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Abstract. This paper proposes a new method to split colour images into regions. The only input information is the image to
be segmented. Hence, this is a blind colour image segmentation method. It consists of four subsystems: preprocessing, cluster
detection, cluster fusion and postprocessing.
Proofs are given for the significant properties that we have found. It is not necessary to specify the number of regions in
advance, which is a significant improvement over the standard competitive-style strategies. Finally, simulation results are given
to demonstrate the performance of this method for some images.

1. Introduction

A fundamental task in computer vision is that of seg-
menting an image into meaningful regions. It must
be ensured that the resulting partition of the image is
formed by homogeneous and connected parts. Image
segmentation is a specific case of clustering, i.e., there
is a need to group a number of samples into clusters.
Hence, many general clustering algorithms may be ap-
plied to this problem, with some adaptations. There
is a wide range of clustering methods, which may be
classified in the following groups (see [21]):

a) K-means algorithm and competitive neural net-
works. Their drawback is the need to specify the num-
ber of clusters in advance.

b) Hierarchical clustering. The clusters are joined
together in several steps. This forms a tree of clusters.

c) Parametric density estimation. This method tries
to adjust the data to a mixture of g Gaussians. It has
problems if the data is not distributed that way.

d) Nonparametric density estimation. It is not as-
sumed that the distribution of the data is a mixture of
Gaussians.

These algoritms are used in a variety of tasks, and
not only in image segmentation. See [12] for an intro-
duction to cluster analysis theory.

∗Corresponding author.

The procedure we present segments images without
any extra information, i.e., it is a blind segmentation
procedure. Hence, this is a low-level procedure, where
a perfect segmentation can not be expected without fur-
ther knowledge [22,23]. Anyway, blind segmentation
algorithms are often used as the first step in the early
stages of a computer vision system, and there are many
different strategies to tackle this problem [10,11,15,16,
20,25,26].

Our image segmentation system is based on hier-
archical clustering. This approach has been studied
recently [13,19]. There are four stages: preprocess-
ing, cluster detection, cluster fusion and postprocess-
ing. The first step prepares the image by removing
the noise and detecting the edges. Then we extract a
large number of small clusters. The third step joins
these clusters into larger parts of a suitable partition of
the image. And finally, we remove any small spurious
regions.

This paper is organized as follows. We describe the
four subsystems of our segmentation system in Sec-
tions 2, 3, 4 and 5. We present some relevant proper-
ties of our method in Section 6, with the corresponding
formal proofs. Computational experiments are con-
sidered in Section 7. Finally, Section 8 is devoted to
conclusions.
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Fig. 1. Original image (left) and Wiener-filtered (right).

  

 

Fig. 2. Binary image with edges detected (left), with the small edges removed (right), and with the diagonals filled (below).

2. Preprocessing

In this phase we perform a number of tasks required
to prepare the image. This is needed by the following
steps of the algorithm.

We start by removing the noise with a suitable fil-
ter. In our experiments we have used an adaptative
Wiener filter for each of the three RGB colour channels.
We have estimated the noise power in 5 × 5 windows
(Fig. 1). If the images are not very noisy, this filtering
could be skipped. Anyway, the result of the edge and

group detection which follow is better if we filter the
image.

On the other hand, the group detection and fusion
stages need information about which pixels belong to
the edges of the image. This information is supplied by
preparing a binary image where the zeros mean edges
(see Fig. 2).

The edge detection has been performed with the
Canny method [7], which has been applied to the gray
level version of the Wiener filtered image. It is a mul-
tistage process. First a lowpass filter is used, and then
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Fig. 3. Snow leopard image and resulting segmentations.

the derivative is estimated (the higher values are candi-
dates to be edge pixels). Finally, the pixels with high
values of the derivative in the middle of an edge are
selected as edge pixels.

After the edges are detected, it is convenient to re-
move those edges with a small number of pixels, since
it is almost sure that they have been produced by noise.
We detect all the 8-connect regions formed by edge
pixels, and then we count the number of pixels of them.
Those regions with fewer pixels are removed. In the
experiments, the regions with less than M pixels have
been removed, where M is a fixed parameter.

Finally, we fill the edge diagonals so that the edges
disconnect the different parts of the background. This
is achieved by a morphological operator.

3. Cluster detection

The purpose of this subsystem is to obtain a set of
clustersA. LetS be the set of pixels of the image. Then
A is a partition of S. As previously noted, if we use
the k-means algorithm or competitive neural networks
the problem is that we can not know the number of
clusters in advance. This means, in competitive neural
networks, that it is impossible to say the number of units
(neurons) which best fits a particular image. See [1,14,
24,27] for a review of the competitive learning, and [4]
for a theoretical study of the method.

We solve this problem by using an oversized number
of units. This ensures that the clusters obtained are very

Fig. 4. Daisy image and resulting segmentations.

homogeneous. Every pixel x ∈ S is given by two im-
age co-ordinates and three colour co-ordinates. If we
select the RGB colour space we havex = (x, y, r, g, b).
Other colour spaces like CIE L*u*v* could be consid-
ered. We consider here only colour similarity, but this
can be easily extended to texture features. We modify
the weights wi by the stardard competitive algorithm:

wi(k + 1) =
{
αx + (1 − α)wi(k), if i wins
wi(k), otherwise (1)

where i ∈ {1, . . ., N}, and N is the number of units.
N is chosen a priori so that the number of regions of
the image is much greater. The winning neuron is the
one that has maximum activation potentialh i, where

hi =
5∑

j=1

wijxj −
5∑

j=1

w2
ij

2
(2)

Note that

hi > hj ⇔ ||x − wi|| < ||x − wj || (3)

The set of pixels Si associated with a particular unit
i is defined by

Si =
{
x ∈ S|i = arg min

j
||x− wj||

}
(4)

Unfortunately, it is not guaranteed that all S i are con-
nected sets of pixels. We will consider 8-connectivity
here, but this is not essential. A recent paper where
either four or eight connected components of images
are considered for segmentation can be found in [17].
We need to divide every Si into maximal 8-connected
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sets of pixels. This can be achieved by a blob colour-
ing strategy, i.e., by marking as “equivalent” all pairs
of neighbour pixels that belong to the same S i. It is
considered that the edge pixels can not belong to any
set. This is aimed to make the edge pixels separate sets
of connected pixels.

Then we compute the reflexive, symmetric and tran-
sitive closure of this relation. This closure is an equiva-
lence relation, and the corresponding partition is made
up of parts that are maximal 8-connected sets. Let L j

be the parts obtained, Lj ⊆ S∀j.

4. Cluster fusion

The 8-connected sets Lj will typically be too small,
because N is large. Then we need a fusion subsystem,
whose task is to merge those sets. We want the resulting
regions to be the definitive partition of the image, i.e.,
one that is acceptable to a human. In other words, our
goal is to join similar and adjacent sets of pixels.

We propose to compute the adjacency graph of the
clusters Lj , in the 8-neighbour sense. Again, the edge
pixels can not belong to any cluster, so they separate
clusters. Then we sort the pairs of adjacent clusters
by their degree of similarity. So, we need to define an
easily computable measure of homogeneity. First, we
calculate the centroid cj of cluster j as:

cj =
1

|Lj |
∑
k∈Lj

zk (5)

where zk = (rk, gk, bk) or zk = (L∗k, u∗k, v∗k) de-
pending on the colour space considered. Note that
L*u*v* space was designed to closely resemble the hu-
man perception of colour. Other spaces can be less ad-
equate, like RGB. Then we take the Euclidean distance
||ci − cj || as a measure of disparity between clusters i
and j. Next we sort the list of pairs of clusters by their
disparity. Finally, we reverse the list obtained to get
the final result.

After that, we build several partitions Pi of the im-
age, i ∈ {1, . . .,M}. All of them are the result of
joining some clusters together. First we get the ith rela-
tion Ri by taking the i/M more homogeneous pairs of
adjacent clusters. This can be implemented by having
a list of adjacent pairs of clusters sorted by the men-
tioned criterion. Then the ith partition Pi is obtained
by computing the reflexive, symmetric and transitive
closure of Ri. We denote the parts of the ith partition
as Qij . Note that every part of Pi is included into a
part of Pi+1, ∀i ∈ {1, . . .,M − 1}.

Fig. 5. Alien eye and resulting segmentations.

The final step of the algorithm is to decide which of
the partitions Pi is the best. We have selected three
possible options:

a) The pixels that lie in the same part should be simi-
lar. On the other hand, the pixels that belong to different
parts should be different. This approach comes from
cluster analysis (see [21]), and is known as the intra-
inter variation ratio. We need to define the disparity
measure between a pair of pixels. We take the same
option as in the previous method: the Euclidean dis-
tance in the colour space. Then we choose some sample
pairs of pixels at random, and compute the intra-part
variationas

δintra(Pi) =
1
N

∑
k,h∈Qij

||zk − zh|| (6)

where N is the number of samples collected, and the
pairs (k, h) are restricted to belong to the same part.
Note that there is no need to examine more than a small
fraction of the total number of pairs of pixels. The
inter-part variationis computed as

δinter(Pi) =
1
M

∑
k∈Qij

h∈Qim

j �=m

||zk − zh|| (7)

where M is the number of samples collected, and we
consider only the pairs of pixels that belong to different
parts. The intra-inter variation ratiois defined as
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Fig. 6. Red cells image and resulting segmentations.

p =
δinter

δintra
(8)

Note that if we have very homogeneous parts, δ intra

will be low. Conversely, if the parts are very different,
δinter will be high. So, p has a large value when the
partition is adequate. Then, we select the partition
which has the largest value of p.

b) We have found in experiments that δ inter varies
very slowly in the partitions that our procedure gener-
ates. This suggests to study only δintra. So, there is
no need to compute δinter, which is a important speed-
up. Furthermore, there is a typical value of δ intra that
indicates an optimal partition, which depends on the
colour space considered. We note this value δ0. Then
we say that the best partition is that which minimises
abs(δintra − δ0), where abs is the absolute value of a
real number.

c) Most of the functions proposed in literature to
evaluate an image segmentation depend on parameter
or threshold values, which must be adjusted by human
experience (see [28] for a survey on segmentation eval-
uation functions). These kind of functions are not suit-
able for incorporation in our system, which is fully au-
tomated. One of the few exceptions is theF (I) function
from Liu and Yang [18]. However, Borsotti et al. [5]
point out several drawbacks of this function. In par-
ticular, F (I) tends to evaluate segmentations with too
many small regions favorably. They propose two func-
tions F ′(I) and Q(I) as improved versions of F (I).
The three functions are defined as:

F (I) =
√
R

1000NM

(
R∑

i=1

e2
i√
Ai

)
(9)

F ′(I) =
1

10000NM

(
R∑

i=1

e2
i√
Ai

)

√√√√Max∑
A=1

[R(A)]1+1/A (10)

Q(I) =

√
R

10000NM

R∑
i=1

[
e2

i

1 + logAi
+

(
R(Ai)
Ai

)2
]

(11)

where N × M is the image size, R is the number of
regions, Ai is the area of region i, ei is the sum of
Euclidean distances between the RGB color vectors of
the pixels of region i and the mean color of region
i, R(A) is the number of regions having exactly area
A, and Max is the area of the largest region in the
image. The smaller the values of the functions, the
better the segmentation should be. The functionsF ′(I)
andQ(I) retain the advantages ofF (I) while removing
its drawbacks, so any of them can be used to select the
optimal partition in our system.

5. Postprocessing

This last stage has two tasks: the inclusion of the
edge pixels in the best parts, and the removal of too
small parts. The overall goal is to achieve a final seg-
mentation with no small regions nor isolated pixels.
Hence we look for a enhancement of the segmentation
obtained with the optimal partition computed by the
previous stage.

The inclusion of the edge pixels is performed by
taking each of them and merging them with the 8-
adjacent part with the nearest mean colour. This is
aimed to get the best possible definition of the region
borders.

The removal of small regions is an iterative proce-
dure. In each iteration, the first of all is to count the
number of pixels of the parts. Then we label all the
parts that do not reach the specified minimum number
of pixels, Z . For each labelled part, if there are non-
labelled parts (i.e., large parts) which are 8-adjacent
to it, then it is merged with the most similar part, in
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Fig. 7. Zebra image and resulting segmentations.

the mean colour sense. Otherwise, it is merged with
the labelled 8-adjacent part with the most similar mean
colour. This algorithms executes a fixed number of
iterations, K .

As we prove in Theorem 4, this algorithm has the
property that after the K iterations, the minimum pixel
number in a part is min(2K , Z). Consequently, if we
fix Z , it is easy to compute the number of iterations
needed to guarantee that there are no parts with less
than Z pixels: K = ceil(log2 Z), where ceil rounds
towards +∞. It can be observed that the number of
iterations needed is always small, since it depends on a
logarithm.

6. Properties

The proposed method has a number of interesting
properties, which are related to the cluster fusion and
the postprocessing. The following propositions and
theorems prove them.

Theorem 1. It holds thatPi ⊆ Pi+1,∀i ∈ {1, . . .,M−
1.}

Proof. By definition ofRi, Ri ⊆ Ri+1. Then
r(Ri) ⊆ r(Ri+1), wherer stands for the reflexive clo-
sure function. So we have thats(r(Ri)) ⊆ s(r(Ri+1))
and Pi = t(s(r(Ri))) ⊆ t(s(r(Ri+1))) = Pi+1,

wheres and t stand for the symmetric and transitive
closure functions, respectively.�

Corollary 1. Every part ofPi+1 can be obtained by
merging one or more parts ofPi.

Corollary 2. As i increases, the number of parts de-
creases towards 1.

Proposition 1. Every part ofPi has a spanning tree
composed by some of thei/M more homogeneouspairs
of adjacent clusters.

Proof. If two clusters a and b are in the same part
of Pi, there exists an undirected chain inRi that joins
them. By definition of Ri, that chain is composed by
pairs which fulfill the specified condition. Finally, by
algebra we know thatRi ⊆ t(s(r(Ri))) = Pi. �

Proposition 2. Every part ofPi is 8-connect, i.e.,
given two clusters which belong to the same part, there
exists a 8-connect path which joins them composed by
clusters of that part.

Proof. Again, if two clustersa andb are in the same
part ofPi, there exists an undirected chain inRi that
joins them. ButRi is composed exclusively by 8-
adjacent pairs of clusters.�

Theorem 2. Let X ′ = t(s(r(X))) be a partition,
whereRi ⊆ X ⊆ Ri+1. ThenPi ⊆ X ′ ⊆ Pi+1.

Proof. By a reasoning similar to that of Theo-
rem 1, t(s(r(Ri))) ⊆ t(s(r(X))) and t(s(r(X))) ⊆
t(s(r(Ri+1))). �

Theorem 3. Let i ∈ {1, . . .,M}. LetZ be a partition
whose parts are 8-connect, such thatPi ⊂ Z. Then
there exists(x, y) ∈ Z such that the homogeneity mea-
sure of(x, y) is less than the minimal homogeneity on
Ri.

Proof. If Pi ⊂ Z, then there exists(a, b) ∈ Z|(a, b) �∈
Pi. LetA andB be the parts to whicha andb belong,
respectively. We know thatA �= B, becausePi is a
partition. AsZ is also a partition, it holds thatA∪B is
contained into a single part ofZ. SinceZ is 8-connect,
there is a 8-connect chain which joinsa andb in Z. But
then there is a pair in this chain whose homogeneity is
less than the minimal homogeneity onRi, because if
this was false, then all the chain would be inRi. Then
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Fig. 8. Segmentations of the Fig. 1 original image.

a andb would be joined inRi, which leads toA = B.
�

Theorem 4. After the removal of small regions(post-
processing stage), every part has at leastmin(2K , Z)
pixels, whereK is the number of iterations andZ > 0
the minimum number of pixels requested.

Proof. By induction onK,

– Base case,K = 0. In this case there is no removal
of small regions, so there may be one-pixel parts,
1 = 20.

– Inductive hypothesis. We suppose that afterK
iterations all the parts have at leastmin(2K , Z)
pixels.

– Inductive step. In theK + 1-th iteration, we start
with parts with at leastmin(2K , Z) pixels, ac-
cording to the inductive hypothesis. We have two
cases:

a) If min(2K , Z) = Z, thenmin(2K+1, Z) =
Z, which means that in this iteration there
are no labelled regions and the conclusion
of the theorem holds.

b) Otherwise,min(2K , Z) = 2K . That is, we
start with parts of at least2K pixels. Ev-
ery part with less thanZ pixels merges with

another. In the worst case we would have
a part of exactly2K pixeles which merges
with other part of 2K pixels, to form a
new part with2 · 2K = 2K+1 pixels. As
2K+1 � mın(2K , Z), the conclusion of the
theorem holds.�

7. Experimental results

There is no standard quantitative measure to eval-
uate the performance of an image segmentation sys-
tem. Hence, we have tested our system in two differ-
ent ways. First, we have evaluated from a qualitative
point of view, i.e., we have given subjective comments
on the obtained segmentations. Then we have used
two known evaluation functions to compare our system
quantitatively with other proposals.

7.1. Qualitative evaluation of the method

We have selected some images to show our proce-
dure. A neural network with 50 units has been chosen
in the cluster detection stage. We have used the L*u*v*
colour space in this stage. We have considered the
intra-part variation approach (with δ0 = 38), the F ′(I)
approach and the Q(I) approach in the cluster fusion
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Fig. 9. San Francisco city view and segmentations.

Fig. 10. The ‘peppers’ benchmark image and resulting segmenta-
tions.

stage. The parameter values have been M = 15 for the
preprocessing, and Z = 20 for the postprocessing.

The computing time is not excessive: 10 seconds for
a 350× 300 image on a PC with a 500 MHz processor.
This is due to the fact that the image size has a small

effect in the complexity, since the pixels are processed
only in the two first stages of the system. The third
stage, which is the most time-consuming, only pro-
cesses regions of pixels. The last stage processes some
edge pixels, but there are a small amount of them, since
the proportion of edge pixels in an image is usually low.
So, the key factor is the number of regions, and not of
pixels.

We show in Figs 3 to 9 some original images with
their corresponding segmentations. From left to right
and from up to down we have: the original image,
the resulting segmentation with the intra-part variation
approach, the resulting segmentation with the F ′(I)
approach, and the resulting segmentation with theQ(I)
approch. The region boundaries have been drawn in
black. Next we comment the results shown in these
figures.

We can see on Fig. 3 an example with non-convex,
curve-shaped regions. Note that the dark regions are
recognised as distinct 8-connected regions. Also, the
background is identified as a unique 8-connected re-
gion. Only theF ′(I) approach has some spurious small
regions.

The background of Fig. 4 has been recognised as a
region, and so has been the center of the flower. The
system is able to separate most of the petals, except
where there is no clear separation. Again, the F ′(I)
approach has some spurious small regions.



E.L.- Rubio et al. / A four-stage system for blind colour image segmentation 135

Fig. 11. The ‘house’ benchmark image and resulting segmentations.

The segmentations of Figs 5 and 6 are very good for
the intra-part variation approach, while the other two
have some wrongly split regions.

The results of Fig. 7 are adequate for all the ap-
proaches. However, the intra-part variation function
gives clearer boundaries between regions. The orig-
inal image of Fig. 1 is segmented in Fig. 8, and the
main foreground regions are correctly detected, as well
as the background. There are only three small spuri-
ous regions when using F ′(I) and Q(I). The three
approaches show a small, elongated region at the top,
which reflects a sudden change in the color of the orig-
inal figure.

Finally, Fig. 9 has a large number of small regions of
different colours. Nevertheless, the sky and the sea are
recognised as two big regions. As in the previous fig-
ures, the intra-part variation result is the best, because
the skyline is better defined.

We may conclude that the three proposed approaches
yield good results in all the test images considered.
However, the intra-part variation function is slightly
better in some situations.

7.2. Quantitative evaluation of the method

We have designed a set of experiments to make a
quantitative comparison of our system with known ap-
proaches to blind image segmentation. All the param-
eter values and other choices of our segmentation sys-

Fig. 12. The ‘ strawberry’ benchmark image and resulting segmenta-
tions.

tem have been the same as in the qualitative evaluation
subsection.

We have selected three benchmark images [5,6] to
test our procedure. The original images and the ob-
tained results are shown in Figs 10 to 12. The ordering
of our three approaches in these figures is the same as
in the previous subsection. The values of the evalua-
tion functions F ′(I) and Q(I) for the segmentations of
the figures are shown in Tables 1 and 2. Please note
that these values have been computed after the post-
processing stage. This is the reason because some tab-
ulated values of F ′(I) for the Q(I) approach may be
better than those of F ′(I) approach, and vice versa. It
can be seen on these tables that intra-part variation and
Q(I) have approximately equal performance, and both
of them yield better results than F ′(I).

Borsotti et al. have evaluated with the functions
F ′(I) and Q(I) the results of four known image seg-
mentation systems [5]. The three images considered
here were used by them as benchmarks. The segmen-
tation systems are the following: the sart network by
Baraldi et al. [3] enhanced with a Hopfield network
based technique by Campadelli et al. [6], the compet-
itive learning scheme by Uchiyama and Arbib [2], the
histogram analysis by Carlotto [8] and the art2 system
by Carpenter and Grossberg [9]. Tables 3 and 4 list the
relative ranks of our proposals when compared with the
results of Borsotti et al. using F ′(I) and Q(I), respec-
tively. Note that the lower the number, the better our
approaches, i.e., a ‘1’ means that our proposal is better
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Table 1
Values of F ′(I) for the segmentations of Figs 10 to 12

Image Intra-part variation approach F′(I) approach Q(I) approach

peppers 67.97 87.43 77.39
house 24.46 9.24 8.53
strawberry 13.33 15.27 13.63

Table 2
Values of Q(I) for the segmentations of Figs 10 to 12

Image Intra-part variation approach F′(I) approach Q(I) approach

peppers 466.76 655.05 573.79
house 215.04 57.84 55.37
strawberry 91.20 100.68 82.51

Table 3
Relative ranks using F′(I) of the segmentations of Figs 10 to 12, with respect to
the segmentations considered by Borsotti et al

Image Intra-part variation approach F′(I) approach Q(I) approach

peppers 1 1 1
house 1 1 1
strawberry 1 2 1

Table 4
Relative ranks using Q(I) of the segmentations of Figs 10 to 12, with respect to
the segmentations considered by Borsotti et al

Image Intra-part variation approach F′(I) approach Q(I) approach

peppers 2 3 2
house 4 1 1
strawberry 2 2 2

than all the results reported by Borsotti et al., while a
‘5’ would mean that it is worse than all of them. It can
be seen that our methods have a good position in Q(I)
rankings, and they are the best in all F ′(I) rankings but
one. The F ′(I) function evaluates our methods more
favorably because our postprocessing stage removes all
the small regions by incorporating them in larger ones.
This means that all the terms in the summation under
the square root in (10) have a small value. Furthermore,
there is little impact in the overall colour error, which
is measured by the other summation in (10), because
the merged regions are small. The Q(I) function is
less sensitive to small regions, and this is the reason
because it ranks our procedures in lower positions than
F ′(I) does.

8. Conclusions

We have proposed a new system for blind colour
image segmentation. It has four subsystems: prepro-
cessing, cluster detection, cluster fusion and postpro-
cessing. The preprocessing uses a noise removing fil-
ter, an edge detection procedure and morphological

operations. A competitive neural network detects the
clusters, followed by and algorithm which obtains 8-
connected clusters. Then the clusters are merged to
form regions, with the help of an evaluation function.
Several suitable evaluation functions have been dis-
cussed. Finally, we remove the isolated pixels and
small spurious regions which may remain, in order to
get a better segmentation. We have given formal proofs
of the most relevant properties of the method. Experi-
mental results have been included for different real im-
ages, with qualitative and quantitative evaluations. The
obtained results show that our method yields good seg-
mentations with a small computational load, because
it processes whole regions, and not pixels, most of the
time.

References

[1] S.C. Ahalt, A.K. Krishnamurphy, P. Chen and D.E. Melton,
Competitive Learning Algorithms for Vector Quantization,
Neural Networks3 (1990), 277–290.

[2] M.A. Arbib and T. Uchiyama, Color image segmentation using
competitive learning, IEEE Trans. on Pattern Analysis and
Machine Intelligence16(12) (1994), 1197–1206.



E.L.- Rubio et al. / A four-stage system for blind colour image segmentation 137

[3] A. Baraldi and F. Parmiggiani, A neural network for unsuper-
vised categorization of multivalued input patterns: an applica-
tion to satellite image clustering, IEEE Trans. on Geoscience
and Remote Sensing33(2) (1995), 305–316.

[4] J.S. Baras and A. La Vigna, Convergence of Kohonen’s learn-
ing vector quantization, International Joint Conference on
Neural Networks3 (1990), 17–20. San Diego, CA.

[5] M. Borsotti, P. Campadelli and R. Schettini, Quantitative eval-
uation of color image segmentation results, Pattern Recogni-
tion Letters19 (1998), 741–747.

[6] P. Campadelli, D. Medici and R. Schettini, Color image seg-
mentation using Hopfield networks, Image and Vision Com-
puting15(3) (1997), 161–166.

[7] J. Canny, A Computational Approach to Edge Detection, IEEE
Trans. on Pattern Analysis and Machine Intelligence8(6)
(1986), 679–698.

[8] M.J. Carlotto, Histogram analysis using a scale-space ap-
proach, IEEE Trans. on Pattern Analysis and Machine Intelli-
gence9 (1987), 121–129.

[9] G.A. Carpenter and S. Grossberg, ART2: self-organization of
stable category recognition codes for analog input patterns,
Applied Optics26 (1987), 4919–4930.

[10] K. Chen, D.L. Wang and X.W. Liu, Weight Adaptation and
Oscillatory Correlation for Image Segmentation, IEEE Trans.
on Neural Networks11(5) (2000), 1106–1123.

[11] Y. Deng and B.S. Manjunath, Unsupervised Segmentation of
Color-Texture Regions in Images and Video, IEEE Trans. on
Pattern Analysis and Machine Intelligence23(8) (2001), 800–
810.

[12] B.S. Everitt, S. Landau and M. Leese, Cluster Analysis, 4th
ed. (2001). Oxford University Press.

[13] H. Frigui and R. Krishnapuram, Clustering by competitive
agglomeration, Pattern Recognition30(7) (1997), 1109–1119.

[14] A. Gersho, On the Structure of Vector Quantizers, IEEE Trans-
actions on Information Theory28 (1982), 157–166.

[15] R.H. Haralick and L.G. Shapiro, Image segmentation tech-
niques, Computer Vision Graphics Image Processing29
(1985), 100–132.

[16] K. Haris, S.N. Efstratiadis, N. Maglaveras and A.K. Katsagge-

los, Hybrid Image Segmentation Using Watersheds and Fast
Region Merging, IEEE Trans. on Image Processing7 (1998),
1684–1699.

[17] R. Jones, Connected Filtering and Segmentation Using Com-
ponent Trees, Computer Vision and Image Understanding
75(3) (1999), 215–228.

[18] J. Liu and Y.-H. Yang, Multiresolution color image segmen-
tation, IEEE Trans. on Pattern Analysis and Machine Intelli-
gence16(7) (1994), 689–700.

[19] T.P. Minka and R.W. Picard, Interactive Learning with a soci-
ety of models, Pattern Recognition30(4) (1997), 565–581.

[20] N.R. Pal and S.K. Pal, A review on image segmentation tech-
niques, Pattern Recognition26(9) (1993), 1294–1294.

[21] E.J. Pauwels and G. Frederix, Finding Salient Regions in
Images, Computer Vision and Image Understanding75(1/2)
(1999), 73–85.

[22] T. Pavlidis and Y.-T. Liow, Integrating region growing and
edge detection, IEEE Trans. on Pattern Analysis and Machine
Intelligence12(3) (1990), 225–233.

[23] J. Ton, J. Stricklen and A.K. Lain, Knowledge-based seg-
mentation of landsat images, IEEE Trans. on Geoscience and
Remote Sensing29(2) (1991), 222–232.

[24] N. Ueda and R. Nakano, A New Competitive Learning Ap-
proach Based on an Equidistortion Principle for Designing Op-
timal Vector Quantizers, Neural Networks7(8) (1994), 1211–
1227.

[25] D.L. Wang and D. Terman, Image Segmentation Based on
Oscillatory Correlation, Neural Computation9 (1997), 805–
836.

[26] J.Z. Wang, J. Li, R.M. Gray, G. Wiederhold, Unsupervised
Multiresolution Segmentation for Images with Low Depth of
Field, IEEE Trans. on Pattern Analysis and Machine Intelli-
gence23(1) (2001), 85–91.

[27] E. Yair, K. Zeger and A. Gersho, Competitive Learning and
Soft Competition for Vector Quantizer Design, IEEE Trans.
Signal Processing40(2) (1992), 294–308.

[28] Y.J. Zhang, A survey of evaluation methods for image seg-
mentation, Pattern Recognition29(8) (1996), 1335–1346.


