
Understanding Interactive Dynamic Situations

Jérôme Thoméré, Simon King, Sophie Motet, François Arlabosse
Framentec-Cognitech

Tour Fiat - 92084 Paris La Defense - FRANCE
+33 (1) 47 96 46 62

email : jthomere@framentec.fr

Abstract
The system presented here is developed to interpret dy-
namic situations involving several moving objects in a
known environment. It is part of the ESPRIT VIEWS
project and processes data coming from sequences of
video frames. These numerical data are interpreted to
identify in real-time situations including complex inter-
actions between moving objects in the scene. The prin-
ciple is to compile pre-defined behaviours for individ-
ual objects then for groups of objects from elementary
events. The method used to accomplish this is based on
temporal networks and dynamic grouping. The applica-
tions studied here consists in the detection of incidents
on an urban roundabout.

1 Introduction
The issue is to interpret situations involving several
moving objects in a known scene. This can be used for
detecting particular situations (incidents in road traffic,
surveillance of sensitive zones...) or for off-line require-
ments such as statistics, planning checking...

The features of the scene observed should meet a cer-
tain number of conditions :

• The scene is known a priori. In particular, the spa-
tial layout can be decomposed into meaningful re-
gions.

• The objects are of known types.

• Information is given sequentially, each update giv-
ing the position, velocities or any other relevant
data about each object.

1.1 State of the art

Very little work has already been done on such subjects.
Most of them are related either to very constrained and
deterministic relationships or to individual behaviours.

In Karlsruhe University a similar approach has been
followed by Nagel’s work[9]. However as far as the con-
ceptual part is concerned, they are interested only in
individual behaviours especially regarding the comple-
tion of scripts (Nagel gives the example of a gas-station
scenario). Moreover, their linguistic approach gives a
more rigid use of time than in our work.

What are the essential problems posed by these kind
of applications ? Mainly they are of two types :

• Individual behaviours and a fortiori interactions
between behaviours are not predictable from a long
term point of view.

• They can a priori occur between all objects (espe-
cially if we consider “massive” behaviours such as
queuing) and it is not difficult to realise that this
can make the problem untractable.

2 The method: GEM
The aim of the method chosen was to cut the recogni-
tion process into different layers according to the level of
complexity of the items recognised. The general recog-
nition process adopted the following scheme :

Frames
↓

Events
↓

Individual behaviours
↓

Interactive situations
(group behaviours)

To summarise each step, let us say that the first step
is a very procedural process, based on geometrical and
kinematical models ; the second step that transform
events into behaviours is based on propagation of
temporal values in a constraint network. The last step
is very similar to the second one, except that it includes

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357353294?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


one of the keys to the overall method : the dynamic
grouping of objects into significant groups.

This approach was originally based on the A. Lan-
sky’s GEM framework [7, 8]. The ideas kept were no-
tably the event-based reasoning with temporal calculus
and the notion of groups to reduce complexity.

2.1 Events

We assume we have a temporal sequence of snapshots of
the world. In the application considered, these are the
result of vision processes from video frames, but this is
not compulsory. To transform such a sequence into indi-
vidual behaviours, the idea is to compute events, which
are considered to be instantaneous behaviours. As has
been mentioned above, this idea comes from GEM, al-
though it was originally intended for planning purposes.
Lansky wanted to find an alternative approach to the
usual state-oriented world models and claimed that it
was more natural and efficient especially for the repre-
sentation of concurrent actions.

One difference here with Lansky’s work is that we are
provided data which are represented in a basically state-
based way, since each element of the sequence (here
frames) gives information such as position, class, ve-
locity... of the objects seen in the scene.

To identify events from such data, the approach fol-
lowed here is totally procedural. We have identified
three main types of events for each of which we will
detail the method used, but this may depend on the
application.

• Kinematical events are events related to change
of velocity vector, either in direction or in speed
(start, stop, accelerate, decelerate, turn-right, turn-
left). They are calculated simply by comparing the
velocity of the object in the current frame and in
the previous one. For instance accelerate is com-
puted with the model

||!v2|| − ||!v1|| > θ

where θ is a threshold which may depend, for in-
stance, on the class of the object.

• Spatial events are events related to the spatial
environment (enter-region, exit-region). To com-
pute them, the spatial layout has been decomposed
into significant regions (see fig 1). Regions and seg-
ments of lines that separate regions are stored in a
spatial database . For each object the position of
the two last frames are extracted. If this last seg-
ment crosses a boundary segment events enter-
region and exit-region are identified. Since re-

Figure 1: Map of the scene

gions can be grouped into meaningful bigger re-
gions (e.g. a give-way region), these elemen-
tary events can lead to other spatial events such as
enter-giveway-region.

• Relational events are events associated to a given
object relative to other vehicles. They are consid-
ered as individual events in so far as the other ve-
hicle is here just considered as a part of the outer
world. In our application we have considered two
sort of relational events, according to the mode of
calculus.

– Kinematical.
For example the follow event model is

|!v1. !P1P2|
||!v1||.|| !P1P2||

> cos(
π

2
)

– Analogical
This type of event is recognised via a tessella-
tion of the spatial layout into cells[10]. They
use the “path” drawn by a vehicle when it
moves. An event such as follow-path means
that a vehicle is moving in the path of another
vehicle i.e. it is where the other one was in the
past. Such events are very useful in queuing
situations.

2.2 Temporal calculus

In order to build behaviours on events and other be-
haviours, we have to relate them. These relations are
mostly temporal and this idea was also presented by
Lansky in [7, 8]. This is why we build a network with
temporal operators as nodes. These temporal operators



represent laws of internal composition in an interval al-
gebra. This last point is the main difference with usual
temporal logics such as Allen’s[1, 2] but we are going
to develop this point later. We tried to use the TMM
of Dean[5, 4] but it appeared to be a bit too heavy and
powerful for what we needed[6, p7–24].

From the above events, we want to deduce be-
haviours. For instance we wanted to deduce the be-
haviour give-way from the sequence of events enter-
giveway-zone → decelerate → stop. But we also
need to infer behaviours from other behaviours. The
operations that will allow these inferences are tempo-
ral. That is to say we are going to build models such as

behaviour = event1 OP event2
or

behaviour = behaviour1 OP’ behaviour2
where OP and OP’ are temporal operators.

The semantics attached to a behaviour or an event
are temporal intervals. Therefore the interpretation of
OP’s are operators of laws of internal composition in an
interval algebra. This is really similar to Allen’s interval
logic. The only difference is that when we compare two
intervals, we do not only want to know if they satisfy the
relation, but we also want to know the temporal interval
during which this relation is satisfied. In other terms,
the composition of two temporal intervals must return
an interval and not a boolean. This implies that the re-
lations are potentially far more than thirteen. However
we did not see the need to implement all the possible
operators since most of the virtual temporal laws would
be absolutely useless. In practical applications we cre-
ate the operators we know we could need.

(100 100)

( )

(100 150)
until

150

(100 100)

(170 170)

(100 170)
until

200

Figure 2: Example of the until operator

Moreover, this algebra has also to be extended to take
the actual time into account. We need for instance the
operator until which means that a behaviour is true as
soon as an event1 occurs and ceases when an event2
occurs. However, as we want a continuous result, we
have to give a value to the result : the end of the interval
returned is given by an internal clock representing the
current time. In general the clock is used whenever
we want to reason on default assumptions : the absence
of an event/behaviour must be stamped.

2.3 Propagation in networks

To operate this temporal algebra we have chosen to
use a network approach. The networks we build
are therefore made of temporal operators connecting
events/behaviours together. They are the internal rep-
resentation of the above models. A network is attached
to one particular object (element or group) and compiles
all the behaviour models that are associated to this ob-
ject. As we will see later, networks can be connected to
one another.

Without going into the details of the implementa-
tion,in addition to nodes corresponding to temporal op-
erators (called Processors) there are nodes which are
used to store values propagated.

value

processor
2

processor
1

Figure 3: Nodes of the network

Temporal values (intervals) are propagated along the
arcs. Each processor has a defined set of terminals with
particular roles. On the other hand each value node may
be connected to as many other nodes as needed. Each
time a value comes through one connection of the nodes,
it is instantaneously propagated to the other ones.

The values may be more complicated than sim-
ple intervals. This occurs especially for attributed
events/behaviours such as enter-region (in this case
the attribute is the name of the region). Here the val-
ues propagated are sets of pairs <attribute, interval>.
We can have values such as ((r1 100 200) (r2 210 240)
(r3 250 310)). This does not change the fundamental
mechanism.

Internal rules are defined for each type of processor
node. It defines :

• Its triggering modes, i.e. which sets of its terminals
will trigger the computation.

• For each mode, the result of composition of inputs.

• For each mode, the terminal which will propagate
the result.

Contrary to what the figures may let us believe, there
is no absolute distinction between input nodes and out-
put nodes. The propagation of values could easily fol-
low any direction. This is a means for handling incom-
pleteness. For instance, if we know that behaviour1



is the result of composition of behaviour2 and be-
haviour3, that behaviour3 occurred, and also that
behaviour1 occurred, we could deduce the occurrence
of behaviour2 in spite of the absence of data on it.

Element 1

Element 2

Group

Figure 4: Connection of networks

2.4 Group behaviours

The above description is valid for network attached to
one particular object, but we can define interactions
between individual behaviours as behaviours of groups
of individuals. A simple example of such a group be-
haviour could be the blocking behaviour, when a ve-
hicle stops in front of another one, forcing it to stop. It
is obvious that we could not attach such a behaviour
to anyone of the two objects without considering at
least events attached to the other one. We need to con-
sider behaviours attached to both. Of course group be-
haviours will be computed from individual behaviours
(here, stopping for one object, following and stop-
ping for the other one). In this case a natural group
to be defined is a group of two objects following each
other.

So this means we connect individual networks to
group networks. How shall we make this connection ?
Are we going to connect every element to every other
element ? This would no doubt lead to combinatorial
explosion.For instance, if you considered all possible sets
of vehicles to test if they are queuing you would have to
examine 2n possibilities. In order to make the problem
tractable, we have to group a priori elements according
to their plausible relationships. That is the reason of
grouping.

2.5 Dynamic grouping

The idea of grouping comes also from GEM. Yet, in
[7, 8], the groups envisaged are static since they are a
priori defined.

As objects in the scene evolve with time (their state
changes, they appear, they disappear...), the grouping
must be dynamic. On which criteria shall this grouping
be based ? They must depend on the type of group
behaviour we want to recognise.

Three types of grouping are possible :

1. Centered around an object

2. Based on relational events

3. Based on the static environment

In the application we worked on, we have imple-
mented the two last ones. We therefore have three types
of groups :

• Binary groups They are built with the event fol-
low. Each time an object follows another one, they
are grouped together into a binary group.

• Queue groups They are built from the previous
type of groups. When two binary groups shares an
element, they form a queue group.

• Giveway groups Some of the big regions of the

spatial layout are labelled as give-way regions
i.e. they are regions where the vehicles must give
way. Some are labelled as priority regions in



which vehicles are given way. Moreover regions are
grouped in pair (give-way to priority). Each
pair will define a group. Of course the group will
be existent only if it has some vehicles inside both
regions.

There are three main gains with dynamic grouping :

• It reduces computational cost. This was the origi-
nal goal of such a construction.

• It allows to define and implement group behaviour
models.

• It generates new events. For example, the simple
fact of creating a new queue group can be con-
sidered as a queuing event.

The main challenge is to make dynamic grouping
truly real-time. The bottleneck is the passage from ele-
ments to groups.

3 The system : the VIEWS ap-
plication

What we are describing in this paper is only a part of
the overall VIEWS system. We are not going to describe
the perceptual part which uses artificial vision based
techniques.

Binary SpatialKinematic

Event Recognition

Behaviour
Recognition

Scene
Recognition

Spatial
Database

Dynamic
Grouping

Incident Detection

Perception Component

Events

Behaviours

Scenes

Compiled
Behaviours

Models

Incidents

Analogical
based

Figure 5: Diagram of the conceptual module

We can nevertheless summarise very quickly the pro-
cess preceding the conceptual module :

Currently the processes run through video frames. A
seeding subsystem based upon motion detection in the
frames gives a first indication of the location and type
of the vehicles present in the scene. A model matcher
alerted by the former identifies the objects and their
position in 3D.

This is where the conceptual module we describe in
this paper intervenes. The updates given by the model
matcher are for instance given every tenth frame. Each
one gives the classification, position, bounding box, di-
rection and velocity of each object recognised. They are
provided in the following format :

(FRAME ID 0 OBJECTS (

(OBJECT ID 4 CLASS xxx SCENE_POS (x y z)
B_BOX (...))
(OBJECT ID 3 ...)
...)

(FRAME ID 10 OBJECTS (...))

...

The conceptual module follows the architecture de-
scribed in Figure 5. For each object procedural event
recognition is performed, then seeded in the individual
network, then propagated in group networks (initially
formed with dynamic grouping).

The conceptual module computes individual events,
individual behaviours, group behaviours as described
above and detects pre-defined incidents in the following
list :

• Refusal of priority (fig6). A vehicle is exiting a give-
way region (defined in the spatial database) when
another is approaching and has slowed down.

• Formation of queues. Queues are defined as groups
of 3 or more vehicles each following each other.

• Queue breaking up.

• Objects leaving queues.

To relate briefly how the results appear, let us say
that during the session, we see vehicles moving on the
map (see fig7). Events are detected one or two updates
(about 1/2 seconds) after they occur. The dynamic
groups are graphically displayed on the map, linking
the objects together. When an incident is detected, the
zone in which it occurred is highlighted and the incident



is briefly related in a special window. It is always pos-
sible to come back to a former incident to get detailed
explanations or a replay of it. You equally have access
to the temporal history of elements and groups.

Figure 6: View of refusal of priority

So far, without any optimisation of the code or of
the algorithms implemented, the process is a bit slower
than real-time. It takes less than five times real-time
for around ten objects, six binary groups and one queue
present in the scene. It is relatively easy to see that
if the number of vehicles or groups is limited, all the
processes related to them can be parallelised. As we
have already said, the bottleneck is clearly the dynamic
grouping. A control component is planned to achieve
real-time.

4 Conclusion
What we have presented here is part of a vision sys-
tem, but it should be apparent that this is not the only
possible application. One could imagine a very similar
version of this system obtaining its information from
a radar,infrared,etc. It is even not compulsory for the
system to deal with spatial positions, the relationships
between elements might be completely different, such as
the components of an electric installation...

Nevertheless, the most immediate application seems
to be surveillance. All types of surveillance are poten-
tially relevant to this system, but it should be easier
in more constraint areas such as factories with robots.
Otherwise to start a non exhaustive list, we have :

• Road traffic control.

• Aircraft servicing verification.

• Surveillance of sensitive areas.

• Military applications.

One compulsory improvement is to make the system
truly real-time.As a first step, it can be parallelised on
objects and groups. The second and more difficult step
will be for dynamic grouping.

A complete system may use the information given by
the conceptual module to control the perceptual mod-
ule, regardless of its form. For instance if the conceptual
module knows what the class of an element should be,
it could inform the model-based module of this class.

The system should also be able to cope with incom-
pleteness. In the application we are currently looking
at, two interesting cases are envisaged : long-term oc-
clusions and temporal reasoning with missing events.

All these improvements are currently being worked
on and are part of what we have called the control
component.

5 Acknowledgements
This work was done principally at Framentec-Cognitech
(France). We would like to thank Andrew Toal (Queen
Mary and Westfield College - UK) for his valuable ana-
logical contribution and all the partners involved in the
VIEWS project (especially Marconi Radar and Control
Systems) for fruitful debates.

References
[1] James F. Allen. An interval based representation of

temporal knowledge. In IJCAI-81, pages 221–226.
IJCAI, Morgan Kaufmann, 1981.

[2] James F. Allen. Maintaining knowledge about
temporal intervals. Communications of the ACM,
26(11):832–843, November 1983.

[3] The ESPRIT P.2152 VIEWS Consortium. The
views project and wide-area surveillance. Technical
Report PM-02-ECCV92-01, The ESPRIT P.2152
VIEWS Consortium, April 1992.

[4] Thomas Dean. The tmm manual. Technical report,
Brown University, 1987.

[5] Thomas L. Dean. Temporal Imagery: An Approach
to Reasoning about Time for Planning and Prob-
lem Solving. PhD thesis, Yale University, Dept. of
Computer Science., May 1986.



Figure 7: Aspect of a VIEWS screen

[6] Vu Duong, Hilary Buxton, Richard Howarth,
Paddy Toal, Gong Shaogang, Simon King, John
Hyde, and Jérôme Thoméré. Spatio temporal rea-
soning (i). Technical Report PM-03-CEC.D203,
The ESPRIT P.2152 VIEWS Consortium, 1990.

[7] Amy L. Lansky. A representation of parallel activ-
ity based on events, structure, and causality. Tech-
nical Report 401, SRI International, AI Center, De-
cember 1986.

[8] Amy L. Lansky. Localized event-based reasonning
for multi-agent domains. Technical Report 423,
SRI International, AI Center, 1988.

[9] Hans-Helmut Nagel. The representation of situa-
tions and their recognition from image sequences.
In Congrès AFCET-RFIA, Lyon, pages 1221–1229,
November 1991.

[10] Andrew Toal. Spatio-temporal reasoning within
a traffic surveillance system. In G. Sandini, edi-
tor, ECCV 92, pages 884–892. DIST, University of
Genoa, Springer-Verlag, May 1992.


