
The 2006 International Arab Conference on Information Technology (ACIT'2006)

Reinforcement Learning through Supervision for Autonomous Agents

Brahim Boulebtateche, Adel Djellal and Mouldi Bedda

Abstract

Reinforcement Learning (RL) is a class of model-free learning control methods that can solve Markov Decision
Process (MDP) problems. However, one difficulty for the application of RL control is its slow convergence,
especially in MDPs with continuous state space. In this paper, a modified structure of RL is proposed to
accelerate reinforcement learning control. This approach combines supervision technique with the standard Q-
learning algorithm of reinforcement learning. The a priori information is provided to the RL learning agent by a
direct integration of a human operator commands (a.k.a. human advices) or by an optimal LQ-controller,
indicating preferred actions in some particular situations. It is shown that the convergence speed of the
supervised RL agent is greatly improved compared to the conventional Q-Learning algorithm.
Simulation work and results on the cart-pole balancing problem and learning navigation tasks in unknown grid
world with obstacles are given to illustrate the efficiency of the proposed method.

Keywords: Supervised Reinforcement Learning, Autonomous Agents, LQ-controller, Machine Learning.

1. Introduction

Reinforcement Learning (RL) is a general
framework in which an autonomous agent tries to
learn an optimal policy of actions from direct
interaction with the surrounding environment. The
reinforcement learning agent learns its environment
through trial-an-error interactions [1]. For each
action it executes the environment returns a reward
indicating how appropriate the action was in the
given situation. This paradigm is well suited for
learning on many domains where it is inappropriate
to specify in an explicit way how to perform a task,
e.g. navigating in unknown environment. The agent
explores its environment by executing some actions
through trial-and-error interactions. After each
action, it receives from the environment a scalar
signal called reinforcement (reward / punishment)
signal that inform on the appropriateness of taking
a particular action in a given state. The
reinforcement can be positive (reward), negative
(punishment), or zero. The goal of RL is to
construct an optimal policy of actions for the agent
to follow based on observed interactions with the
environment. The agent is, thus, trained so that the
long-term return of the expected sum of
instantaneous reinforcement rewards is maximized.
However, a fundamental problem of standard RL
algorithms is that of the curse of dimensionality.
Although, many tasks defined over a finite state
space can be dealt with successfully in this
framework, in real applications, it would take an
enormous amount of time for these algorithms to
converge towards a suitable solution even for
moderately complex state space. There are two
major approaches that address the problem of slow

convergence in large finite state space or that try to
find solutions to problems that seem intractable in
complex environments with infinite set of states.
The first approach is to apply generalization
techniques, which involve approximations of the
value function or some tiling of the state space [1,
2]. The second approach is to provide the agent
with a priori information about the environment.
We can incorporate such a knowledge either by
modifying the reward function as in the reward
shaping techniques [3] or we can create macro-
actions from primitive ones as in [4]. Shaping can
be used to speed-up the learning process for a
problem or in general to help the reinforcement
learning technique to scale to large and more
complex problems. To use shaping in practice one
must know more about the problem at hand in
order to modify the reward function during the
learning phase. This may introduce the risk that the
agent learns a solution to a problem that is only
locally optimal. A macro-action is a way of
grouping primitive actions into a new one. For
example, if the primitive action is walk one step in
a given direction, a macro-action would be to walk
some steps to one direction followed by some other
steps to another direction. Macro-actions represent
the problem at different levels of abstractions. It
has been shown that given the right set of macro-
actions, a reinforcement learning agent can
increase its learning rate drastically [5]. Many
methods have been proposed to automate
combining primitive actions into macro ones [6, 7].
However, the way these macros are created has a
great influence on the final performance of the
learning process. A third approach, based on the
use of supervision techniques, has been followed
by a number of researchers to overcome some of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357353317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The 2006 International Arab Conference on Information Technology (ACIT'2006)

the difficulties that may arise in previous methods.
For instance, many techniques that combine the
two concepts of supervised learning and
reinforcement learning are well established in
robotics and social sciences. Among them, we may
cite imitation learning, LQ controller induction,
and learning by demonstration, [8] [9] [10].
Despite the many successful implementations, none
of these methods combines both kinds of learning
instantaneously. Either supervised learning
precedes RL during a separate training phase, or
else the supervisory information is used to modify
a value function rather than a policy.
In this paper, we propose a supervised approach to
the classical Q-Learning algorithm of the RL
paradigm [11, 12]. The structure of the learning
problem is modified by incorporating some a priori
knowledge provided by a supervisor during the
training phases. In this paper, we present a
supervised RL scheme that intends to improve
learning in complex environments. With this
approach, a supervisor adds structure to the
classical framework for RL by integrating on-line a
priori information or advices to the learning agent
and that may help speeding-up learning tasks. Two
examples are described to illustrate ideas behind
our algorithm by using two types of supervisors: a
human operator that issues intermittent advices to
guide an autonomous agent learning navigation in
unknown environment with obstacles, and a
feedback LQ controller that is easily designed yet
sub-optimal to help selecting appropriate actions
for balancing a nonlinear system (an inverted
pendulum on a moving cart). The remaining part of
the paper is organized as follows: Section 2
provides a succinct review of the RL principles
used to solve typical class of problems represented
by MDPs models. Section 3 focuses on the use of
supervisory techniques as applied to RL. This
structure seeks to improve the learning rate by
incorporating added knowledge to Q-learning
algorithm during the training process, i.e., on-line.
In sections 4 and 5 are described in more details the
insertion of two different supervisors into the RL
structure for two domains: one is learning a
navigation task in a grid world with obstacles and
the other is balancing an inverted pendulum on a
cart. Finally, a conclusion is drawn in section 6 and
avenues for future work are identified, therein, as
well.

 2. Brief Review of Reinforcement

Learning

RL is the problem of learning an optimal behavior
from direct interaction with an environment.
Following is a succinct account of a reinforcement
learning framework described from a Markov
Decision Process (MDP) perspective.

The interaction between the learner and the
environment having a MDP structure can be fully
described by a finite set of states S , a finite set of
actions A , and a real valued reward function, r
(s ,a) : S × A → R . At some discrete time step t ∈
T the learner is in some state st ∈ S where it can
choose to perform an action at ∈ As, where As ⊂ A
is the set of available actions in state s. Upon
execution of action at , it may result a state
transition whereby the learner will find itself in
state st+1 with probability P(st , at , st+1), which is
referred to as the transition probability. Arriving in
state st+1 the learner receives a reward rt (st ,at)
from the environment . Whereas the reward
function gives an indication of the immediate
utility of taking action a in state s and then
following some policy. A policy π is defined as a
mapping from states to actions. An optimal policy
is a policy that optimizes some function of reward
(either maximizing gain or minimizing cost) in the
long run.. Furthermore, it is helpful to define a real
valued function Q (s, a): S × A → R, named the
action-value function [11, 12]. The goal of RL is to
derive the optimal action-value function, Q* (s , a)
from these interactions, for taking action a in state s
and terminating in state s’:

 Q*(s , a) = E{r (s ,a) + λ maxa’ Q

*(s’, a’) } (1)

 where λ ∈ [0 , 1]is the discount factor, and E is
the expectation operator. An iterative version of the
optimal action-value function is given by the Q-
Learning algorithm []. All state-action pairs are
stored in a table, and their update takes place based
on experiences (s , a , r , s’) according to :

 Q(s , a) α (r (s , a) + λ maxa’ Q (s’, a’)) +
 (1 - α) Q (s , a) (2)

where α is the learning rate and gives a trade-off
between a new observation and the present
approximation . When the convergence of the Q-
Learning algorithm is reached, the policy that it
defines (referred to as the greedy policy) is simply
obtained by taking actions with maximum value
for the current state, given by :

 π (s) = argmaxa Q(s , a) (3)

However, there are some problems associated with
using Q-Learning on complex environments
defined by infinite state/action space. Learning
how to act in such domains is not guaranteed to
converge to an optimal policy. Therefore, a
modified structure of RL is well needed in order to
effectively adapt to complex problems. As stated
earlier, among many techniques investigated to
alleviate the RL deficiencies, methods that,
somehow, try to combine supervisory information
and RL form a natural trend in machine learning.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

This will be considered with more details in the
next section.

 3. Supervised Reinforcement Learning

Most work on reinforcement learning has
concentrated on the tabular case, in which the agent
has little or no prior knowledge when it begins to
act and learn in a finite state space. It is well known
that in all branches of machine learning that,
without some significant bias (or prior knowledge),
learning cannot be efficient or effective. In
reinforcement learning, the problem is even worse:
if an agent starts with no knowledge at all and
begins to act at random, it may take an extremely
long time for the agent to even encounter the parts
of its environment from which it can learn. For this
reason, we must find ways to introduce additional
knowledge into reinforcement learning agents.
One of the most appealing methods, which is
widely used in nature, is for an agent to learn by
watching and imitating other agents. This is a very
practical way for an agent to gain additional
knowledge and it has been the basis for some very
successful robot learning programs. However,
perception remains a big difficulty; most robots do
not have sufficiently advanced perception to be
able to sense what other robots are doing and
whether they are succeeding.
The least attractive, but perhaps most immediately
practical, method is for prior knowledge to be
given directly to the robot. This knowledge might
be in the form of partial or incorrect programs,
program decompositions, or local reinforcement
function. This initial knowledge, even if it is partial
or sub-optimal, may guide the robot to behave well
enough initially to learn effectively from its
environment.
Supervised reinforcement learning as another
method for improving the effectiveness of learning
is a rule rather than the exception in natural life.
With this approach, a supervisor adds structure to a
learning problem and supervised learning makes
that structure part of the reinforcement learning
framework. The supervisory part of this structure
could be of two kinds : a feedback controller that is
easily designed yet sub-optimal, and a human
operator providing intermittent command or
advices to an autonomous learning agent. The
supervisor agent or trainer may intervene at
different levels of abstraction during the learning
process: at state level by identifying some special
states as sub-goals [7] , at reward level by
modifying the reward function as in reward
shaping techniques, or at a more abstracted level by
providing macro-actions or partial behaviors to the
learning agent. Figure 1 illustrates the general idea
behind the supervised RL paradigm. Initially, the
learning agent starts exploring the environment by
executing some actions based on trial-and-error

interaction. After each action taken, it receives
from the environment a scalar signal that indicates
the value of that action with respect to the given
task goal to be accomplished. To speed-up the
learning phase and reducing the exploration time
needed to learn about the environment, a supervisor
is used to provide the learning agent with pertinent
information. Thus, the learning agent is instructed
to take some privileged actions in particular
situations, as specified by the supervising agent. In
doing so, integrating a priori information into the
learning agent policy leads to effectively directing
search during learning and allowing relatively
quick convergence to successful control policies.
A key feature of reinforcement learning is the
exploration/exploitation trade-off. To accumulate
as much reward as possible, a learner must exploit
the knowledge it already has. However, some
actions with small immediate reward may yield
even more reward in the long run, but to find out
about them the learner has to choose them, even
though they do not look promising. Therefore, the
choice of actions, between exploration or
exploitation, can have significant effect on the
behavior of the learner.

 In our approach, the supervised reinforcement
learning is implemented by indicating to the RL
agent, through a human operator, some interesting
parts of the environment state space , known as
‘way-point ’ states, in which the learning agent is
instructed to perform an appropriate given action
for navigation purposes . Whenever the agent
reaches one of these states it breaks down its usual
way of selecting actions (for instance, ε- greedy
policy is commonly used) and proceed its search by
following related actions fixed by the supervisor
agent. Another method that we also implemented,
here, is based on a direct training of the learning
agent by an LQ-controller (Linear Quadratic
controller) used a teacher. The learning agent try to
imitate direct actions of the controller by passively
observing the control signal of the latter. Thus, the
agent’s action policy follows, loosely speaking, the
same trend as that of the controller. The reason for

 Figure 1. Supervised RL structure

The 2006 International Arab Conference on Information Technology (ACIT'2006)

choosing this form of supervision is that
incorporating the trainer’s action, somehow,
directly into the learning agent’s building policy
will not affect the underlying structure of the
reinforcement learning process. Furthermore, due
to the generalization capability of the RL, it is
believed that the RL agent will well generalize to a
wide range of conditions than the LQ-controller
which can only perform robustly under limited
conditions (i.e. , constrained to work only near
around the equilibrium state of the linearized
model of the pendulum-cart system). The
conventional RL is slightly modified at the level of
the search procedure in the action space: it uses ε-
greedy policy, i.e. an action leading to the best
estimate of Q(s , a) function is chosen most of the
time (with a probability equal to 1 - ε). However,
a small fraction of the time, ε , an action is given
by the LQ-controller instead of being selected
randomly from the action space. The following
section describes in more detail the application
domains used to implement and illustrate the
effectiveness of the proposed approaches.

4. Experimental work and Results

The objective of these experiments is to compare
the performance of supervised RL as implemented
by our methods with that of conventional Q-
Learning algorithm. The two standard problems we
used for this purpose are often utilized for testing
learning algorithms performance: the navigation
learning problem of an autonomous agent and the
balancing problem of an inverted pendulum on a
moving cart.

4.1 Navigation task problem

Our first experiment demonstrates the integration
of intermittent user advices into an autonomously
navigating agent. The goal of the agent navigation
task is to learn to navigate in the unknown
environment and reach a specific target state in an
optimal manner. The environment, as shown in
Figure 2, is presented as a grid world of 10 × 10
square cells (where free cells are in yellow color
and obstacle cells or barriers in red). A state of
this environment is indicated by the location of a
cell. A set of waypoints are superimposed at
particular location on the grid. These waypoint
states represent user a priori information that gives
hints to the navigating agent. The action space is
composed of four actions: the agent has to move in
one of the four directions, namely, up, down, right
and left direction. The latter receives a reward of –
1 whenever it takes an action that makes a
transition to a free state. An attempt to move into a
wall or an obstacle is given a penalizing reward of -
100. For instance, the choice of actions, directed or

undirected, has a significant impact on the behavior
of the agent. Initially, the autonomous agent is in a
start position, referred to as the start state, and
seeks to attain a final state known as the goal state
by learning to avoid obstacles by its own. A
waypoint state is used to reduce the learning time
by directing exploration toward the goal state,
almost exactly, in the same way a tourist does
when he or she is exploring an unknown town with
a guide. At any given waypoint, the agent is forced
locally to follow a preferred action regardless of
any other action that may be available in that state.
However, in all other situations, the agent applies
an ε- greedy policy of action selection. In this
experiment, the whole system (learning agent and
grid-world environment) was implemented in
Matlab. The Q-Learning algorithm was slightly
modified by inserting a priori knowledge in its
structure. A discount factor , λ , equal to 0.95 was
used, and the ε- greedy policy was selected with a
probability of 1 - ε (where ε = 0.1). Given that
the state space is relatively small, we used a table-
based representation to store the Q-values. Figures
3 and 4 show the results obtained by our method
and by the standard Q-Learning algorithm. It is,
clearly, seen on both figures that the supervised RL
approach has better ability to learn the navigation
task than the unsupervised version of the Q-
learning method. The curves show that the
supervised agent needed less time to learn a good
policy: the number of episodes required for the
supervised agent to find the optimal path to the
goal is 20 whereas for the unsupervised agent it is
30. We, also, observe that the number of steps to
goal, obtained by our algorithm, is significantly
less than that realized by the standard Q-Learning.
In conclusion, w may say that the learning speed
and the number of succeeded steps to goal are
relatively improved by using a priori knowledge.

Figure 2. Test environment for the navigation learning task

The 2006 International Arab Conference on Information Technology (ACIT'2006)

 Figure 3 . Reinforcement Learning Performance with

supervision (green) and without (blue) for the navigation
learning task.

 4.2 Inverted Pendulum Balancing Task

In this experiment, we apply our algorithm to the
standard cart-pole learning task, a.k.a. inverted
pendulum problem, which involves learning to
stabilize the upward equilibrium state of the
inverted pendulum mounted on a mobile cart by
applying appropriate forces to the cart, see Figure 5.
The moving cart carries a pendulum that can
swing freely around its origin. This system is
described by the following nonlinear dynamic state
equation:

[]
pc

cp

pc

p

p

p

pc

cp

mm

xsignlmF
x

mm

m
l

lmmm

xsignlmF
g

+

−−+
=













+
−

−












+

+−−
+

=

)(.cos.sin...

cos.

3
4

.

.

.)(.sin...
.cossin.

2

2

2

&&&&

&&

&&&

&&

µθθθθ

θ

θµµθθ
θθ

θ

The position and velocity of the cart (x , x°) and

the pole angle and angular velocity (θ , θ°)
represent the state of the cart-pole system. The
specification for the simulated pole and cart are as
follows: length of the track, L = 4.0 m ; mass of the
cart , mc = 1.0 kg ; mass of the pole : mp = 0.1
[kg] ; half length of the pole : l = 0.5 [m] ;
gravity : g = 9.8 [m/s2]; coefficient of friction of
cart on track : µc = 0.0005 ; coefficient of friction
of pendulum on cart : µp = 0.000002

Only three actions F = {- 10 N, 0, + 10 N} were
available to the RL agent for this task.

Learning to control such a nonlinear system to
achieve a certain behavior is not an easy task. The
proposed algorithm uses an LQ-Controller for
supervisory purposes. This controller is applied to
the linearized model of the cart-pole system by
using Euler approximation technique with a time
step of 0.02 s and intervene only during the
balancing task of the pendulum (for │θ│≤ 15 °) .
The state space is partitioned into boxes of
equivalent states (12705 boxes were used for the
swinging up task and 270 boxes for the balancing
task).

Figure 4. Learning curves: Steps to converge to optimal
learned policy

Figure 5. The cart-pole system

The 2006 International Arab Conference on Information Technology (ACIT'2006)

The whole system (RL agent , pole-cart model and
LQ-controller) was implemented in Matlab. The
Q-Learning algorithm utilizes the same parameters
as indicted in the first experiment. At the beginning
of each episode, the pendulum is initialized in
downward position (angle θ = 180°) with zero
angular velocity. The agent has three available
actions corresponding to forces of - 10, 0, +10.
These actions are chosen small enough so that the
only way to move the pendulum higher and higher
is by swinging back and forth. The objective is to
find a policy that will drive the pendulum past the
upward position (the unstable equilibrium state)
and maintaining the pendulum in that position for
as long as possible.
As is illustrated by the learning curves depicted in
Figures 6 through 9, the supervised RL agent gives
better results in terms of convergence speed than
those obtained without any supervision, and in
terms of robustness to perturbation compared to the
LQ-Controller. Figure 6 shows that the learning
performance of the supervised agent is higher
compared to the unsupervised case. The obtained
curves are plotted by averaging produced success
during 50000 learning episodes. Results for the
pole balancing learning problem are depicted in
Figure 7 where it is shown that the proposed agent
has more success in maintaining the inverted
pendulum in the vertical position within an angle
less than 15°. If we looked at the magnitude of
command signal that are issued by the RL agent
and the LQ-controller we can easily notice on
Figure 9 that the latter produce action signals of
very high magnitude (much more greater than ± 25
N at the beginning of the balancing task) whereas
actions of the former are limited to ± 10 N only.
Thus, if the command signal is constrained to
acceptable values, i.e. ± 10 N for instance, it will
take a longer time for the LQ-controller to stabilize
the inverted pole. Figure 8 describes the reaction of
the two controllers to an impulsive perturbation
(the pole has been given an impulse of 75° / s) .
We can notice that the RL-based controller was
very rapid in, effectively, responding to this
perturbation by driving and stabilizing the pole to
its vertical position than it is done by the LQ-
controller (it takes 250 iterations for the controller,
i.e. 250 × 0.02s = 5 s, whereas for the RL agent it is
just 30 iterations , i.e. 30 × 0.02s = 0.6 s). Due to
its generalization property, the RL agent
demonstrates a better ability to adapt to strong
perturbations.

Figure 6. Swing up task. Curves show number of successful
steps for swinging up the pendulum versus learning episodes.

Supervised (blue curve) and unsupervised RL (green curve)

Figure 7. Balancing learning task. Curves show number of
successful time steps in balancing the pendulum in function of
learning episodes.

The 2006 International Arab Conference on Information Technology (ACIT'2006)

5. Conclusion

 Scaling-up reinforcement learning techniques to
complex environments is a challenging task for the
AI community. It was our aim here to propose a
simple method to accelerate convergence to an
optimal policy by using a priori knowledge about
the environment to be learned or by following
advice proffered by an external controller. This is a
modified version of the standard unsupervised RL
algorithms built by incorporating supervision
within this structure which suffers from low
convergence speed in domains with continuous
state space. The proposed approach has been
implemented on two different environments: one is
learning to freely navigate in a grid world
containing obstacle and the second task is to learn
solving the cart-pole balancing problem. Obtained
results are encouraging and, more importantly, they
show that supervisory information can really help
improving RL performance. However, it should be

noted that further work is needed to elucidate all
aspects of balancing the need for a priori
information integration and the need for sufficient
autonomy and exploration by the RL agent in order
to not degrade the learning agent’s performance.

REFERENCES

 [1] Sutton, R. S. and Barto, A. G., Reinforcement
Learning : An Introduction. MIT Press, Cambridge,
MA, 1998.
[2] Bertsekas, D. P. and Tsitsiklis, J. N. , Neuro-
dynamic programming, Athena Scientific, Belmont,
MA, 1995.
[3] Dorigo, M. and Colombetti, M. , Précis of
“ Robot Shaping : An Experiment in Behaviour
Engineering” , Adaptive Behavior , 5 (3 – 4).,
Précis of the book from MIT Press, Oct. 1997
[6] Dietterich, T. G. , Hierarchical reinforcement
learning with the maxQ value function
decomposition, Journal of Artificial Intelligence
Research, 13 : 227 – 303 , 2000
[4] Mc Govern A. , Sutton, R. S. and Fagg A. H. ,
Roles of macro-actions in accelerating
reinforcement learning, in Proceedings of the 1997
Grace Hopper Celebration of Women in
Computing, pages 13 -18, 1997
[5] Precup D. , Temporal abstraction in
reinforcement learning, PhD thesis, U. of
Massachusetts, Amherst, MA, 2000
[7] Mc Govern A. , Autonomous discovery of
temporal abstractions from interaction with an
environment, PhD thesis, U. of Massachusetts,
Amherst, MA, 2000
[8] Price B. , and Boutilier C. , Accelerating
reinforcement learning through implicit imitation,
Journal of Artificial Intelligence Research, 19 , pp.
569 – 629 , 2003
[9] Huber M. and Grupen R. A. , A feedback
control structure for on-line learning tasks,
Robotics and Autonomous Systems, 22 (3 – 4) ,
pp. 303 - 315 ,1997.
[10] Dixon, K. R. , Malak, R. J. and Khosla, P. K. ,
Incorporating Prior Knowledge and Previously
Learned Information into Reinforcement Learning
Agents, Technical Report, Institute for Complex
Engineering Systems, CMU, 2000.
[11] Watkins, C. J. C. H. , Learning from Delayed
Rewards, PhD thesis, Cambridge University, 1989
[12] Watkins, C. J. C. H. , and Dayan, P. , Q-
Learning, Machine Learning, 8, pp. 279 – 292,
1992

Figure 8. Reaction to a perturbation. RL-based controller
(green) and LQ-controller (blue)

Figure 9. Command signal evolution along iterations,
produced during the balancing task by our RL algorithm
(green) and LQ-controller (blue)

