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Abstract: 

In order to improve the throughput performance of Medium Access Control (MAC) schemes in wireless 

communication networks, some researchers proposed to divide a single shared channel into several sub-

channels: one as control sub-channel and the others as data sub-channels. In this paper, we analyze and evaluate 

the maximum achievable throughput of a class of generic multi-channel MAC schemes that are based on the 

RTS/CTS (Ready-To-Send/Clear-To-Send) dialogue and on ALOHA contention resolution. We study these 

multichannel MAC schemes under two split-channel scenarios: the fixed-total-bandwidth scenario and the 

fixed-channel-bandwidth scenario. In the fixed-total-bandwidth scenario, we show that the throughput of the 

multi-channel MAC schemes is inferior to that of the corresponding single-channel MAC scheme, which sends 

the RTS/CTS packets and DATA packets on a single shared channel. For the fixed-channel-bandwidth 

scenario, where CDMA or similar techniques can be applied, we derive the optimal number of the data sub-

channels that maximizes the throughput. The analytical framework that we derive in this paper can also be used 

to evaluate other contention resolution technique, when the average contention period is known. 

 

Index Terms: medium access control, MAC, shared channel, multiple channels, ALOHA, contention 

resolution, RTS/CTS dialogue 

 

Article: 

I. INTRODUCTION 

In wireless communication networks, Medium Access Control (MAC) schemes are used to manage the access 

of active nodes to a shared channel [1]. As the throughput of the MAC schemes may significantly affect the 

overall performance of a wireless network, careful design of MAC schemes is necessary to ensure proper 

operation of a network. In order to reduce packet collisions and to improve throughput performance, some 

researchers proposed to divide the single shared channel into several sub-channels: one serves as a control sub-

channel and the rest serve as data sub-channels. In this arrangement, the control sub-channel is used to reserve 

the data sub-channels, over which the data packets will be transmitted. Such reservations can be performed 

through the use of the RTS/CTS (Ready-To-Send/Clear-To-Send) dialogue [2]. Examples of multi-channel 

MAC schemes are [3]–[12]. 

 

Even though there are many multi-channel MAC schemes proposed in the technical literature, to the best of our 

knowledge, systematic comparison of these multi-channel MAC schemes with the corresponding single-channel 

schemes is not available except in [13]. However, a performance study of the multi-channel MAC schemes 

could provide invaluable insight into the MAC design methodologies, MAC parameters’ settings, and how 

those affect performance such as the bandwidth efficiency of these schemes. Following the studies in [13], in 

this paper, we analyze the throughput performance of the multi-channel MAC schemes and compare them with 

the corresponding single shared channel MAC schemes. 
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In general terms, we analyze here a set of generic multichannel MAC schemes, which are assumed to be based 

on the RTS/CTS dialogue.
1
 In a contention resolution period, a ready node sends an RTS packet on the control 

sub-channel to reserve the use of a data sub-channel for future DATA packet transmission. The contention 

resolution technique for the control sub-channel is assumed to be pure ALOHA [14]. When the RTS packet is 

received, the intended receiver replies with a CTS packet to acknowledge the successful reservation of a data 

sub-channel, on which DATA packet transmission will commence soon. Further details regarding the scheme 

will be provided in the sequel. 

 

Our analysis is based on a queueing model with m servers and a maximum queue length of q. By modeling the 

successful RTS/CTS dialogue as a Poisson arrival, we derive the expected throughput of the multi-channel 

MAC schemes. We further consider two different scenarios for multiple-channel MAC schemes in wireless 

networks: the fixed-total-bandwidth scenario and the fixed-channel-bandwidth scenario. In the fixed-total-

bandwidth scenario, the total bandwidth being used by the network is fixed. Therefore, with more sub-channels, 

each sub-channel is allocated less bandwidth and, correspondingly, can carry lower data rate. In contrast, every 

sub-channel shares the same bandwidth in the fixed-channel-bandwidth scenario [8], but with more sub-

channels, the network now requires more bandwidth. In practice, fixed-channel-bandwidth scenario can be 

realized, for example, by the CDMA technique. 

 

In the fixed-total-bandwidth scenario, we determine the maximum achievable throughput of the multi-channel 

MAC scheme as a function of the number of the data sub-channels m, and of the ratio of the bandwidth of the 

control sub-channel to that of the data sub-channel. We then compare these results to the throughput of the 

corresponding single-channel MAC scheme. We show that, when pure ALOHA technique is used for 

contention resolution of the access to the control sub-channel in a fully-connected network and when radio 

propagation delays are negligible, the throughput of the multichannel MAC scheme is inferior to that of the 

single-channel MAC scheme. In the fixed-channel-bandwidth scenario, we determine the maximum achievable 

throughput of the multichannel MAC scheme as a function of the number of the data sub-channels. 

Consequently, the optimal number of the data sub-channels that maximizes the throughput can be determined. 

Even though the proposed analysis is based on pure ALOHA contention resolution technique, the approach that 

we take in this paper can also be used with other contention resolution techniques, when average time of 

contention period is known or could be obtained. 

 

For notational convenience, we term the single-channel MAC scheme as MAC-1 and the multi-channel MAC 

scheme as MAC-mD (where “D” represents “Data channels”). In the MAC-mD scheme, contention resolutions 

take place on the control sub-channel in parallel with the transmission of data packets on the data sub-channels. 

The paper is organized as follows: in Section II, we overview related works. The assumptions and the notations 

used in this paper are summarized in Section III. In Sections IV and V, we present our analytical model and our 

main results on performance of the MAC-mD schemes. The numerical results and the simulation results are 

provided in Section VI. We summarize and conclude this work in Section VII, stating some possible future 

directions. 

 

II. RELATED WORK 

A split-channel MAC scheme was compared with a single-channel MAC scheme in [15]. The authors 

categorized “scheduling epochs,” the periods of time needed to schedule the next data transmission, into two 

groups: bandwidth-dependent component (e.g., periods for contention resolution of reservation packets) and 

bandwidth-independent component (e.g., the propagation delay). It was found that, if a system has no 

bandwidth-independent component within its scheduling epochs, the split-channel schemes may achieve the 

same performance as the single-channel schemes. The analysis in [15] considered the average contention 

                                                
1
 Note that the purpose of the RTS/CTS dialogue is twofold: to reserve a data sub-channel for future data packet transmission and to 

solve the hidden/exposed terminal problems in multi-hop wireless networks, where at any time some neighbors can overhear either the 

sender or the receiver, but not both [2]. The focus of this paper is mainly in regards to the former issue. 



resolution period only, and their results may be inconclusive in general in regards to the advantage of the split-

channel vs. the single-channel schemes, as reported by [13]. 

 

 
 

In [13], the performance of the dual channel MAC schemes were studied. The authors categorized a subset of 

MAC schemes, which use the RTS/CTS dialogue preceding the actual data transmission, into three groups: 

MAC-1, MAC-2, and MAC-2R (cf. Fig. 1).
2
 In the MAC-1 scheme, all the control packets and the data packets 

are transmitted on a single channel. In the MAC-2 and the MAC-2R schemes, however, the single shared 

channel is split into two sub-channels. One of these sub-channels, the control sub-channel, is used to transmit 

the RTS and the CTS control packets. The data packets are transmitted on the data sub-channel. The difference 

between the MAC-2 scheme and the MAC-2R scheme is that the MAC-2R scheme allows ready nodes to 

compete for and to reserve the use of the data sub-channel when the data sub-channel is currently being used. 

While it is obvious that the MAC-2R scheme out-performs the MAC-2 scheme, the performance comparison 

between the MAC-2R scheme and the MAC-1 scheme mandates further study. In [13], it has been proved that, 

when the ALOHA scheme is employed on the control sub-channel and propagation delays are negligible, the 

MAC-1 scheme always out-performs the MAC-2R scheme. Our work is different from the work in [13], since 

our analysis applies to scenarios where m can assume any value, not necessarily equal to 1. 

 

A dynamic reservation technique for packet switching radio channels, called split-channel reservation multiple 

access (SRMA), was introduced in [3]. In SRMA, the available bandwidth is divided into three channels: two 

used to transmit control information and one used for the message transmission. Message delay of SRMA was 

studied in [3] and it was shown that SRMA out-performs other MAC schemes under some network settings. A 

queueing model was used to analyze the throughput of SRMA. However, as it is shown later, the model derived 

in our work is more accurate than the one given in [3]. Additionally, our model is more general, suitable for any 

number of data sub-channels. 

 

Multiple-channel architectures were introduced as to overcome the deterioration in performance when a single 

very high-speed communication channel is used (due to the increasing ratio of propagation delay to data packet 

transmission time). For example, reference [4] proposes a multi-packet multi-channel CSMA/CD scheme to 

improve the throughput performance. Compared with previous work, in which a ready node can only compete 

for one channel out of multiple sub-channels, the scheme in [4] allows nodes to compete at the same time for 

(randomly selected) multiple channels. 

 

A multi-channel scheme was presented in [7] to improve the throughput of the IEEE 802.11 MAC scheme [16]. 

The scheme uses the Ad hoc Traffic Indication Messages (ATIM), which is transmitted by every node on a 

default channel to notify all neighboring nodes of the use of a certain data channel. By mandating contention 

resolution to be in the ATIM windows, only one transceiver is needed in every node. After an ATIM window 

                                                
2 MAC-2R is equivalent to the MAC-1D as defined in this paper. 



period, the default channel can be used as a regular data channel to transmit data packets. This mechanism is an 

example of the fixed-channel-bandwidth MAC schemes. 

 

Another multi-channel MAC scheme was proposed in [9]. The proposed scheme used Direct Sequence Spread 

Spectrum (DSSS) technique. In order to maintain the same sub-channel data rate and the same frequency 

bandwidth usage, the processing gain of the spread spectrum signal is reduced when the number of sub-

channels is increased. Transmission interference and packet error rate due to lower signal-to-noise ratio were 

studied with different processing gains. A waiting state, referred to as “pacing,” was introduced to control the 

“pace” of transmissions at the control sub-channel. The pacing allows mitigation of the interference on the data 

sub-channels and reduction of the effect of near-far phenomenon. Our model in this paper differs from the 

model in [9] in the following aspects: a) the single shared channel is divided either in time domain or in 

frequency domain, and b) the processing gain of the spread-spectrum sub-channels is maintained at the same 

value. In our paper, we assume that packet collisions are the only source of packet loss on the wireless channel. 

Since the goal of our work is to study the throughput performance of multi-channel MAC schemes, we 

purposely exclude losses from sources other than packet collisions, such as transmission errors due to thermal 

noise or spectral interference. To include such other losses, the channel data rate in our study should be replaced 

by the data rate after an appropriate channel coding scheme is taken into account.
3
 

 

III. ASSUMPTIONS AND NOTATIONS 

In order to compare the throughput of the MAC-1 and the MAC-mD schemes, we make here the following 

assumptions. For each of the schemes, we normalize the time, so that a “time unit” is the time to transmit a 

control packet (either RTS or CTS) in that scheme. Thus, the time to transmit a control packet is always 1 [time-

unit]. The wireless communication networks that we study are assumed to be fully-connected; i.e., every node is 

in the transmission range of every other node in the network. We further assume that pure ALOHA contention 

resolution technique is used, that the overall traffic generated by active nodes (including retransmissions) is 

Poisson with aggregate arrival rate of G [packets/time-unit], and that the packet processing and the radio 

propagation delays are negligible. 

 

We establish the following notation: 

 

 Lc, Ld: the length (in bits) of a control (RTS/CTS) packet and that of a data packet, respectively 

 k: the ratio of data packet size to the control packet size; i.e., k = 
  

  
 

 m: the number of data sub-channels 

 q: the size (in packets) of the virtual and distributed queue used in the MAC-mD scheme 

 R, Rc, and Rd: the data rates (in bits-per-second) of the entire shared channel, the control sub-channel, and the 

data sub-channel, respectively; i.e., R = Rc + mRd 

 r: the ratio of the data rate of the control sub-channel to the data rate of the data sub-channel channel in the 

MAC-mD scheme; i.e., r = 
  

  
 

 γ1, δ1: the transmission time (in seconds) of a control packet and the transmission time (in seconds) of a data 

packet, respectively, in the MAC-1 scheme; i.e., γ1 = 
  

 
 and δ1 = 

  

 
 = kγ1 

 γm, δm: the transmission time (in seconds) of a control packet and the transmission time (in seconds) of a data 

packet, respectively, in the MAC-mD scheme; i.e., γm = 
  

  
 = γ1

    

 
 and δm = 

  

  
 = kγ1(r + m) 

 δ: normalized data packet transmission time (in time-units) in the MAC-mD scheme; i.e., δ = 
  

  
 = kr. 

 

Note that, in the fixed-channel-bandwidth scenario, r = 1.  

                                                
3
 In other words, we assume that the channel data rate is the actual data rate after channel coding, rather than the raw channel data 

rate. 
 



 

IV. THE MAC-MD SCHEME 

In what follows, we describe the mechanism of the MAC-mD scheme (an example of MAC-1D is shown in Fig. 

1):
4
 

 

1) We use the notion of a virtual and distributed queue, which is an imaginary queue that “stores” all the 

data packets arriving at the network nodes. It is assumed that the status of the virtual queue is precisely 

known to all network nodes. Further discussion on the distributed queue is provided in the Appendix. 

2) Every node with data packets to send can compete on the control sub-channel by sending RTS packet to 

its intended receiver, which should reply with a CTS packet based on the operational rules of the 

RTS/CTS dialogue [2]. 

3) When the CTS packet is received at the sender of the RTS packet, the sender/receiver pair becomes the 

“winner” of the current competition (i.e., current contention). 

4) The following are the rules that a winner of a competition follows: 

a) If there is at least one available (idle) data sub-channel after the prior requests in the distributed 
queue are assigned data sub-channels, the winner of a competition transmits on an available data 
sub-channel immediately after the CTS packet is received. 

b) If all data sub-channels are busy and the distributed queue is not full, the winner of the competition 
adds itself to the distributed queue and waits for an available data sub-channel. 

c) If all data sub-channels are busy and the distributed queue is full, the winner of the competition 

drops its right to transmit and returns to compete on the control sub-channel.
5
 

5) After transmission on a data sub-channel, the sender returns to compete on the control sub-channel for 

the right of transmission for its next data packet. 

6) Whenever a data sub-channel becomes available due to the conclusion of its current data transmission, it 
removes and serves one of the customers in the distributed queue. If the queue is empty, the data sub-

channel becomes idle. 

 

  
 

Since in our model, the network is fully connected, every reservation and every transmission are overheard by 

all the network nodes. In our queueing model, the virtual and distributed queue is used to represent the 

information of backlogged data packets waiting for transmission. The virtual queue is served by m servers (i.e., 

the m data sub-channels) and can store at most q data packets. A new winning transmission request joins the 

virtual queue if there are m other customers in the system currently being served. Whenever the service of any 

of the currently m customers is completed, the first customer waiting in the distributed queue enters the now-

idle server; i.e., will be assigned the corresponding data sub-channel. 

 

In the following discussion we use the M/D/1/1 + q and M/M/m/m + q model to analyze the throughput of the 

MAC-mD scheme. 

 

V. PERFORMANCE ANALYSIS OF THE MAC-MD SCHEMES  

BY QUEUEING MODEL 

                                                
4
 The results of the MAC-1 throughput can be found in [13]; we use these results here to compare the throughput of the MAC-mD and 

the MAC-1 schemes. 
5
 In practical wireless networks, however, network nodes should stop competing on the control sub-channel when they know that 

winners of a competition will have to drop their rights to transmit. The presented contention mechanism allows us to develop a very 

simple and tractable analytical model that is closest to the real situation. 



In order to apply the above queueing model to analyze the MAC-mD family of schemes, we specify the arrival 

statistics and the service statistics of the system. 

 

A. Arrival Statistics 

Even though the behavior of the contention resolution process on the control sub-channel is quite complicated, 

completion times of successful RTS/CTS dialogues have been successfully modeled in the past by a Poisson 

process [3]. In order to present a tractable analytical result, we borrow this approach, modeling the completion 

times of successful RTS/CTS dialogues on the control sub-channel as a Poisson process with rate of A 

[arrivals/time-unit]. We will further justify this choice by our simulation results in Section VI-B. 

 

The control sub-channel is basically an ALOHA channel with every successful RTS packet leading to a CTS 

packet transmission. Let the aggregate arrival rate of data traffic at active nodes be G [packets/ time-unit]. The 

duration of the contention period, shown in Fig. 2, after the control sub-channel becomes available for a new 

competition and before the new competition is completed (i.e., a successful RTS packet is transmitted and 

received correctly) can be calculated as ([13]): 

 

  
 

     
    

in units of γm. 

 

The average completion rate of successful RTS/CTS dialogues in a time-unit can be calculated as: 

 

  
 

   
 

     

       
  

 

In the steady state, the throughput of the whole system is at most the capacity of the control sub-channel. 

Therefore, in this analysis, we are only interested in the largest value of A, which is A = 0.1554, when G = 0.5. 

 

For any contention resolution scheme other than the ALOHA scheme presented here, the value of A can be 

obtained if the average time of contention period is known. Therefore, our analysis could be used in any scheme 

in which the average time of the contention periods is known. 

 

The analysis that follows is based on the assumption of Poisson arrivals of the transmission requests. Therefore, 

strictly speaking, our results do not hold in systems in which the Poisson arrival assumption is violated. 

However, as suggested by the simulation results in Section VI-B, our results provide a close approximation of a 

real network, when the number of competing nodes is relatively large. 

 

B. Service Statistics 

When the data packet length is Ld, the service time for the customer in the queue is δ. Since the service time is a 

constant, the queueing model to analyze the MAC-mD scheme should have a determinate service time. In the 

following queueing model, M/D/1/1 + q model with only one server (data sub-channel) will be used to analyze 

the MAC-1D scheme. Due to the lack of the suitable queueing model when m > 1, M/M/m/m + q model will be 

used for m > 1. Therefore, we assume that the lengths of data packets are the same when m = 1 and that the 

lengths of data packets are exponentially distributed with an average of Ld for m > 1. In Section VI-B, we show 

that the performance of the fixed-packet-length scenario is a very close approximation of our analytical results 

with exponentially distributed packet lengths.  

 

C. Throughput of MAC-1D 

In this subsection, we study the throughput of the MAC-1D scheme, which is equivalent to the MAC-2R 

scheme in [13]. 

 



Let αi be the probability that i customers (after successful RTS/CTS dialogues on the control sub-channel) 

arrive to the system during the service time 6. According to the Poisson arrival assumption, we have 

 

   
     

  
     

  

  
                 

 

where ρ = λδ = λkr is the utilization factor.  

 

Let   
   

, n = 0, 1, ... , q, be the steady state probabilities of the virtual queue occupancy at the departure 

instants of customers from the system. These probabilities can be obtained by solving the following recursive 

equations in the normalized variable   
   

/  
   

 ([17]): 

 

    
   

  
   

 
 

  
 
  
   

  
   
  

  
   

  
   
         

 

   

  

 

for n = 0,1,..., q – 1 and then solving for   
   

 by using 

 

  
   

 
 

 
  
   

  
   

 
   

  

 

                         
   

   

 

   

  

Note that the above steady state probabilities are evaluated at the instants of customers’ departures. We are 

interested in the steady-state probabilities, 7rn, that there are n customers in the system at any time instant, n = 

0, 1, ... , q, q + 1. Let p~a), n=0,1, ... , q, q+ 1, be the steady-state probability that there are n customers in the 

system, as seen by a customer arriving to the system. By the PASTA property [17], we have that 

 

     
   
                

 

Let   
    

, n = 0,1,..., q, be the steady-state probabilities that there are n customers in the system, as seen by an 

arriving customer that actually enters the queue. Due to the fact that the state of the system can only change by 

at most ±1 between two time instants and by Kleinrock’s result [18] we have 

 

  
   

   
    

            
 

Since the blocking probability is πq+1, we obtain that 

 

             
   
             

 

These probabilities can be calculated using the following equations: 

 

   

 
 
 

 
 

 

  
   
  

  
   

  
 

  
   
  

 
         

 
 

     

         



 

and, 

 

                

   

   

 

 

The throughput can now be computed as follows: 

 

           
 

   
 

 

  
   
  

             

 

where we have used (1), (2), and m = 1. 

 

Since any arrival is dropped when the queue is full (i.e., when the system is in the state q+1), the average arrival 

rate of customers who actually enter the system is λe = λ(1 – πq+1). Therefore, the effective utilization factor is: 

 

              
 

The system will be stable when the effective utilization factor is less than 1; i.e., when 

 

                  
 

Hence, to determine the maximum achievable throughput, we need to maximize (3) under the constraint that ρe 

< 1. When m = 1 and q = 1, the throughput is maximized when   
   

 = e
-ρ

. Hence, the throughput of a MAC-1D 

scheme with q = 1 is 

 

           
 

            
          

 

The maximum value of (4) can be obtained by optimizing r > 0. Since the effective utilization factor of the 

queue is 
 

     
 < 1, such throughput is the achievable (stable) maximum throughput of a MAC-1D scheme with 

q = 1. In Section VI-A.1, we will compare the maximum throughput obtained by maximizing (3) to that given in 

[13]. 

 

D. Throughput of MAC-mD (m > 1) 

With more than one data sub-channel, we apply the M/M/m/m + q model to analyze the throughput, where we 

assume that the service time is exponentially distributed with average of 1/µ = δ. Our simulation results in 

Section VI-B show that the behavior of the MAC-mD schemes with fixed data packet length is approximated 

well by the M/M/m/m + q queueing model with parameters µ, λ, m and q. 

 

For the M/M/m/m + q model, the steady-state probabilities are given as ([19]): 

 

    
  
     

  
 

  
    

  
 

                    
 

        
     

 

where ρ = 
 

  
 is the utilization factor. 



Using the condition      
   
   , we calculate π0 to be: 

 

   
 

 
     

    
     

  
 

    
   
   

   
   

  

 

The throughput is then: 

 

   
 

 
                 

   

   

  

 
 

   
              

   

   

              

 

The maximum achievable throughput can be obtained by maximizing (5) under the constraint that the system is 

stable, meaning that the effective utilization factor is less than 1: 

 

                
 

When m is large enough such that πm+q ≪ 1, ρe is close to ρ. By setting ρe ≈ ρ ≈ 1, the maximum throughput of 

the MAC-mD schemes is achieved. That is, 

 

  
 

  
 
   

 
    

 

meaning that 

 

     
 

  
 

 

maximizes the throughput of the MAC-mD schemes. These results will be further substantiated in Section VI. 

 

 
 

 

VI. NUMERICAL AND SIMULATION RESULTS 



In this section, we present the numerical and simulation results, where the fixed-total-bandwidth scenario is 

considered, except for those cases where indicated otherwise. The control packet length is fixed at 48 bits in 

these studies. 

 

A. Numerical Results 

1) The MAC-1D Scheme: We present our M/D/1/2 numerical results in Fig. 3. We also show the numerical 

results from [13], which considered the Probability Density Function (pdf) of the arrival time of successful 

RTS/CTS dialogues. The two sets of results match quite well. In order to compare our proposed analysis with 

the maximum achievable throughput CRM for a given r presented in [3],
6
 we provide CRM in terms of our 

notations as follows: 

 

        
  

       
 
 

   
  

 

and we plot it in Fig. 3. It can be observed that the results of our analysis proposed in this paper and based on 

the assumption of Poisson arrival of successful RTS/CTS dialogues are quite close to the results presented in 

[13] (without such a Poisson assumption). Therefore, (4) predicts a reasonably good closed-form approximated 

throughput for the MAC schemes studied in [13]. In Fig. 3, we can observe that the maximum achievable 

throughput of the proposed analytical model is more accurate than that given in [3]. Compared with [3], our 

results of optimum r, which maximizes the throughput of the MAC-1D scheme, are almost identical to the more 

accurate results in [13]. 

 

 
 

Figure 4 studies the effect of different queue sizes on the throughput of the MAC-1D scheme. The data packet 

length is fixed at Ld = 1024. When q = 0 (i.e., no reservation is allowed in the MAC-1D scheme), its throughput 

is significantly lower than those schemes with positive queue size. This can be explained as follows: since no 

reservation is allowed, one sub-channel (e.g., the control sub-channel) is being wasted while the other sub-

channel (e.g., the data sub-channel) is being used to transmit packets. Channel contention can only restart after 

the current data transmission is finished (similar to the MAC-2 scheme in [13]). As expected, the throughput 

performance of MAC-1D scheme is better with larger queue size. Optimum values of r can be found to 

maximize the throughput of the MAC schemes. Interestingly, when the MAC-1D schemes operate away from 

the optimum values of r (with either too small or too large values of r), the performance of different queue sizes 

is almost identical. This is due to the fact that the reservation queue is always empty/full when r is too 

small/large. When the queue is always empty, the data sub-channels are more likely to be idle. When the queue 

is always full, the control sub-channel is too large and is wasting the bandwidth. In both cases, the actual size of 

                                                
6 This result has been converted to the case of one control sub-channel and one data sub-channel. 



the queue (q > 0) hardly affects the throughput performance. We also include the throughput of the MAC-1 

scheme in Fig. 4. The optimum throughput of the MAC-1D scheme approaches that of the MAC-1 scheme as q 

increases. 

 

In Fig. 5, we show the effect of q, the size of the virtual and distributed queue, on the optimum throughput 

performance for different data packet length. The throughput shown in this figure is optimized for r, the ratio of 

the control/data sub-channel data rates. A clear improvement of throughput can be observed as q increases, due 

to the benefits of a larger queue capacity in a queueing system. As one might expect, the performance gain of 

increasing q is smaller for larger q. Therefore, in order to trade-off the complexity of the virtual and distributed 

queue and the throughput of the corresponding MAC-1D scheme, only a relatively small value of q (e.g., q = 3) 

is sufficient for the m = 1 scenario. From Fig. 5, we can also see that the throughput is higher when data packet 

length is larger. This is due to a lower control packet overhead. 

 

2) Multiple data sub-channels MAC-mD Schemes (m > 1): Figure 6 presents the throughput of the MAC-mD 

schemes with m data sub-channels as a function of q, the size of the virtual and distributed queue. The data 

packet length is fixed at Ld = 1024. Patterns similar to those in Fig. 5 can be observed, as the throughput 

increases with q. For a fixed q, the optimum throughput of the MAC-mD scheme is larger for larger m. The 

difference is more significant when q is small, because the queueing system capacity is the summation of the 

number of data sub-channels and q; i.e., m+q. As the queueing system capacity increases, the throughput 

improves. The performance gain of the throughput due to an increase of q is smaller when q is larger, similarly 

to the results in Fig. 5. Note that, however, the r
*
 values used to achieve the optimum performance of the MAC-

mD schemes are different for different values of m. 

 

 
Figure 7 shows the trend of the maximum achievable throughput of the MAC-mD scheme with the different 

number of data sub-channels, when the queue size is the same as the number of data sub-channels. It can be 

seen that the maximum achievable throughput for the MAC-mD scheme increases with an increase in the value 

of m. Overall, this throughput approaches the throughput of the MAC-1 scheme asymptotically with increasing 

m. We show the throughput of each of the two schemes for different data packet length, Ld. As expected, the 

throughput performance improves as Ld increases. 

 

From Fig. 4, we observe that there is an optimum value of r, r
*
, which maximizes the throughput of the MAC-

mD scheme. 

 



 
 

We show the relation between r* and m for different Ld in Fig. 8. As mentioned in Section V-D, when m is large 

enough, λkr* ≃ m; in Fig. 8, we also plot the lines corresponding to this relation between r* and m. As shown in 

the figure, the linear relation between r* and m can be observed when m is large, but as expected, this linear 

relation is less accurate when m is small. 

 

In the fixed-channel-bandwidth scenario, such as for CDMA-based channels, r is always 1 because each sub-

channel has the same data rate. In this case, an optimal number of data sub-channels can be determined as to 

maximize the throughput of the MAC-mD schemes. Figure 9 shows the throughput of the MAC-mD schemes 

with r = 1 and q = m. Optimum values of m, which maximize the throughput of the MAC-mD schemes, can be 

observed in the figure. When m is too small, the control sub-channel is idle most of the time, leading to waste of 

bandwidth and to small throughput. As m increases, the control and data sub-channels match each other. For 

larger m values, the control sub-channel cannot generate enough successful RTS/CTS dialogues to “fill” these 

data sub-channels, and so some of data sub-channel remain idle, wasting portion of their capacity. 

Consequently, the optimum value of m is larger for larger values of Ld.  

 

 



 
 

B. Simulation Results 

We used a packet-level simulation program, which we wrote in C++, to study the performance of our analytical 

models.7 The simulated network was a fully-connected network with N = 50 nodes and with different values of 

Ld and m (q = m). Data packet lengths were either fixed or variable with exponential distribution. The control-

packet length was assumed to be 48 bits. The channel data rate was 1 Mbps. The simulations ran for 10 seconds, 

simulation time. The operation of the MAC-mD schemes was as presented in Section IV. Data packets arrived 

at each of the N nodes according to the Poisson distribution. Note that nodes are assumed to know the precise 

states of the distributed queue. Therefore, we simulate the MAC schemes with a perfect distributed queue. 

 

In Fig. 10, we compare the simulation results with analytical results as a function of r, for networks with 

variable and exponentially distributed data-packet length. The value of m and q are both assumed to be 3 in this 

figure. The expected length of data packets for these simulations was set to 1024, 2048, and 4096. As evident 

from the figure, the simulation results agree quite well with the analytical results, strongly suggesting the 

validity of our analytical model. 

 

Since our analysis does not study the throughput performance of the MAC-mD scheme with fixed data packet 

length for m > 1, we compared the difference in performance of the MAC-mD schemes with fixed data-packet 

length and with variable data-packet length. These results are depicted in Fig. 11, for m = 8 and q = 8. 

Additional results of this comparison for other values of m are shown in Figure 12, where the data packet length 

is fixed for three of the curves and exponentially distributed for the other three curves. The close match between 

the results for fixed and for variable data-packet length indicating that our M/M/m/m+q analytical model is 

sufficient to reasonably well approximate the performance of the MAC-mD schemes with fixed data packet 

length, especially when m is large. 

 

VII. SUMMARY, CONCLUSIONS, AND FUTURE WORK 

In a wireless communication network, the Medium Access Control (MAC) scheme can significantly affect the 

network’s performance. In particular, due to the stochastic traffic patterns and due to the fact that the 

communication medium is shared among a multitude of network nodes, an efficient MAC scheme is essential 

for adequate performance of the communication process. To improve the throughput performance of MAC 

schemes for random-accessed medium, especially in high data rate systems, some researchers proposed to use 

multiple sub-channels instead of a single shared channel. However, there has been no comprehensive 

                                                
7 We did not use other simulators such as OPNET or NS-2 because their MAC models include other features, e.g., back-off and 

slotted operation, that are not presented in our analytical model. 



performance comparison study to indicate under what conditions the multiple-channel scheme is preferable over 

the single-channel scheme. 

 

In this paper, we analyzed a family of generic multiple-channel MAC schemes (MAC-mD), which use one sub-

channel, the control sub-channel, for transmission of the RTS/CTS dialogues, while the other sub-channels, the 

data sub-channels, are assigned to transmissions of the actual data packets. The RTS packets contend on the 

right to use one of the data sub-channels and the winner in a contention is reserved the right to use one of the 

data sub-channels to transmit, collision free, its data packet. 

 

Based on the pure ALOHA contention-resolution technique on the control sub-channel, we have developed a 

queueing model to study the performance of the MAC-mD schemes for the fixed-total-bandwidth scenario and 

for the fixed-channelbandwidth scenario. In the fixed-total-bandwidth scenario, the total bandwidth, hence, the 

maximum data rate, is fixed. The larger the number of sub-channels is, the smaller is the data rate of each sub-

channel. Our analysis shows that such multiple-channel MAC schemes are always out-performed by the 

corresponding single shared channel schemes, given that the propagation delays are negligible. In the fixed-

channelbandwidth scenario, each sub-channel has the same data rate. Our study shows that there is an optimum 

number of sub-channels in such MAC schemes, as to maximize the total network throughput. This optimum 

number can be calculated numerically based on our analytical model. Our numerical results show that the 

optimum number of sub-channels depends largely on the ratio of the data packet length to the control packet 

length. 

 

The analytical framework proposed in this paper can be used to derive the optimum ratio of data rate of control 

sub-channel to that of the data sub-channel in the fixed-total-bandwidth scenario. In the fixed-channel-

bandwidth scenario, our model can be used to calculate the optimum number of data sub-channels based on the 

ratio of data packet length to control packet length. 

 

The significance of the results of our work and the message of this paper to the technical community is that, 

while using multiple sub-channels instead of a single shared channel may solve certain problems, such as 

reducing or even eliminating collisions between data packets and control packets, overall it may not improve 

the throughput performance of a MAC scheme. Our study shows that a single-channel MAC scheme always 

out-performs the corresponding multi-channel MAC schemes in the cases considered; i.e., negligible 

propagation delay and fully-connected network topology. 

 

Even though our results are derived for MAC protocols that are based on the RTS/CTS dialogue and on the pure 

ALOHA contention resolution technique, these results are also applicable to other related multiple-channel 

MAC schemes. For instance, the well-known IEEE 802.11 standard [16] uses the CSMA/CA as its access 

scheme. The CSMA/CA scheme is essentially similar to the MAC-1 scheme studied in [13], but with additional 

mechanisms, such as carrier sensing and backoff control. These additional mechanisms improve the rate of 

successful RTS/CTS dialogues. Nevertheless, our results and conclusions regarding to the comparison of single-

channel and multiple-channel MAC schemes still apply. 

 

In our future work, we will extend our model to multiple control sub-channels. When multiple transceivers are 

available in a single network node, it is possible to pipeline the contention windows and the data transmissions 

on different sub-channels. It would be interesting to study the performance of multi-channel MAC schemes in 

such network environments. Furthermore, it would be of particular interest to study the performance of the 

multi-channel MAC schemes in multi-hop wireless networks, which allow spatial reuse of data sub-channels. 
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APPENDIX  

AN IMPLEMENTATION OF THE DISTRIBUTED QUEUE 

It is actually rather difficult and inefficient to implement a distributed queue to capture the states perfectly. 

Therefore, the performance of the MAC-mD schemes that we investigate in this work represents the 

performance upper bound of real MAC schemes in this category. 

 

Our implementation is based on the assumption of fixed packet length. An implementation that works with 

variable packet-length is also possible but more complicated (note that in such cases, the RTS/CTS packets may 

carry the packet length information), but due to page limitations, we will not discuss it here. 

 

Assume that the m data sub-channels can be identified from 0 to m – 1. Each node maintains three counters: s-

counter to record the number of customers in service and in queue; p-counter to record the position of local 



node in the queue; and d-counter to record the ID of the next available data sub-channel. Initially, all counters 

are set to zero. 

 

When a successful RTC/CTS exchange takes place, the sender and the receiver check the s-counter. If s < m, 

they pick the data sub-channel as indicated by the d-counter. The s-counter is incremented on all nodes. 

Furthermore, the d-counter is then incremented (mod m) on all nodes. If m ≤ s < m + q, the sender and the 

receiver record the s – m value into their p-counters, where s is the content of the s-counter. The s-counter is 

then incremented on all nodes. If s ≥ m + q, the sender and the receiver should not join the distributed queue, 

but return to compete on the control sub-channel.
8
 

 

Through time-out events or through monitoring of the data sub-channel, nodes notice when the transmission of 

a data packet is completed on a data sub-channel. Then the s-counter and the p-counter are decremented on all 

nodes. When the p-counter becomes zero, the sender and the receiver should use the d-th data sub-channel for 

data transmission. The d-counter is further incremented (mod m) on all the nodes. 

                                                
8
 A more practical approach is to stop competing on the control sub-channel when s ≥ m + q. However, such an approach may reduce 

the overall throughput slightly because the control sub-channel is left idle before s becomes smaller than m + q. 

 


