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We study an optical response of a system of two parallel close metallic cylinders having nanoscale dimensions.
Surface plasmon excitation in the gap between the cylinders is specifically analyzed. In particular, resonance
frequencies and field enhancement were investigated as functions of geometrical characteristics of the system
and ohmic losses in the metal. The results of numerical simulations were systematically compared with the
analytical theory, obtained in the quasi-static limit. The analytical method was generalized in order to take into
account the retardation effects. We also present the physical qualitative picture of the plasmon modes, which is
validated by numerical simulations and analytical theory. © 2012 Optical Society of America
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1. INTRODUCTION
Localized surface plasmon excitations in metal-dielectric sys-
tems of subwavelength size is a topic under intensive study
during the last decade. Fabrication techniques of wire-grid
polarizers [1,2], nanoantennas [3–7], and arrays of metallic
particles [8–10] are rapidly improving. Optical properties of
aggregates of metallic grains are very different from those
of the separate grains. Field refraction by such systems pos-
sesses typical features, in particular a strong field enhance-
ment in the gaps between closely located metallic particles
leading to an increase of scattering and absorption in compar-
ison with those for single grains. The resonance frequency of
surface plasmons in the systems depends on both particle
sizes and interparticle distances. It is red-shifted for modes
with electric field polarization directed across the gaps be-
tween the grains and blue-shifted in the opposite case; see,
e.g., experimental works [5,6] and numerical investigations
[11–13]. The electric field enhancement inside the gaps under
the resonance conditions can reach sufficient values, and one
can use the effect to achieve Raman detection of single mo-
lecules placed into the gap [14,15].

One encounters difficulties trying to describe plasmon
modes analytically since an exact solution is only possible
for systems with very simple geometry. The geometry should
allow us to use an appropriate coordinate system for which
separation of variables in the Helmholtz equation is possible
[16]. Among the systems are spherical metal particles [17], sur-
face plasmon propagation in plane metal films [18], dielectric
gaps in metallic cladding [19], and along nanowires [20].
Although the solutions for these systems are quite simple, they
yield basic understanding of the fundamentals of the surface
plasmon physics at nanoscales.

The problem of two particles (in particular cylinders) in the
external field can be approximately solved using dipole-dipole

approximation if the interparticle distance is much larger than
their sizes. When the interparticle distance gets smaller, this
approximation becomes inappropriate even for qualitative
description of the system, and one should use multipole-
multipole expansion technique [21]. There are some works
that try to employ the multipole-multipole expansion techni-
que in order to approach a system of two close metallic par-
ticles of more complex form [22] or a system of several
particles [23] or metamaterials [24,25], which is associated
with the calculation of the formally infinite series. The method
has advantages for numerical simulation, whereas it does not
allow us to establish qualitative properties of the plasmon
modes in the systems, in particular their scaling behavior
on the geometry of the system.

The problem can be simplified at scales less than the
wavelength. In this case, the Helmholtz equation is reduced
to the Laplace equation since retardation effects are negligi-
ble. This fact allows one to analytically solve the problem
about surface plasmon mode structure for more complex sys-
tems such as two close spherical grains [26–28] and two close
cylinders with circular cross section [29]. To analyze solu-
tions, it is reasonable first to consider a qualitative picture
[26,29] that describes the plasmon modes in the systems.
The qualitative picture can be constructed applying the solu-
tion for surface plasmon propagation in a thin dielectric gap
[19] to the gap between two granules.

In this paper, we investigate scattering of light by a system
of two close parallel metallic cylinders. We sequentially com-
pare the results of numerical simulations of the electro-
magnetic near field distribution with predictions of the theory
[29] developed for the quasi-static (long wavelength) limit.
Following [29], we present the qualitative picture of the sur-
face plasmon resonance in the system in more details, and
show its agreement with both analytical (in quasi-static limit)
and numerical solution of Maxwell’s equations.
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One of the main flaws of the method employed in [29] is that
it does not account for retardation effects, which means that
its applicability diminishes with the increase of the system
size. Moreover, it does not account for the radiation losses,
which could be significant even for the small system, provided
that the ohmic losses are small enough. In this paper, and it is
its main point, we present the numerical results that on the
one hand account for the retardation effects, and thus are ap-
plicable for the systems of any size and material constants,
and on the other hand extend the analytical methods of [29]
to account for the radiation losses explicitly. We verify the
accuracy of our numerical calculations by systematically com-
paring their results to analytical ones in the appropriate limit
of small system size. We also present the results of numerical
simulations for the silver cylinders in the experimentally inter-
esting region of frequencies and for realistic sizes (up to
100 nm), which is slightly beyond the scope of the anal-
ytical quasi-stationary method, which describes the picture
only qualitatively. Silver is chosen since it is widely used in
experimental works in nano-optics (see, e.g., [9,30]) due to
its low ohmic losses.

2. PROBLEM FORMULATION
We examine scattering of an electro-magnetic plane wave by
two close metallic cylinders under the conditions of surface
plasmonic resonance. The size of the cylinders in cross-plane
is assumed to be of the order or less than the wavelength.
Figure 1 illustrates the system of two cylinders with circular
cross sections together with the Cartesian coordinate system
that we operate. The radii of both cylinders are equal to a, and
the width of the gap between the cylinders is δ. We consider a
particular case of TM-wave when the electric field of the in-
cident wave is polarized along the line connecting the cylin-
ders’ axes. Such a choice is made because surface plasmon
modes with red-shifted resonance frequencies and high local
enhancement of the electric field in the gap between the cy-
linders [29] are achieved for this polarization only. The red
shift corresponds to a high negative value of the dielectric
constants contrast (permittivity ratio) ε � εm∕εd, where εm
and εd are the permittivities of the metal and the surrounding
dielectric, respectively.

The complete system of Maxwell’s equations can be re-
duced to the wave equation on the only nonzero magnetic
field Z-component H,

div
1

ε�r� gradH � ω2

c2
H � 0; (1)

where ω is the frequency of the incident wave. We assume the
magnetic permeability μ to be unity both in metal and in sur-
rounded space. The electric field is orthogonal to OZ-axis;
thus the problem becomes effectively two-dimensional.
The electric field distribution can be restored as Eα � �ic∕
ωε�r��ηαβ∂βH, where ηαβ is two-dimensional antisymmetric
tensor, ηxy � 1, and α, β runs values x, y.

The numerical simulations were performed with commer-
cially available software JCMsuite [31]. The software solves
Maxwell’s equations based on a finite element method
(FEM). It gives high advantages in simulations of structures
with small curved elements. In particular, the package
JCMsuite showed very good results in a benchmark simula-
tion of plasmonic nanoantennas [32], which are similar to
our structure. The simulations are challenging because of
the narrow gap between cylinders. The studied system is un-
der resonance condition and exhibits large field enhancement,
so field distribution based adaptive meshing should be ap-
plied. An optimal number of refinement steps was found,
as well as a number of points on circuits in the vicinity of
the gap for the manual mesh specification. A solution conver-
gence based on posteriori error estimation was examined in
the same way as in [31] and [33].

For the modes under consideration, the magnetic field H is
symmetric with respect to the axis OX of the system, and the
electric field lines are normal to the axis. This fact allowed us
to choose the computational domain that contains one-half of
the system shown in Fig. 1 and perfect metal boundary con-
ditions at the OX-axis.

Setting permittivity of surrounding medium εd � 1 in nu-
merical simulations, we suppose that permittivity ratio is
equal to complex metal permittivity and can be expressed
as ε � ε0 � iε00; i.e., ε0 is the real part of the permittivity and
ε00 is the imaginary part.

In the following, we use the term “model”metal. By this we
mean that we can arbitrarily assign any values to its permit-
tivity at any wavelength in order to illustrate the dependence
of certain quantities (e.g., resonance conditions, field en-
hancement factor) on the parameters of the system. Having
understood the general properties of plasmon modes in such
systems, we turn to investigation of the optical properties on
silver cylinders. For silver, both the real ε0 and the imaginary
ε00 parts of the dielectric permittivity are functions of the
wavelength λ, which dependencies can be extracted from [34].

3. ANALYTIC SOLUTION
If the cylinder radius a is much less than the wavelength in the
outer space,

�����εdp
ka ≪ 1, and the skin layer in the metal,���������

jεmj
p

ka ≪ 1, with k being the free space wavenumber, it is
possible to develop an analytical solution. One can neglect re-
tardation effects and assume ω � 0 in Eq. (1), thus describing
the system in the quasi-static approximation as a pair of cy-
linders in a homogenous external electric field. The solution
of such a problem depends on frequency implicitly via metal
permittivity ε�ω�. This description is valid at distances close to
the system, r ≪ λ∕ �����εdp

.
It is more convenient to use the electric field potential Φ

instead of the magnetic field H in this approximation. The
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Fig. 1. (Color online) Two close cylinders, coordinate system and
field polarization.
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electric field is E � −gradΦ in the case. The reason is that the
qualitative physical picture of the surface plasmon oscillations
has clear explanation in terms of the potential Φ. Maxwell’s
equations are reduced to quasi-static equation

div�ε�r�gradΦ� � 0 (2)

in the vicinity of the cylinders. Equation (2) reduces to the
Laplace equation inside and outside the cylinders: ΔΦ � 0.
The boundary conditions are the continuity of the potential
and normal component of the electric displacement ε�r�∂nΦ.
The potential should tend to unperturbed external field poten-
tial far from the system; thus Φ → −E0y when r ≫ a, where
E0 is the electric field of the incident wave. Note here that the
symmetry of the external field potential −E0y in respect to
OXZ-plane corresponds to the symmetry of potential in sur-
face plasmons, which are realized at high negative permittivity
ratio ε.

Equation (2) does not explicitly contain dependence on the
frequency. The dependence of the scattering properties of the
system stems from the dependence of the metal permittivity
on the frequency. Thus, the most dependencies presented in
this paper are given in terms of the real part ε0 of the metal
permittivity. Knowing dispersion of permittivity for a given
metal, one can rewrite all the dependencies in terms of fre-
quency. Here we note that the plots are not changed drama-
tically in this case, since the dependence of the metal
permittivity is usually monotonic in the frequency domain un-
der consideration.

In order to solve the above stated problem, we use the
so-called bipolar coordinates system: two dimensionless co-
ordinates ξ and η are related to the Cartesian coordinates
as follows:

x � a sinh ξ0 sin η
cosh ξ − cos η ; y � a sinh ξ0 sinh ξ

cosh ξ − cos η . (3)

The lines ξ � �const are the pairs of circles situated symme-
trically in respect to OX -axis (see Fig. 1). By definition,
ξ0 corresponds to the cylinder surfaces; that is,
sinh2�ξ0∕2� � δ∕�4a�. Reference system transformation (3)
is a conformal map. The Laplace operator in bipolar coordi-
nates is given by the following expression:

∇2 ≡
1

h2�ξ; η�

�
∂2

∂ξ2 �
∂2

∂η2
�
; (4)

where h � a sinh ξ0∕�cosh ξ − cos η� is the scaling function.
The partial solutions of the Laplace equation can be written

as e�nξ cos nη or e�nξ sin nη in separated variables. In order
to solve the problem of two cylinders in the external field, one
has to expand the potential in terms of these partial solutions.
Using the symmetry, we can write

Φin � E0a
X∞
0

Ane−nξ cos nη; ξ > 0; (5)

Φout;ind � E0a
X∞
1

Bn sinh nξ cos nη; (6)

where Φin is the potential inside the cylinders and Φout;ind

is the induced part of the potential outside the cylinders.

Coefficients An and Bn are to be found from the boundary
conditions.

Now let us expand the potential of the external field Φ0 ≡
−E0y in terms of partial solutions of the Laplace equation.
Simple but cumbersome calculations give

Φ0 � −signξE0a sinh ξ0

 X�∞

n�1

2e−njξj cos nη� 1

!
: (7)

The solution of the problem can be written explicitly (n ≥ 1)

Bn � −
2 sinh ξ0�1 − ε�e−nξ0

sinh nξ0�ε� coth nξ0�
; An

� −
2 sinh ξ0enξ0

sinh nξ0�ε� coth nξ0�
: (8)

For n � 0, the coefficients B0 � 0, A0 � − sinh ξ0.
It follows from Eq. (8) that the resonance occurs when

permittivity contrast ε takes values

εn � − coth nξ0: (9)

Expression (6) allows one to calculate the amplitude of
the electric field. Explicit expression for electric field compo-
nents reads

Eind
x � �sinh ξ sin η ∂

∂ξ −
�
1 − cosh ξ cos η� ∂

∂η

� Φind;out

a sinh ξ0
;

(10)

Eind
y � −

�
�1 − cosh ξ cos η� ∂

∂ξ� sinh ξ sin η ∂

∂η

� Φind;out

a sinh ξ0
.

(11)

In what follows, we use these expressions to evaluate
the electric field spatial distribution in the vicinity of the
cylinders.

4. RESULTS FOR THE LIMIT OF CLOSE
CYLINDERS
In this section, we analyze the limit of two close cylinders,
when the width δ of the gap between the cylinders is small
compared to the cylinder radius a; i.e., δ ≪ a. The condition
means that the dimensionless parameter ξ0 ≈

��������
δ∕a

p
≪ 1 in

Eq. (3).
The resonance condition (9) becomes

εres � −
1
n

��������
a∕δ

p
(12)

with the limit n≲
��������
a∕δ

p
. The result can be qualitatively

explained as follows. The resonance condition enables the ex-
istence of standing surface plasmon waves in the flat region of
the gap, which has the approximate length∼

������
aδ

p
[19]. This is a

general point, which is valid in the case of two close metal
spheres as well [26,27]. Expression (12) is valid until the
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retardation effects become important at the scale ∼
������
aδ

p
; thus

the applicability condition is
������εm

p
k
������
aδ

p
≪ 1.

Numerical simulations results for positions of the reso-
nances are shown on Fig. 2 for two different levels of ohmic
losses in metal. One can see maxima, which correspond to the
resonances (9). The dependence of the position of the first
resonance on the geometrical parameters of the system is
plotted on Fig. 3; expression coth ξ0 tends to �a∕δ�1∕2 at small
gap width.

We performed numerical simulations for silver cylinders
using experimental values of permittivity [34] for silver. We
chose the size of the system to be close and slightly below
that experimentally achieved (see, e.g., [3]). Resonance per-
mittivity (its real part) ratio as the function of geometrical
parameters of the system is plotted in Fig. 3. Electric field en-
hancement in the center of the gap between the cylinders as a
function of incident wavelength is plotted in Figs. 4 and 5. In
Fig. 4, all curves correspond to the same value of the gap
width δ � 3 nm. In Fig. 5, all curves excepting that for
a � 15 nm, δ � 1 nm correspond to the same value of the ra-
tio δ∕a � 0, 1. When comparing the plots from these figures
with Fig. 2, one should bear in mind that the absolute value of
the real part jε0j of the dielectric permittivity of silver is a
monotonically increasing function of the wavelength λ. One
can see that at most only the first two distinct resonance
peaks can be observed for silver cylinders, due to the pre-
sence of ohmic losses that lead to broadening and overlapping
of all the rest peaks. Total losses increase with the size of the
system, due to increased radiation intensity. In Fig. 5, the local
minimum near 430 nm and 400 nm of the enhancement factor
in the case of cylinders with radii 100 nm and 200 nm, corre-
spondingly, should be ascribed to retardation effects. The
same concerns the local minimum near 500 nm for the curve
corresponding to a � 120 nm in Fig. 4. For thinner cylinders,
retardation does not lead to any qualitative effects. In fact, the
form of the curve E2

c∕E2
0 as a function of λ is independent of

the absolute values of the cylinder radii a and the gap thick-
ness δ in the quasi-static limit. It is a function of the ratio a∕δ
(or the parameter ξ0) only. This can be perceived from the
general properties of the Laplace equation, which solutions
do not change after rescaling of the whole system. The curves
are shifted to lower values of E2

c∕E2
0 for large values of the

cylinders’ radii due to radiation losses, the relative importance
of which decreases with the wavelength λ [see Eq. (17)
below].

Now let us examine in detail the enhancement of the elec-
tric field in the gap when the real part of permittivity contrast
ε0 is close to the first resonance position ε1 � −

��������
a∕δ

p
. One can

see that in the vicinity of the resonance, the contribution from
the first harmonics in Eq. (6) is much larger than those from
all the rest. It follows from the symmetry of the problem that
electric field on the OXZ-plane is directed normal to the plane
and is equal to

Ey � 4�a∕δ�E0

ε − ε1
x2∕aδ − 1

��x2∕aδ�2 � 1�2 ; (13)

where we have taken into account the fact that δ ≪ a. This
expression is valid provided kx ≪ 1. Electric field changes
its sign at x � l, where

l �
������
aδ

p
; (14)

and this length should be interpreted as the mode size, i.e.,
wavelength of plasmon in flat dielectric gap with thickness
δ between two bulk metal media [19].
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Fig. 2. Numerical simulation results for electric field enhancement in
the center of the gap between the cylinders as a function of real part ε0
of model metal permittivity. The wavelength is λ � 2 μm, the radius of
the cylinders is a � 50 nm, and the gap width is δ � 2 nm.
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the cylinders for main resonance, n � 1. It was taken a � 50 nm,
ε00 � 0.6, and λ � 2 μm in numerical simulations for model metal.
For silver, a � 15 nm was taken.
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Fig. 4. (Color online) Numerical simulation results for electric field
enhancement in the center of the gap for silver cylinders as a function
of wavelength for constant width gap δ � 3 nm. Compare with Fig. 2.
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Numerical simulation results for the mode size as a function
of geometrical parameters of the system are shown in Fig. 6.
The expression (15) is consistent with our qualitative
explanation (12) and is valid under the same condition������εm
p

k
������
aδ

p
≪ 1.

It follows from Eq. (13) that the field at the center of the
gap is

Ec � −
4

sinh2ξ0
Ec

ε − ε1
� −

4a
δ

E0

ε − ε1
. (15)

The first representation in Eq. (15) is written for general case,
whereas the second one is valid for the limit of closely located
cylinders. At the resonance, i.e., real part ε0 � ε1, Eq. (15) is
reduced to Ec � −4E0�a∕δ�∕ε00. The field enhancement at the
resonance as a function of imaginary part of the permittivity
contrast is shown in Fig. 7. The deviation of the enhancement
factor in numerical simulations from the analytical prediction
(15) at small ε00 is due to radiation losses that become impor-
tant for these values of ε00, whereas law (15) accounts for oh-
mic losses in metal only. The radiation losses are determined
mainly by the dipole radiation, since the size of the system is
much less than the wavelength. The dipole moment of the

system (per unit length) d ∼ aδEc can be extracted from far
asymptotics of the electric field (13). Radiation losses per unit
length can be estimated as I ∼ ω3d2∕c2. The ohmic losses in
metal can be estimated by multiplying the dissipation ratio
per unit volume ∼ε00�Ec∕ε0�2 by the volume, occupied by the
field ∼aδ. Thus the dissipation rate (per unit length of cylin-
ders) is estimated as Q ∼ ε00E2

cδ2. Expression (15) is valid
provided I ≪ Q, that is while ε00 ≫ �ka�2.

The field enhancement at the resonance in the gap between
the cylinders as a function of geometrical parameters is
plotted in Fig. 8. For model metal, we assume a wavelength
of λ � μm, which means that the radiation losses are small
compared to the ohmic ones. For silver cylinders, the devia-
tion of the enhancement factor from law (15) is substantial.
This is due to the fact that wavelength at the resonance
frequency is not well above the size of the system.

At scales x ≫
������
aδ

p
, expression (13) gives the quadratic

decay law of the electric field as a function of coordinate

Ey � −
aδ
x2

Ec: �16�

300 400 500 600 700 800
10

0

10
1

10
2

10
3

10
4

wavelength, nm

E
c2 /E

02

a=10nm, δ=1nm
a=15nm, δ=1.5nm
a=30nm, δ=3nm
a=100nm, δ=10nm
a=200nm, δ=20nm
a=15nm, δ=1nm

Fig. 5. (Color online) Numerical simulations results for electric field
enhancement in the center of the gap for silver cylinders as a function
of wavelength for constant ratio a∕δ � 10 (solid lines). Dashed line is
given for comparison and corresponds to different ratio a∕δ � 15.
Compare with Fig. 2.
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The qualitative explanation of this law for scales
������
aδ

p
≪ x ≪

a is as follows. The potential difference ΔΦ between the sur-
faces of the cylinders is constant at the scales, since the sur-
face plasmon wavelength in the gap of thickness y is much
larger than the typical x. Thus Ey � ΔΦ∕Δy, where Δy ≈
x2∕a is the gap width at given x. The potential difference
can be related to the electric field strength Ec at the center
of the gap through the condition that the full surface charge
on each cylinder is zero. The surface charge has different
signs inside the flat region at distances x < l and outside
the region (the size of the mode). The electric field can be as-
sumed to be uniform in Y -direction across the gap; thus
Ecl ∼ −

R
a
l dxΔΦ∕Δy. The value of this integral is mostly

formed at lower limit, and finally one finds ΔΦ ∼ −Ecδ. To
check the decay law (16) in numerical experiment, we chose
an extremely small value of the gap to provide a large differ-
ence between scales l and a; the result is presented in Fig. 9.

Decaying law (16) for larger scales, x ≫ a, corresponds to
field of dipole d � −2a2E0∕�ε − ε1�; the asymptotics is valid for
any value of the ratio δ∕a. Note that the dipole moment is
formed at scales x ∼ a, and the minor part of the total surface
charge is involved in the process. In fact, the dipole moment
can be estimated as the integral over the region l ≪ x ≪ a,
d ∼

R
dxΔΦ. The integral is formed at distances x ∼ a, where

only the small part
��������
δ∕a

p
of surface charge is located. The in-

ner region does not give feasible contribution in d due to the
small charge separation length.

One can improve Eq. (15) by taking into account the radia-
tion losses. As a result, the resonance value of dielectric per-
mittivity ε1 [Eq. (9)] achieves imaginary negative contribution
iε001, ε001 < 0. The correction can be extracted from the condition
that dipole radiation is equal to power supplied to the system
from the external electric field provided Ohmic losses are
zero, I � W . The intensity of the radiation is I � �πck3∕
4�jd2j, and the power supplied to the system isW � ωE0Im�d�∕
2, where E0 is assumed to be real, and Im�d� is the imaginary
part of the dipole moment induced in the system. At reso-
nance conditions, the dipole moment is pure imaginary; thus
we find d � �2i∕π�E0∕k2. Comparing the result with Eq. (15),
we obtain

ε001 � −πk2a2;

where ε01 should be determined from Eq. (9). The correction is
valid if �ka�2 ≪ 1 and is applicable for the arbitrary ratio of
cylinders’ radii and the intercylinder distance, including the
case when δ ∼ a. In Figs. 7 and 9, theoretical curves that take
into account the radiation correction (17) are presented. The
curves fit numerical data quite well; thus the deviation of the
data curve from the theoretical prediction [Eq. (15)] with pure
real ε1 should be assigned just to unaccounted radiation
losses.

5. CONCLUSION
We have numerically investigated the distribution of the elec-
tro-magnetic field induced by the incident plane wave near a
system of two closed parallel metallic cylinders of nanoscale
dimensions modeled by Maxwell’s equations. The comparison
of the results of the numerical simulation with the analytical
solution for the plasmon modes in the system governed by
Maxwell’s equations in the quasi-static limit showed agree-
ment between these two approaches.

The position of the resonance is determined by the geome-
trical characteristics of the gap between the cylinders. Reso-
nance corresponds to the existence of the standing wave
inside the almost flat part of the gap, which can be thought
of as a plane metal-dielectric-metal structure. Since the wave-
length of the plasmon depends on its frequency (through per-
mittivity of metal), there exist a set of resonance frequencies
corresponding to the set of standing modes in the gap. Com-
parison with numerical simulations gives a good agreement,
since the dimension of the gap is smaller than the size of
the metallic granules, and the quasi-static approximation used
in the analytical theory has high accuracy.

The analytically obtained [29] field enhancement factor in
the center of the gap for the first resonance has also good
agreement with that obtained numerically. It is determined
both by ohmic losses in the metal and by radiative losses, with
relative importance of the latter rising with the size of the sys-
tem.We assumed the radii of the cylinders to be of the order of
100 nm, which is implemented in experiments [3]. The skin
layer depth in metal is of the same order; thus the quasi-static
approximation has some deviations from the exact solution of
the Maxwell’s equations.

Finally, we studied the dependence of the field enhance-
ment for the case of silver cylinders with permittivity taken
from experimental data. Our numerical simulations for such
systems showed that only the ohmic losses are reasonable,
and only the first two resonances can be really observed.
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