Thus a nonblocking and complete [18] supervisor, that can restrict the sequential behavior
of the plant to H which “stabilizes” to the desired eventual sequential behavior K, can be
constructed.

6.1 Tests for ω-stability and ω-stabilizability

In this subsection we show that under certain assumptions ω-stability can be tested by
performing the test for `-stability. First we define the notion of complete languages which is
useful in the context of studying the stability of infinite behaviors.

Definition 6.3 Consider a language L ⊆ Σ?. A string s ∈ L is said to have an extension in
L if there exists a t ∈ L such that s < t. L is said to be complete3 if for every string s ∈ L,
there exists an extension in L.

Note that a language is complete if and only if a trim SM recognizing it is live (has at
least one transition defined at each of its states) [13]. First we show that `-stability of a
given language with respect to another implies ω-stability of the limit of the given language
with respect to the limit of the other.

Theorem 6.4 Consider L,K ⊆ Σ?. If L is `-stable with respect to K, then L∞ is ω-stable
with respect to K∞.

We prove the following lemma before proving the result of Theorem 6.4.

Lemma 6.5 Consider L ⊆ Σ?. Then for any N ∈ N , (Σ≤NL)∞ = Σ≤NL∞.

Proof: First we show that Σ≤NL∞ ⊆ (Σ≤NL)∞. Pick e ∈ Σ≤NL∞. Then e can be written
as e = enf , where n ≤ N and f ∈ L∞. Thus there exist infinitely many m ∈ N such that
fm ∈ L. Then the strings enfm ∈ Σ≤NL for each m ∈ N . Hence limm→∞ enfm ∈ (Σ≤NL)∞.
Also, since enf 1 < enf 2 < . . . < enfm < . . . < e, it follows that limm→∞ enfm = e; which
shows that e ∈ (Σ≤NL)∞.

Next we show that (Σ≤NL)∞ ⊆ Σ≤NL∞. Pick e ∈ (Σ≤NL)∞. Then there exist infinitely
many n ∈ N such that en ∈ Σ≤NL. Thus each en can be written as en = unvn, where
un ∈ Σ≤N and vn ∈ L. Since the set Σ≤N is finite, it follows that there exists at least one
integer n0 ∈ N such that un0

= un for infinitely many n. Let {nk}k∈N be a subsequence

3Completeness is also defined to be a property of supervisors; here we define it to be a property of
languages. The two definitions are unrelated and not to be confused with.

20

such that un1
= un2

= . . . = unk
= . . . = un0

. Then enk = un0
vnk

for each k ∈ N . Hence
e = limk→∞ enk = un0

limk→∞ vnk
. Since un0

∈ Σ≤N and vnk
∈ L for each k ∈ N , it follows

that e ∈ Σ≤NL∞. 2

Proof (of Theorem 6.4): Since L is `-stable with respect to K, there exists an integer
N ∈ N such that L ⊆ Σ≤NK. Hence, by taking limits on both sides of the last inclusion, we
obtain L∞ ⊆ (Σ≤NK)∞. It then follows from Lemma 6.5 that L∞ ⊆ Σ≤NK∞; which shows
that L∞ is ω-stable with respect to K∞. 2

Next we prove that under certain assumptions the converse of Theorem 6.4 holds.

Theorem 6.6 Consider L,K ⊆ Σ?. Assume that L is complete and K is prefix closed.
Then ω-stability of L∞ with respect to K∞ implies `-stability of L with respect to K.

Before proving the result of Theorem 6.6, we prove the following lemma.

Lemma 6.7 Consider two languages L1, L2 ⊆ Σ?. Assume that L1 is complete and L2 is
closed. Then (L1)

∞ ⊆ (L2)
∞ if and only if L1 ⊆ L2.

Proof: It is clear that L1 ⊆ L2 implies L∞
1 ⊆ L∞

2 . Hence it suffices to show that if
(L1)

∞ ⊆ (L2)
∞, then L1 ⊆ L2. Pick s ∈ L1. Since L1 is complete, there exists a sequence

of strings s1 < s2 < . . . < sn < . . . such that sn ∈ L1 for each n ∈ N and s < s1. Let
e = limn→∞ sn; then e ∈ (L1)

∞. It then follows from the assumption that e ∈ (L2)
∞. Hence

there exist infinitely many n ∈ N such that en ∈ L2. Pick m ∈ N such that s < em. Since
em ∈ L2 and L2 is closed, it follows that s ∈ L2. 2

Proof (of Theorem 6.6): Assume that L∞ is ω-stable with respect to K∞. Then there
exists an integer N ∈ N such that L∞ ⊆ Σ≤NK∞. Thus it follows from Lemma 6.5 that
L∞ ⊆ (Σ≤NK)∞. Note that since Σ≤N is closed, and prefix closure is preserved under
concatenation of languages Σ≤NK is a closed language (by assumption K is closed). Since
L is complete (by assumption) and Σ≤NK is closed, we obtain from Lemma 6.7 that L∞ ⊆
(Σ≤NK)∞ if and only if L ⊆ Σ≤NK. 2

The results of Theorem 6.4 and Theorem 6.6 can be combined to arrive at a test for
ω-stability based on the test for `-stability (Theorem 4.11).

Theorem 6.8 Assume that there exist L,K ⊆ Σ?, where L is complete and K is prefix
closed such that L(P) = L∞ and K = K∞. Then L(P) is ω-stable with respect to K if and
only if L is `-stable with respect to K.

Remark 6.9 Since L(P) = (Lm(P))∞, the plant sequential behavior can always be written
as the limit of a language. Also, Lm(P) is complete if and only if P is live. Thus L(P) can
be written as the limit of a complete language if and only if P is live. On the other hand, the
desired eventual sequential behavior can be written as the limit of a prefix closed language
if and only if it is topologically closed. Thus if P is live and K is topologically closed (i.e.
K = K = (prK)∞), then L(P) is ω-stable with respect to K if and only if Lm(P) is `-stable
with respect to prK.

21

Next we relate the notion of ω-stabilizability to that of ω-stability through the following
theorem.

Theorem 6.10 L(P) is ω-stabilizable with respect to K if and only if L(P)∩Σω
u is nonempty

and ω-stable with respect to K, where Σω
u = (Σ?

u)
∞.

Proof: We first show that L(p) ∩ Σω
u is the infimal ω-controllable sublanguage of L(P),

i.e. it is the sequential behavior of P under the control of maximally restrictive complete
and nonblocking supervisor [18]. Consider the supervisor that disables all the controllable
events in P . Then the behavior of the closed loop system under this control law is given
by L(P) ∩ Σ?

u. Hence the sequential behavior of the closed loop system is given by (L(P) ∩
Σ?

u)
∞∩L(P) = (L(P))∞∩ (Σ?

u)
∞∩L(P) = L(P)∩Σω

u , where the first equality follows from
the fact that L(P), Σ?

u are both closed languages and the second equality follows from the
fact that L(P) ⊆ (L(P))∞ and (Σ?

u)
∞ = Σω

u . Note that the supervisor that disables all the
controllable transitions in P is complete (it never disables any uncontrollable transition) and
nonblocking (since pr(L(P) ∩ Σω

u) = L(P) ∩ Σ?
u). Hence L(P) ∩ Σω

u is ω-controllable [18].
Since it is the sequential behavior under the maximally restrictive complete and nonblocking
control law, if H ⊆ L(P) is any ω-controllable sublanguage of L(P), then L(P) ∩ Σω

u ⊆ H.
Assume then that L(P) is ω-stabilizable with respect to K. Then by the definition of ω-

stabilizability, there exists a nonempty ω-controllable sublanguage H ⊆ L(P) and an integer
N ∈ N such that H ⊆ Σ≤NK. Since L(P) ∩ Σω

u ⊆ H, it follows that L(P) ∩ Σω
u ⊆ Σ≤NK;

which shows that L(P) ∩ Σω
u is ω-stable with respect to K.

Assume next that L(P)∩Σω
u is nonempty and ω-stable with respect to K. Since L(P)∩

Σω
u ⊆ L(P) and is ω-controllable (proved above), it follows that L(P) is ω-stabilizable with

respect to K. 2

Remark 6.11 Note that L(P)∩Σω
u = (Lm(P))∞∩(Σ?

u)
∞ = (Lm(P)∩Σ?

u)
∞, where the last

equality follows from the fact that Σ?
u is prefix closed. Thus, if P is live and K is topologically

closed, then from Theorem 6.8 and Theorem 4.15 it follows that the ω-stabilizability of L(P)
with respect to K is equivalent to `-stabilizability of Lm(P) with respect to prK.

Remark 6.12 A necessary condition for ω-stability is obtained using an equivalence relation
on the space Σω introduced in Appendix B. It is also shown in Appendix B that if a weaker
definition of ω-stability is used the necessary condition obtained in terms of the equivalence
relation is also a sufficient condition.

7 Conclusion

In this paper, we have introduced the notions of stability and stabilizability of DEDS’s
in terms of their behavior. In many situations, since the behavior rather than the states of
the system is observed directly, it is more natural to study the stability of systems in terms
of their behavior. Also, in some cases, it might be desired that the eventual (rather than
the whole) behavior of the system be legal, so it is necessary to define formally the notion

22

of language stability. Earlier works concerning stability of DEDS’s [17, 4, 2] are all based in
terms of the states of the systems and can be viewed as a special case of the work presented
here (refer to Proposition 4.4). The earlier works [17, 4, 2] on stability in terms of states
assume the control to be of static feedback type; however, more general supervisors that
exercise dynamic feedback have been used here for making the systems `-stable.

We have shown that the problem of determining `-stability (`-stabilizability) of a given
language with respect to another language is equivalent to another problem posed in terms
of the reversal of languages (refer to Corollary 4.9) and have provided a solution to this
equivalent problem (refer to Theorem 4.11 and Theorem 4.15). We have also provided an
upper bound to the value of the integer N in the definition of `-stability (`-stabilizability)
using the solution to the equivalent problem (refer to Corollary 4.9). Next we have presented
a weaker notion of language stability in which no uniform upper bound on the length of the
prefix to be removed from a string in a language (for it to `-stable with respect to another
language) exists and have provided the construction of the minimally restrictive supervisor
[10, 19, 21, 11] to `-stabilize a given language in this weaker sense of language stability.

The notion of `-stability and `-stabilizability is then generalized to describe the notion of
stability of sequential behavior of DEDS’s and the notions of ω-stability and ω-stabilizability
is introduced in this context. We have introduced an equivalence relation on the space of
infinite strings and have obtained a necessary condition of ω-stability in terms of this relation.
A necessary and sufficient condition for ω-stability is obtained in terms of `-stability, which
is used to arrive at tests for ω-stability and ω-stabilizability.

References

[1] R. D. Brandt, V. K. Garg, R. Kumar, F. Lin, S. I. Marcus, and W. M. Wonham.
Formulas for calculating supremal controllable and normal sublanguages. Systems and
Control Letters, 15(8):111–117, 1990.

[2] Y. Brave and M. Heymann. On stabilization of discrete event processes. Technical
report, Department of Electrical Engineering, Technion-Israel Institute of Technology,
Hafia 32000, Israel, 1989.

[3] Y. Brave and M. Heymann. On optimal attraction in discrete event processes. Tech-
nical Report CIS-9019, Department of Compter Science, Technion-Israel Institute of
Technology, Hafia 32000, Israel, 1990.

[4] Y. Brave and M. Heymann. On stabilization of discrete event processes. International
Journal of Control, 51(5):1101–1117, 1990.

[5] H. Cho and S. I. Marcus. On supremal languages of class of sublanguages that arise in
supervisor synthesis problems with partial observations. Mathematics of Control Signals
and Systems, 2:47–69, 1989.

23

[6] H. Cho and S. I. Marcus. Supremal and maximal sublanguages arising in supervisor
synthesis problems with partial observations. Mathematical Systems Theory, 22:177–
211, 1989.

[7] S. Eilenberg. Automata, Languages, and Machines: Volume A. Academic Press, New
York, NY, 1974.

[8] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, MA, 1979.

[9] R. Kumar. Supervisory Synthesis Techniques for Discrete Event Dynamical Systems:
Transition Model Based Approach. PhD thesis, Department of Electrical and Computer
Engineering, University of Texas at Austin, 1991.

[10] R. Kumar, V. K. Garg, and S. I. Marcus. Supervisory control of discrete event sys-
tems: supremal controllable and observable languages. In Proceedings of 1989 Allerton
Conference, pages 501–510, Allerton, IL, September 1989.

[11] R. Kumar, V. K. Garg, and S. I. Marcus. On controllability and normality of discrete
event dynamical systems. Systems and Control Letters, 17(3):157–168, 1991.

[12] R. Kumar, V. K. Garg, and S. I. Marcus. On ω-controllability and ω-normality of deds.
In Proceedings of 1991 ACC, pages 2905–2910, Boston, MA, June 1991.

[13] R. Kumar, V. K. Garg, and S. I. Marcus. On supervisory control of sequential behaviors.
IEEE Transactions on Automatic Control, 37(12):1978–1985, December 1992.

[14] S. Lafortune and E. Chen. On the infimal closed and controllable superlanguage of a
given language. IEEE Transactions on Automatic Control, 35(4):398–404, 1990.

[15] C. M. Ozveren and A. S. Willsky. Output stabilizability of discrete event dynamical
systems. IEEE Transactions on Automatic Control, 36(8):925–935, 1991.

[16] C. M. Ozveren and A. S. Willsky. Tracking and restrictability in discrete event dynamical
systems. SIAM Journal of Control and Optimization, 30(6):1423–1446, 1992.

[17] C. M. Ozveren, A. S. Willsky, and P. J. Antsaklis. Stability and stabilizability of discrete
event dynamical systems. Journal of ACM, 38(3):730–752, July 1991.

[18] P. J. Ramadge. Some tractable supervisory control problems for discrete event systems
modeled by buchi automata. IEEE Transactions on Automatic Control, 34(1):10–19,
1989.

[19] P. J. Ramadge and W. M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal of Control and Optimization, 25(1):206–230, 1987.

24

[20] J. G. Thistle and W. M. Wonham. On the synthesis of supervisors subject to ω-language
specifications. In Proceedings of 22nd Annual Conference on Information Sciences and
Systems, pages 440–444, Princeton, NJ, 1988.

[21] W. M. Wonham and P. J. Ramadge. On the supremal controllable sublanguage of a
given language. SIAM Journal of Control and Optimization, 25(3):637–659, 1987.

[22] S. Young, D. Spanjol, and V. K. Garg. Control of discrete event systems modeled with
deterministic Buchi automata. In Proceedings of 1992 American Control Conference,
pages 2809–2813, Chicago, IL, 1992.

A Algorithm for constructing Ω(X̂) and Λ(X̂)

As before, let P
def
= (X, Σ, α, x0, Xm) be the plant and X̂ ⊆ X be the set of legal states.

The following algorithm can be used to compute Ω(X̂) (we assume that the plant P has
finite number of states so that the algorithm terminates in finite number of steps):

Algorithm A.1

1. Initiation step:
Set Ω−1(X̂) = ∅, Ω0(X̂) = X̂, and k = 0.

2. Iteration step:

(a) Let Xk ⊆ X be the set of states from which Ωk(X̂) − Ωk−1(X̂) can be reached in
a single transition, i. e.

Xk = {x ∈ X | ∃σ ∈ Σ s.t. α(σ, x) ∈ Ωk(X̂) − Ωk−1(X̂)}

Determine the set Xk by considering the SM P−1 def
= (X, Σ, α−1, x0, Xm), where

α−1(σ, x2)
def
= {x1 ∈ X | α(σ, x1) = x2} (P−1 is the SM obtained by reversing

all the transitions of P), and by finding the states that can be reached from
Ωk(X̂) − Ωk−1(X̂) by a single transition in P−1.

(b) Consider x ∈ Xk. If all the transitions from x lead to Ωk(X̂), then Ωk+1(X̂) =
Ωk(X̂)∪ {x}. Repeat this for all x ∈ Xk. Thus, if all the transitions from a state
x ∈ Xk lead to states in Ωk(X̂), then x is a strongly attractable state, i. e.

Ωk+1(X̂) = Ωk(X̂) ∪ {x ∈ Xk | α(σ, x) ∈ Ωk(X̂) for all σ ∈ Σ(P)(x)}

where Σ(P)(x) ⊆ Σ is the set of all the transitions that are defined in the state
x ∈ X in P and is given by, Σ(P)(x) = {σ ∈ Σ | α(σ, x)!}.

3. Termination step:
If Ωk+1(X̂) = Ωk(X̂), then stop and set Ω(X̂) = Ωk(X̂); else set k = k + 1 and go to
step 2.

25

Theorem A.2 Algorithm A.1 computes the region of strong attraction Ω(X̂) of the set of
legal states X̂ ⊆ X.

Proof: The proof that the Algorithm A.1 computes Ω(X̂) is based on the following two
facts:

Firstly, the above algorithm computes Ω(X̂) if in step 2, Ωk(X̂) − Ωk−1(X̂) is replaced
by Ωk(X̂) (for proof refer to Proposition 2.7 of [17]).

x
σ ∈ Σ2(x)

σ ∈ Σ1(x)

Ωk(X̂)

Ωk+1(X̂)

X̂

Figure 4: Constructing region of strong attraction

Secondly, at the end of the kth iteration, to determine the states that might be strongly
attractable, we just need to consider the states that have transitions leading into the set
Ωk+1(X̂) − Ωk(X̂) (rather than into the set Ωk+1(X̂)) in P , so that the replacement as
described above is justified (see Figure 4). In other words, we must show that at the end
of kth iteration, if all the transitions in Σ(P)(x) from the state x ∈ X − Ωk+1(X̂) lead to
the set Ωk+1(X̂), then there exists σ ∈ Σ(x) such that α(σ, x) ∈ Ωk+1(X̂) − Ωk(X̂). To
show this, we first partition Σ(P)(x) into the set Σ1(P)(x) ∪ Σ2(P)(x), the set Σ1(P)(x) of
transitions leading to Ωk(X̂) and the set Σ2(P)(x) of transitions leading to Ωk+1(X̂)−Ωk(X̂).
Then it is enough to show that the set Σ2(x) is nonempty. Assume that it is empty; then
x ∈ Ω(Ωk(X̂)) and therefore it belongs to the set Ωk+1(X̂), which is contradictory to the
fact that x ∈ X − Ωk+1(X̂). This proves the second claim. 2

Remark A.3 In order to determine the region of weak attraction Λ(X̂) of X̂, we replace
step 2(b) in the iteration step of the previous algorithm by the following step 2(b′):

2(b′) Consider x ∈ Xk. If all the uncontrollable transitions from x lead to Ωk(X̂), then
Ωk+1(X̂) = Ωk(X̂) ∪ {x}, i. e.

Ωk+1(X̂) = Ωk(X̂) ∪ {x ∈ Xk | α(σ, x) ∈ Ωk(X̂) for all σ ∈ Σu(P)(x)},

26

where Σu(P)(x) = Σ(P)(x) ∩ Σu.

This can be tested by considering the transitions in P |Σu
(P with all its controllable

transitions deleted). Formally, P |Σu

def
= (X, Σu, α |Σu×X , x0, Xm).

This would result in the construction of the region of weak attraction Λ(X̂) of X̂. Notice
that with an abuse of notation we have used Ωk(X̂) in the algorithm for determining Λk(X̂).

Theorem A.4 The time complexity of Algorithm A.1 for constructing Ω(X̂) and Λ(X̂) is
O(|Σ|n), where |Σ| denotes the number of events in the event set Σ and n is the number of
states in P.

Proof: Assume that at the end of kth iteration, the number of transitions (of length one)
leading into the set Ωk+1(X̂) − Ωk(X̂) from X − Ωk+1(X̂) is ek. We show that step 2 of the
algorithm can be computed in O(ek) time, as follows.

Firstly, the states in the set Xk can be computed in O(ek) time, for in order to determine
the states reachable from the states in the set Ωk+1(X̂) − Ωk(X̂) by a single transition in
P−1, we need consider only the ek transitions. Secondly, since there could be at most ek

such states, the states in the set Ωk+1(X̂) can also be computed in O(ek) time. This is true
because to test whether a state x ∈ Xk belongs to Ωk+1(X̂) requires only O(|Σ|) time which
is constant.

Since the sets Ωk+1(X̂) − Ωk(X̂) for each value of k are all disjoint, the transitions (of
length one) leading into them from X − Ωk+1(X̂) are also all disjoint. Hence the computa-
tional complexity of Algorithm A.1 is of order O(

∑

k ek) = O(e), where e is the number of
transitions in P. Since P is deterministic, e ≤ |Σ|n, hence the theorem follows. Similarly, the
complexity of the algorithm for determining Λ(X̂) is also O(|Σ|n). 2

This is significant improvement over the computational complexity of the algorithm given
in [4, 2], which is O(n2). Notice that our algorithm requires the construction of the SM P−1

which could be nondeterministic, but has same number of transitions as P.
The above algorithm can also be used to construct the prestable and prestabilizable states

of a given invariant state set as defined in [17]. In fact, the set of prestable states and the set
of prestabilizable states with respect to a given invariant or legal set of states is the same as
Ω(X̂) and Λ(X̂) respectively, where X̂ denotes the set of invariant states. The computational
complexity of the algorithms provided in [17] is also quadratic in the number of states of P.

B An Equivalence Relation on Σω and ω-Stability

A necessary condition for ω-stability of a given ω-language with respect to another can be
obtained in terms of an equivalence relation defined on the space Σω. In this appendix we
define this relation and show its close relation to the notion of ω-stability.

Definition B.1 For e1, e2 ∈ Σω, e1
∼= e2 if and only if there exist m,n ∈ N such that

Πm(e1) = Πn(e2).

27

Note that for each n ∈ N , Πn : Σω → Σω is the map such that for e ∈ Σω, Πn(e) is the
infinite string obtained by removing the prefix of length n from e.

Theorem B.2 The relation ∼= as defined is an equivalence relation.

Proof: We need to show that the relation ∼= is reflexive, symmetric and transitive.
It is clear that for any vector e1 ∈ Σω, e1

∼= e1, i.e. ∼= is reflexive. Also, if e1
∼= e2, then

clearly e2
∼= e1 for any two vectors e1, e2 ∈ Σω, i.e. ∼= is symmetric. It remains to show that

the relation ∼= is transitive. Pick any e1, e2, e3 ∈ Σω. We will show that e1
∼= e2 and e2

∼= e3

implies e1
∼= e3. Let m,n, p, q ∈ N be such that Πm(e1) = Πn(e2) and Πp(e2) = Πq(e3). We

may have either n ≤ p or p ≤ n. If n ≤ p, then Πm+(p−n)(e1) = Πq(e3), i.e. e1
∼= e3; if p ≤ n,

then Πm(e1) = Πq+(n−p)(e3), i.e. e1
∼= e3. 2

A necessary condition for ω-stability can be obtained using the equivalence relation de-
fined above.

Proposition B.3 If plant sequential behavior L(P) is ω-stable with respect to the desired
eventual behavior K, then for each e ∈ L(P), there exists e′ ∈ K such that e ∼= e′.

Proof: Assume L(P) is ω-stable with respect to K, i.e. there exist N ∈ N such that
L(P) ⊆ Σ≤NK. Then given e ∈ L(P), there exists n ≤ N and e′ ∈ K such that e = ene′.
Thus Πn(e) = e′, i.e. e ∼= e′. 2

Remark B.4 Proposition B.3 gives a necessary condition for ω-stablity. This condition will
be a necessary as well as sufficient condition if a weaker definition of ω-stability is used. Let
the projection operator be extended to the space 2Σω

in the obvious manner, i.e. for any
n ∈ N , Πn : 2Σω

→ 2Σω

is defined to be:

Πn(L) = {e ∈ Σω | ∃e′ ∈ L s.t. Πn(e′) = e}

where L ⊆ Σω. We use Π?(·) to denote the operator
⋃

n∈N Πn(·). The plant sequential
behavior L(P) is said to be weakly ω-stable with respect to the desired eventual sequential
behavior K if L(P) ⊆ Σ?Π?(K). Thus if L(P) is weakly ω-stable with respect to K, then for
every e ∈ L(P) there exist n,m ∈ N and e′ ∈ K such that Πn(e) = Πm(e′). It is clear that
ω-stability implies weak ω-stability. It can easily be verified that L(P) is weakly ω-stable
with respect to K if and only if given any e ∈ L(P) there exists e′ ∈ K such that e ∼= e′.

28

