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Abstract 
 
Reinforcement Learning (RL) is a class of model-free learning control methods that can solve Markov Decision 
Process (MDP) problems. However, one difficulty for the application of RL control is its slow convergence, 
especially in MDPs with continuous state space. In this paper, a modified structure of RL is proposed to 
accelerate reinforcement learning control. This approach combines supervision technique with the standard Q-
learning algorithm of reinforcement learning. The a priori information is provided to the RL learning agent by a 
direct integration of a human operator commands (a.k.a. human advices) or by an optimal LQ-controller, 
indicating preferred actions in some particular situations. It is shown that the convergence speed of the 
supervised RL agent is greatly improved compared to the conventional Q-Learning algorithm.  
Simulation work and results on the cart-pole balancing problem and learning navigation tasks in unknown grid 
world with obstacles are given to illustrate the efficiency of the proposed method. 
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1. Introduction 

 
Reinforcement Learning (RL) is a general 
framework in which an autonomous agent tries to 
learn an optimal policy of actions from direct 
interaction with the surrounding environment. The 
reinforcement learning agent learns its environment 
through trial-an-error interactions [ 1]. For each 
action it executes the environment returns a reward 
indicating how appropriate the action was in the 
given situation. This paradigm is well suited for 
learning on many domains where it is inappropriate 
to specify in an explicit way how to perform a task, 
e.g. navigating in unknown environment. The agent 
explores its environment by executing some actions 
through trial-and-error interactions. After each 
action, it receives from the environment a scalar 
signal called reinforcement ( reward / punishment ) 
signal that inform on the appropriateness of taking 
a particular action in a given state. The 
reinforcement can be positive (reward), negative 
(punishment), or zero. The goal of RL is to 
construct an optimal policy of actions for the agent 
to follow based on observed interactions with the 
environment. The agent is, thus, trained so that the 
long-term return of the expected sum of 
instantaneous reinforcement rewards is maximized. 
However, a fundamental problem of standard RL 
algorithms is that of the curse of dimensionality. 
Although, many tasks defined over a finite state 
space can be dealt with successfully in this 
framework, in real applications, it would take an 
enormous amount of time for these algorithms to 
converge towards a suitable solution even for 
moderately complex state space. There are two 
major approaches that address the problem of slow 

convergence in large finite state space or that try to 
find solutions to problems that seem intractable in 
complex environments with infinite set of states. 
The first approach is to apply generalization 
techniques, which involve approximations of the 
value function or some tiling of the state space [1, 
2]. The second approach is to provide the agent 
with a priori information about the environment. 
We can incorporate such a knowledge either by 
modifying the reward function as in the reward 
shaping techniques [ 3 ] or we can create macro-
actions from primitive ones as in [ 4  ]. Shaping can 
be used to speed-up the learning process for a 
problem or in general to help the reinforcement 
learning technique to scale to large and more 
complex problems. To use shaping in practice one 
must know more about the problem at hand in 
order to modify the reward function during the 
learning phase. This may introduce the risk that the 
agent learns a solution to a problem that is only 
locally optimal. A macro-action is a way of 
grouping primitive actions into a new one. For 
example, if the primitive action is walk one step in 
a given direction, a macro-action would be to walk 
some steps to one direction followed by some other 
steps to another direction. Macro-actions represent 
the problem at different levels of abstractions. It 
has been shown that given the right set of macro-
actions, a reinforcement learning agent can 
increase its learning rate drastically [ 5 ]. Many 
methods have been proposed to automate 
combining primitive actions into macro ones [6, 7]. 
However, the way these macros are created has a 
great influence on the final performance of the 
learning process. A third approach, based on the 
use of supervision techniques, has been followed 
by a number of researchers to overcome some of 
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the difficulties that may arise in previous methods. 
For instance, many techniques that combine the 
two concepts of supervised learning and 
reinforcement learning are well established in 
robotics and social sciences.  Among them, we may 
cite imitation learning, LQ controller induction, 
and learning by demonstration, [8] [9] [10]. 
Despite the many successful implementations, none 
of these methods combines both kinds of learning 
instantaneously. Either supervised learning 
precedes RL during a separate training phase, or 
else the supervisory information is used to modify 
a value function rather than a policy.  
In this paper, we propose a supervised approach to 
the classical Q-Learning algorithm of the RL 
paradigm [11, 12]. The structure of the learning 
problem is modified by incorporating some a priori 
knowledge provided by a supervisor during the 
training phases. In this paper, we present a 
supervised   RL scheme that intends to improve 
learning in complex environments. With this 
approach, a supervisor adds structure to the 
classical framework for RL by integrating on-line a 
priori information or advices to the learning agent 
and that may help speeding-up learning tasks. Two 
examples are described to illustrate ideas behind 
our algorithm by using two types of supervisors: a 
human operator that issues intermittent advices to 
guide an autonomous agent learning navigation in 
unknown environment with obstacles, and a 
feedback LQ controller that is easily designed yet 
sub-optimal to help selecting appropriate actions 
for balancing a nonlinear system (an inverted 
pendulum on a moving cart). The remaining part of 
the paper is organized as follows: Section 2 
provides a succinct review of the RL principles 
used to solve typical class of problems represented 
by MDPs models. Section 3 focuses on the use of 
supervisory techniques as applied to RL. This 
structure seeks to improve the learning rate by 
incorporating added knowledge to Q-learning 
algorithm during the training process, i.e., on-line. 
In sections 4 and 5 are described in more details the 
insertion of two different supervisors into the RL 
structure for two domains: one is learning a 
navigation task in a grid world with obstacles and 
the other is balancing an inverted pendulum on a 
cart. Finally, a conclusion is drawn in section 6 and 
avenues for future work are identified, therein, as 
well. 
 
 2.  Brief Review of Reinforcement 

Learning 
 
RL is the problem of learning an optimal behavior 
from direct interaction with an environment. 
Following is a succinct account of a reinforcement 
learning framework described from a Markov 
Decision Process ( MDP ) perspective. 

The interaction between the learner and the 
environment having a MDP structure can be fully 
described  by a finite set of states S , a finite set of 
actions A  , and a real valued reward function, r 
(s ,a ) : S × A → R . At some discrete time step t ∈ 
T the learner is in some state st ∈ S where it can 
choose to perform an action at ∈ As, where As ⊂ A 
is the set of available actions in state s. Upon 
execution of action at , it may result  a state 
transition whereby the learner will find itself in 
state st+1 with probability P( st , at , st+1), which is 
referred to as the transition probability.  Arriving in 
state st+1 the learner receives a reward rt ( st ,at ) 
from the environment . Whereas the reward 
function gives an indication of the immediate 
utility of taking action a in state s and then 
following some policy. A policy  π is defined as a 
mapping from states to actions. An optimal policy 
is a policy that optimizes some function of reward 
(either maximizing gain or minimizing cost) in the 
long run..  Furthermore, it is helpful to define a real 
valued function Q (s, a): S × A → R, named the 
action-value function [11, 12]. The goal of RL is to 
derive the optimal action-value function, Q* ( s , a ) 
from these interactions, for taking action a in state s 
and terminating in state s’: 
 
 Q*(s , a) = E{r (s ,a) + λ maxa’ Q

*(s’, a’) }                    (1)  
                                       
 where λ ∈ [ 0 , 1 ]is the discount factor, and E is 
the expectation operator. An iterative version of the 
optimal action-value function is given by the Q-
Learning algorithm [  ]. All state-action pairs are 
stored in a table, and their update takes place based 
on experiences ( s , a , r , s’ ) according to : 
 
 Q(s , a)         α ( r ( s , a ) + λ maxa’  Q ( s’, a’ ) ) + 
                               ( 1 - α )  Q ( s , a )                         (2 ) 
                            
where  α is the learning rate and gives a trade-off 
between  a new observation and the present 
approximation . When the convergence of the Q-
Learning algorithm is reached, the policy that it 
defines ( referred to as the greedy policy ) is simply 
obtained  by taking actions with  maximum value 
for the current state, given by :  

           π ( s ) =  argmaxa Q( s , a )                   (3 ) 
                                                                 
However, there are some problems associated with 
using Q-Learning on complex environments 
defined by infinite state/action space. Learning 
how to act in such domains is not guaranteed to 
converge to an optimal policy. Therefore, a 
modified structure of RL is well needed in order to 
effectively adapt to complex problems. As stated 
earlier, among many techniques investigated to 
alleviate the RL deficiencies, methods that, 
somehow, try to combine supervisory information 
and RL form a natural trend in machine learning. 
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This will be considered with more details in the 
next section.  
 
 3.  Supervised Reinforcement Learning 
 
Most work on reinforcement learning has 
concentrated on the tabular case, in which the agent 
has little or no prior knowledge when it begins to 
act and learn in a finite state space. It is well known 
that in all branches of machine learning that, 
without some significant bias (or prior knowledge), 
learning cannot be efficient or effective. In 
reinforcement learning, the problem is even worse: 
if an agent starts with no knowledge at all and 
begins to act at random, it may take an extremely 
long time for the agent to even encounter the parts 
of its environment from which it can learn. For this 
reason, we must find ways to introduce additional 
knowledge into reinforcement learning agents.   
One of the most appealing methods, which is 
widely used in nature, is for an agent to learn by 
watching and imitating other agents. This is a very 
practical way for an agent to gain additional 
knowledge and it has been the basis for some very 
successful robot learning programs. However, 
perception remains a big difficulty; most robots do 
not have sufficiently advanced perception to be 
able to sense what other robots are doing and 
whether they are succeeding. 
The least attractive, but perhaps most immediately 
practical, method is for prior knowledge to be 
given directly to the robot. This knowledge might 
be in the form of partial or incorrect programs, 
program decompositions, or local reinforcement 
function. This initial knowledge, even if it is partial 
or sub-optimal, may guide the robot to behave well 
enough initially to learn effectively from its 
environment. 
Supervised reinforcement learning as another 
method for improving the effectiveness of learning 
is a rule rather than the exception in natural life. 
With this approach, a supervisor adds structure to a 
learning problem and supervised learning makes 
that structure part of the reinforcement learning 
framework. The supervisory part of this structure 
could be of two kinds : a feedback controller that is 
easily designed yet sub-optimal, and a human 
operator providing intermittent command or 
advices to an autonomous learning agent. The 
supervisor agent or trainer may intervene at 
different levels of abstraction during the learning 
process: at state level by identifying some special 
states as sub-goals [ 7 ] , at reward level by 
modifying the reward function as in reward 
shaping techniques, or at a more abstracted level by 
providing macro-actions or partial behaviors to the 
learning agent. Figure 1 illustrates the general idea 
behind the supervised RL paradigm. Initially, the 
learning agent starts exploring the environment by 
executing some actions based on trial-and-error 

interaction. After each action taken, it receives 
from the environment a scalar signal that indicates 
the value of that action with respect to the given   
task goal to be accomplished. To speed-up the 
learning phase and reducing the exploration time 
needed to learn about the environment, a supervisor 
is used to provide the learning agent with pertinent 
information. Thus, the learning agent is instructed 
to take some privileged actions in particular 
situations, as specified by the supervising agent. In 
doing so, integrating a priori information into the 
learning agent policy leads to effectively directing 
search during learning and allowing relatively 
quick convergence to successful control policies. 
A key feature of reinforcement learning is the 
exploration/exploitation trade-off. To accumulate 
as much reward as possible, a learner must exploit 
the knowledge it already has. However, some 
actions with small immediate reward may yield 
even more reward in the long run, but to find out 
about them the learner has to choose them, even 
though they do not look promising. Therefore, the 
choice of actions, between exploration or 
exploitation, can have significant effect on the 
behavior of the learner. 
 
 

 
 
 
 In our approach, the supervised reinforcement 
learning is implemented by indicating to the RL 
agent, through a human operator, some interesting 
parts of  the environment state space , known as 
‘way-point ’ states, in which the learning agent is 
instructed to perform an appropriate given action 
for navigation purposes . Whenever the agent 
reaches one of these states it breaks down its usual 
way of selecting actions (for instance, ε- greedy 
policy is commonly used) and proceed its search by 
following related actions fixed by the supervisor 
agent.  Another method that we also implemented, 
here, is based on a direct training of the learning 
agent by an LQ-controller (Linear Quadratic 
controller) used a teacher. The learning agent try to 
imitate direct actions of the controller by passively 
observing the control signal of the latter. Thus, the 
agent’s action policy follows, loosely speaking, the 
same trend as that of the controller. The reason for 

        Figure 1. Supervised  RL structure 
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choosing this form of supervision is that 
incorporating the trainer’s action, somehow, 
directly into the learning agent’s building policy 
will not affect the underlying structure of the 
reinforcement learning process.  Furthermore, due 
to the generalization capability of the RL, it is 
believed that the RL agent will well generalize to a 
wide range of conditions than the LQ-controller 
which can only perform robustly under limited 
conditions (  i.e. , constrained to work only near 
around the equilibrium state of the linearized 
model of the pendulum-cart system ). The 
conventional RL is slightly modified at the level of 
the search procedure in the action space: it uses ε- 
greedy policy, i.e. an action leading to the best 
estimate of Q( s , a) function  is chosen most of the 
time  ( with a probability equal to  1 - ε ). However, 
a small fraction of the time, ε  ,  an action is given 
by the LQ-controller instead of being selected  
randomly from the action space. The following 
section describes in more detail the application 
domains used to implement and illustrate the 
effectiveness of the proposed approaches. 
 
 
4. Experimental work and Results 
 
The objective of these experiments is to compare 
the performance of supervised RL as implemented 
by our methods with that of conventional Q-
Learning algorithm. The two standard problems we 
used for this purpose are often utilized for testing 
learning algorithms performance: the navigation 
learning problem of an autonomous agent and the 
balancing problem of an inverted pendulum on a 
moving cart. 
 
4.1 Navigation task problem 
 
Our first experiment demonstrates the integration 
of intermittent user advices into an autonomously 
navigating agent. The goal of the agent navigation 
task is to learn to navigate in the unknown 
environment and reach a specific target state in an 
optimal manner. The environment, as shown in 
Figure 2, is presented as a grid world of 10 × 10 
square cells (where free cells are in yellow color 
and  obstacle cells or barriers in red ). A state of 
this environment is indicated by the location of a 
cell. A set of waypoints are superimposed at 
particular location on the grid. These waypoint 
states represent user a priori information that gives 
hints to the navigating agent. The action space is 
composed of four actions: the agent has to move in 
one of the four directions, namely, up, down, right 
and left direction.  The latter receives a reward of – 
1 whenever it takes an action that makes a 
transition to a free state. An attempt to move into a 
wall or an obstacle is given a penalizing reward of -
100.  For instance, the choice of actions, directed or 

undirected, has a significant impact on the behavior 
of the agent. Initially, the autonomous agent is in a 
start position, referred to as the start state, and 
seeks to attain a final state known as the goal state 
by learning to avoid obstacles by its own. A 
waypoint state is used to reduce the learning time 
by directing exploration toward the goal state, 
almost exactly,  in the same way a tourist does 
when he or she is exploring an unknown town with 
a guide. At any given waypoint, the agent is forced 
locally to follow a preferred action regardless of 
any other action that may be available in that state. 
However, in all other situations, the agent applies 
an ε- greedy policy of action selection. In this 
experiment, the whole system (learning agent and 
grid-world environment) was implemented in 
Matlab. The Q-Learning algorithm was slightly 
modified by inserting a priori knowledge in its 
structure. A discount factor , λ , equal to 0.95 was 
used, and the ε- greedy policy was selected with a 
probability of 1 - ε  ( where ε = 0.1 ). Given that 
the state space is relatively small, we used a table-
based representation to store the Q-values. Figures 
3 and 4 show the results obtained by our method 
and by the standard Q-Learning algorithm. It is, 
clearly, seen on both figures that the supervised RL 
approach has better ability to learn the navigation 
task than the unsupervised version of the Q-
learning method. The curves show that the 
supervised agent needed less time to learn a good 
policy: the number of episodes required for the 
supervised agent to find the optimal path to the 
goal is 20 whereas for the unsupervised agent it is 
30. We, also, observe that the number of steps to 
goal, obtained by our algorithm, is significantly 
less than that realized by the standard Q-Learning. 
In conclusion, w may say that the learning speed 
and the number of succeeded steps to goal are 
relatively improved by using a priori knowledge.    
 
 

 
 
 
 

Figure 2. Test environment for the navigation learning task 
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      Figure  3 .  Reinforcement Learning Performance with    

supervision (green) and without (blue)   for the navigation 
learning task. 

 
 

 
 
 
 
 4.2  Inverted Pendulum Balancing Task 
 

In this experiment, we apply our algorithm to the 
standard cart-pole learning task, a.k.a. inverted 
pendulum problem, which involves learning to 
stabilize the upward equilibrium state of the 
inverted pendulum mounted on a mobile cart by 
applying appropriate forces to the cart, see Figure 5. 
The moving   cart carries a pendulum that can 
swing freely around its origin. This system is 
described by the following nonlinear dynamic state 
equation: 
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The position and velocity of the cart ( x , x° ) and 

the pole angle and angular velocity ( θ , θ° ) 
represent the state of the cart-pole system. The 
specification for the simulated pole and cart are as 
follows: length of the track, L = 4.0 m ; mass of the 
cart , mc = 1.0 kg ; mass of the pole : mp = 0.1 
[ kg ] ; half length of the pole : l = 0.5 [ m ] ; 
gravity : g = 9.8 [ m/s2 ]; coefficient of friction of 
cart on track : µc = 0.0005 ; coefficient of friction 
of pendulum on cart : µp = 0.000002 

Only three actions F = {- 10 N, 0, + 10 N} were 
available to the RL agent for this task.  

 
 
 
 

 
 
 
 
 

Learning to control such a nonlinear system to 
achieve a certain behavior is not an easy task. The 
proposed algorithm uses an LQ-Controller for 
supervisory purposes. This controller is applied to 
the linearized model of the cart-pole system by 
using Euler approximation technique with a time 
step of 0.02 s and intervene only during the 
balancing task of the pendulum ( for │θ│≤ 15 ° ) . 
The state space is partitioned into boxes of 
equivalent states ( 12705 boxes were used for the 
swinging up task and 270 boxes for the balancing 
task ).  

Figure 4.  Learning curves: Steps to converge to optimal 
learned policy 

Figure 5.  The cart-pole system  
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The whole system ( RL agent , pole-cart model and 
LQ-controller) was implemented in Matlab. The  
Q-Learning algorithm utilizes the same parameters 
as indicted in the first experiment. At the beginning 
of each episode, the pendulum is initialized in 
downward position (angle  θ = 180°) with zero 
angular velocity. The agent has three available 
actions corresponding to forces of - 10, 0, +10. 
These actions are chosen small enough so that the 
only way to move the pendulum higher and higher 
is by swinging back and forth. The objective is to 
find a policy that will drive the pendulum past the 
upward position ( the unstable equilibrium state ) 
and maintaining the pendulum in that position for 
as long as possible.  
As is illustrated by the learning curves depicted in 
Figures 6 through 9, the supervised RL agent gives 
better results in terms of convergence speed than 
those obtained without any supervision, and in 
terms of robustness to perturbation compared to the 
LQ-Controller. Figure 6 shows that the learning 
performance of the supervised agent is higher 
compared to the unsupervised case. The obtained 
curves are plotted by averaging produced success 
during 50000 learning episodes. Results for the 
pole balancing learning problem are depicted in 
Figure 7 where it is shown that the proposed agent 
has more success in maintaining the inverted 
pendulum in the vertical position within an angle 
less than 15°. If we looked at the magnitude of 
command signal that are issued by the RL agent 
and the LQ-controller we can easily notice on 
Figure 9 that the latter produce action signals of 
very high magnitude ( much more greater than ± 25 
N at the beginning of the balancing task) whereas 
actions of the former are limited to ± 10 N only. 
Thus, if the command signal is constrained to 
acceptable values, i.e. ± 10 N for instance, it will 
take a longer time for the LQ-controller to stabilize 
the inverted pole. Figure 8 describes the reaction of 
the two controllers to an impulsive perturbation 
( the pole has been given an impulse of 75° / s ) . 
We can notice that the RL-based controller was 
very rapid in, effectively, responding to this 
perturbation by driving and stabilizing the pole to 
its vertical position  than it is done by the LQ-
controller ( it takes 250 iterations for the controller, 
i.e. 250 × 0.02s = 5 s, whereas for the RL agent it is 
just 30 iterations , i.e. 30 × 0.02s = 0.6 s ). Due to 
its generalization property, the RL agent 
demonstrates a better ability to adapt to strong 
perturbations.   
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 6.  Swing up  task. Curves show  number  of  successful 
steps for swinging up the pendulum versus learning episodes.  

Supervised (blue curve  ) and unsupervised  RL ( green curve )  

Figure 7.  Balancing learning task. Curves show  number  of  
successful time steps in balancing the pendulum in function of 
learning episodes. 
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5. Conclusion 

 
 Scaling-up reinforcement learning techniques to 
complex environments is a challenging task for the 
AI community. It was our aim here to propose a 
simple method to accelerate convergence to an 
optimal policy by using a priori knowledge about 
the environment to be learned or by following 
advice proffered by an external controller. This is a 
modified version of the standard unsupervised RL 
algorithms built by incorporating supervision 
within this structure which suffers from low 
convergence speed in domains with continuous 
state space. The proposed approach has been 
implemented on two different environments: one is 
learning to freely navigate in a grid world 
containing obstacle and the second task is to learn 
solving the cart-pole balancing problem. Obtained 
results are encouraging and, more importantly, they 
show that supervisory information can really help 
improving RL performance. However, it should be 

noted that further work is needed to elucidate all 
aspects of balancing the need for a priori 
information integration and the need for sufficient 
autonomy and exploration by the RL agent in order 
to not degrade the learning agent’s performance.       
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Figure 8. Reaction to a perturbation. RL-based controller 
(green) and LQ-controller (blue)  

Figure 9.  Command signal evolution along iterations, 
produced during the balancing task by our RL algorithm 
(green) and LQ-controller (blue)  


