The Stanford OpenRoads Deployment

Kok-Kiong Yap~*, Masayoshi Kobayashic, David Underhill*,

Srinivasan Seetharaman’, Peyman Kazemian*, and Nick McKeown*
*Stanford University, ° NEC System Platforms Labs, © Deutsche Telekom R&D Lab
yapkke@stanford.edu, m-kobayashi@eo.jp.nec.com, dgu@cs.stanford.edu,
srini.seetharaman@telekom.com, kazemian@stanford.edu, nickm@stanford.edu

ABSTRACT

We have built and deployed OpenRoads [11], a
testbed that allows multiple network experiments
to be conducted concurrently in a production net-
work. For example, multiple routing protocols, mo-
bility managers and network access controllers can
run simultaneously in the same network. In this
paper, we describe and discuss our deployment of
the testbed at Stanford University. We focus on
the challenges we faced deploying in a production
network, and the tools we built to overcome these
challenges. Our goal is to gain enough experience
for other groups to deploy OpenRoads in their cam-
pus network.

Categories and Subject Descriptors

C.2.0 [Computer Systems Organization|:
Computer-Communication Networks—General

General Terms

Management, Measurement, Experimentation

Keywords
Wireless Testbed, OpenRoads, OpenFlow

1. INTRODUCTION

In a recent poster we described OpenRoads [11],
a way to create and run many network experiments
at the same time in a production wireless network.
In the spirit of GENI [6], OpenRoads allows both
the datapath and control of a wireless network to
be sliced, with each experiment running in its own
isolated slice. A user’s experiment might be a new
routing protocol, a mobility manager, a network
access controller, or an entire network management
system. We have created and tested a number of
experiments, and even run a class in which students
each created and deployed their own mobility man-
ager, all running simultaneously in the same net-
work to manage a different set of mobile devices.

In this paper, we describe our first deployment of
OpenRoads in the Gates Computer Science Build-
ing at Stanford. While it is too early to draw broad
conclusions about our operational experience with
OpenRoads,! we can describe how it works, and
the building blocks we have created to make the
network easier to deploy and manage. All of our
tools are (or shortly will be) available as open-
source utilities for the community to use, build-on
or modify. Our goal is to create a solid enough
testbed at Stanford so that others may easily de-
ploy OpenRoads networks on their campus. Our
hope is for this to be possible by the end of 2009.

OpenRoads is built on several key technologies:

e A sliceable datapath. In order to isolate one
experiment from another, OpenRoads is built

Permission to make digital or hard copies of all or part of this work for ;) OpenFlow [12]. Each experiment is allo-

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to

cated its own “flow-space” (a range of header
values), and may route and re-route packets

republish, to post on servers or to redistribute to lists, requires prior specific within its slice.

permission and/or a fee.
WINTECH’09, September 21, 2009, Beijing, China.
Copyright 2009 ACM 978-1-60558-740-0/09/09 ...$10.00.

"'We plan a follow-up paper to describe our expe-
riences.

Campus
Network

OpenFlow
Network

Tunnels

i
S |/

=

Dat apat h

\

@ FlowVisor

Experiment
Controllers

NOX Controller
A—

OpenFlow
Protocol
Messages

BER OpenFlow
Switch
Request
& Replies

Control Path

Figure 1: Testbed setup overview indicating the various management and monitoring com-

ponents

e A means to isolate slices. Isolation in the
sliceable datapath is enforced by FlowVisor [1,
18]. FlowVisor provides a means to virtualize
an OpenFlow network by ensuring that each
slice is isolated in its own flow-space.

e A means to deploy experiments in a produc-
tion metwork. Our network consists of 30
WiFi access points (APs) and a WiMAX base
station, all running OpenFlow. We deployed
OpenRoads in the Gates Computer Science
building at Stanford University, and many
users use it as their production network.

Paper outline: In the next section we describe
the OpenRoads testbed, and provide a basic in-
troduction to OpenFlow. § 3 describes how we
manage the testbed; in particular, how we combine
multiple WiFi networks in different parts of cam-
pus to act as “one” network; how we slice the WiFi
network; and how we manage IP addresses inside
a production network where we don’t control the
production DHCP server. In § 4 we describe how
we monitor the network. We describe related work
in § 5 before concluding in § 6.

2. THE OPENROADS WIRELESS
TESTBED AT STANFORD

OpenFlow Primer: OpenFlow is a feature that
is added to Ethernet switches, routers, WiFi APs
and WiMax basestations. OpenFlow provides a
standard, open interface to control the “flow-table”
that is present in almost all modern switches and

routers. The flow-table consists of multiple flow-
entries, each matching on a user-defined set of pack-
ets (e.g. all packets with a given IP prefix, a given
MAC address, a TCP port number, or some com-
bination). If a packet matches a flow-entry, then
it is processed according to a specific action: e.g.,
forward, drop, or modify the packet. OpenFlow is
described in [12], and several reference implemen-
tations are available at [14].

OpenRoads uses OpenFlow as a way to control
the APs and switches in the network datapath. For
example, packets are routed by setting up flow-
entries in a sequence of switches; flows can be re-
routed (e.g. by a mobility manager) by changing
the flow-entries using the OpenFlow API. Typi-
cally (though not always) flow-entries are estab-
lished reactively: When the first packet in a flow
arrives to the first switch or AP, it “misses” in the
flow-table and is sent to the controller, which de-
cides whether to accept the flow and if so, picks a
route and sets up flow-entries in the switches along
the path.? Once a flow has been established, all fu-
ture packets in the flow are forwarded in hardware.

An OpenFlow network needs a controller. In
principle, a researcher can use any controller that
speaks the OpenFlow protocol, including creating
their own controller. In practice, it is often eas-
ier to use an existing controller; in our network we
typically use NOX [7]. When a researcher creates
an experiment, they create a new module in NOX

2Flow-entries can also be setup proactively in ad-
vance.

to decide how flows are to be processed. An open-
source version of NOX is available at [13].

If we want to run multiple experiments at the
same time, we need a way to run multiple con-
trollers, and allow each controller to run different
parts of the network. OpenRoads uses FlowVi-
sor [18] to slice up the OpenFlow network, and
give each experiment its topology and “flow-space”
(i.e. range of header values) for their experiments.
FlowVisor connects a controller to a particular slice
of the network (a sub-topology and flow-space),
and runs a policy to isolate the controllers from
each other. The reader is encouraged to read [18]
to learn more about FlowVisor. In brief, FlowVisor
connects to a network of OpenFlow switches using
the OpenFlow protocol; all of the switches think
they are controlled by the FlowVisor. All the ex-
perimenters’ controllers connect to the FlowVisor,
but believe they are connecting to their own pri-
vate network of OpenFlow switches. The FlowVi-
sor manages the multiplexing and demultiplexing
of OpenFlow control messages to create the illusion
of multiple independent OpenFlow networks.

In our testbed, we deployed five 48-port 1GE
OpenFlow Ethernet switches, 30 WiFi APs, and 1
WiMAX basestation. The testbed includes switches
from NEC (IP8800) and HP (ProCurve 5406ZL);
both are OpenFlow-enabled through a prototype
firmware upgrade. The WiMAX basestation is built
by NEC. The WiFi APs are based on the ALIX
PCEngine boxes with dual 802.11g interfaces. The
APs run the Linux-based software reference switch
from the OpenFlow website, and are powered by
passive power over Ethernet to reduce the cabling
needed for our deployment. Figure 2 shows the
location of our these APs throughout the Gates
Computer Science building.

Figure 1 illustrates the various management and
monitoring components of our deployment at Stan-
ford University’s Gates building. We will elaborate
on each component later in the paper.

3. MANAGEMENT

3.1 Building an OpenRoads network
across campus

Figure 1 shows our OpenFlow-enabled WiF1i ac-
cess points spread across our campus network, in
many different locations. Ideally, we would like
to place APs anywhere in the network, and have
them automatically “connect” to the OpenRoads
testbed. This means two things have to happen:

W

Sth floor -
w

42%

Figure 2: Location of WiFi APs in Stanford
Gates building

The AP needs to become part of the OpenRoads
datapath, by tunneling flows to/from the rest of
the OpenRoads network; and it needs to associate
with, and be controlled by, the FlowVisor (and ex-
perimenters’ controllers behind it).

Wireless APs connect to the OpenRoads datap-
ath using a lightweight tunneling tool called Cap-
sulator [5]. As illustrated in Figure 1, the Capsula-
tor tunnels packets between the OpenFlow network
and wireless APs across the campus network. Its
operation is summarized in Figure 3.

A [s

OpenFlow
Network

“ Network

Decapsulated packet
switched in OpenFlow
network as per normal

packets

Packet received
by OpenFlow
switch/AP

Packet decapsulated
and forwarded to
specific port based

on tag

Packet encapsulated
and forwarded on
physical port

OpenFlow forwards
packets to virtual
interface

Figure 3: Example showing workings of

Capsulator

The Capsulator runs on every OpenRoads AP,
and creates a tunnel for packets to/from our testbed.
Capsulator is a user-space program that encapsu-
lates Ethernet frames in IP packets (protocol num-
ber = 245), and adds a 4-byte value to identify the

AP the packet came from (and hence the experi-
ment it belongs to).

Because our wireless APs only have one physi-
cal Ethernet port, the AP needs to distinguish the
tunneled traffic from regular production traffic (in
its location), and so we create virtual network in-
terfaces using TUN / TAP.

3.1.1 Cost of Tunneling

The Capsulator adds an overhead of 38 bytes
per packet (4 byte tag, 20 byte IP header, and 14
byte Ethernet header). If the size of an encap-
sulated packet exceeds the maximum transmission
unit (MTU), then the packet is fragmented, result-
ing in another 34 bytes of overhead. To charac-
terize the effect of this overhead in our traffic, we
collected an 8 hour trace which consisted of more
than 13.9 million packets. Only 0.31% of these
packets were fragmented.

We also quantify Capsulator’s impact on both
delay (using ping) and throughput (using iperf).
Both results are summarized in Table 1. Round-
trip time (RTT) is increased by 5.4% or 0.08 mil-
liseconds. TCP throughput is decreased by 3.4%
or 0.9 Mbps. This performance degradation is ac-
ceptable for our deployment.

Table 1: Capsulator overhead

Performance (£ std dev)
w/o Capsulator with Capsulator

RTT (ms)
Xput (Mbps)

1.39 £ 1.55 1.47 £ 1.27
26.4 £ 3.33 25.5 £ 3.31

3.2 Slicing an AP using SSIDs

OpenRoads allows an end-user to opt-in to (one
or more) experiments. We do this by assigning a
different SSID to each experiment, which requires
each AP to support multiple SSIDs.

An experiment runs inside its own “slice” of re-
sources - we create a slice from a combination of
multiple SSIDs and virtual interfaces. When a slice
is created, we create a virtual WiFi interface on
all of the APs in the slice’s topology, and assign
a unique SSID to the interface. Since each ex-
periment can be assigned a distinct SSID, users
may opt-in to an experiment by simply choosing
an SSID. Detailed instructions are provided in [2].

Using virtual interfaces is easy on our APs be-
cause they run Linux. Although more expensive
than the lowest-cost commodity APs (our box is
about $120; a low-cost WiFi today is about $40),

our APs cost less than a typical enterprise AP. And
the same idea could be applied to a low-cost AP
running OpenWRT.

Using a separate SSID for each experiment also
means each SSID can use different encryption and
authentication settings. However, all the virtual
interfaces are limited to use the same wireless chan-
nel and power settings.

Each SSID (i.e. slice) is part of a different ex-
periment, and is therefore attached to a different
controller (created by the experimenter). FlowVi-
sor is responsible for connecting each slice to its
own controller.

3.2.1 Performance with Multiple SSIDs

We were curious to know how multiple SSIDs
and virtual interfaces would affect the performance
of the wireless network (and hence degrade the per-
formance “isolation” between slices): To evaluate
the performance impact of having multiple SSIDs
on a single wireless interface, we compared the fol-
lowing cases with iperf [9]:

1 SSID 2 iperf sessions over a single WiFi inter-
face which have 1 SSID.

2 SSID 1 iperf session over each of 2 virtual WiFi
interfaces (on a single physical WiFi inter-
face). Each virtual interface has a different
SSID.

2 SSID 2 I/F (1ch) An iperf session over each
of 2 physical WiF1i interfaces. Both interfaces
are tuned to the same channel.

2 SSID 2 I/F (2ch) An iperf session over each
of 2 physical WiFi interfaces. The interfaces
are tuned to non-overlapping wireless chan-
nels (channel 1 and channel 11).

We ran 10 iperf sessions (each lasting 30 sec-
onds) and calculated the average throughput and
its standard deviation. Figures 4(a) and 4(b) show
the results of TCP and UDP measurements respec-
tively. Each figure shows both the total through-
put and standard deviation of the 2 iperf sessions
as well as the throughput of 1 iperf session. The
upper half of each graph corresponds to data being
sent from the AP to the wireless clients. The lower
half of each graph corresponds to data being sent
from wireless clients to the AP.

Surprisingly, regardless of which protocol (TCP/UDP)

is used or the direction traffic is sent, the 2 SSID
case outperforms the 1 SSID case. This is likely due

TCP Throughput {upperisend, lower:irecv}

48
2 flows 1

35 1 floyw ==

HH

]
25

28

H

HH

15

18

18

Througput [Hbs=]
(%]

15

H

28

HH

25

30

-

35

48
1 551D 2 551D 2 551D 2 551D
1 I/F 2 I/F 2 I/F

{ich? {2ch}

(a) TCP

UDP Throughput {upper:send, lowerirecv}

48
2 flows 1

35 1 flow ===

1]

25

28
15

18

18

Througput [Hbss]
Iz

15

28 ES

25

38

35

-
T
48
1 55ID 2 55ID 2 55ID 2 55ID

1 I/F 2 I/F 2 I/F
{ich? {2ch)

(b) UDP

Figure 4: Comparison of throughput in different multiplex methods

to the lack of coordination between the iperf ses-
sions. With 2 SSIDs, the AP allows 1 flow to max-
imize its throughput. Similarly, the 2 SSID case
always outperforms 2 SSID 2 I/F (1ch). In the 2
SSID 2 I/F (1ch) case, the 2 physical wireless inter-
faces are working independently and interfere with
each other as a result. The reason 2 SSID 2 I/F
(2ch) always works best is simple — 2 wireless chan-
nels can operate with minimal interference. This
result shows that using multiple SSIDs is a feasible
way of multiplexing the network if fairness is not an
issue. Otherwise, it might be better to use multiple
interfaces. Both methodologies can be supported
in our platform, since we have built them instead
of using commodity APs. Such a choice will have
to be made for each deployment of OpenRoads.

3.3 Allocating IP addresses to mobile
clients
Because OpenRoads is built on OpenFlow, it
doesn’t require all experiments to use IP — so long
as an experiment sends/receives legal WiFi pack-

ets, it is free to modify the layers above, so long
as an OpenFlow match can correctly match on the
headers. However, for the time being, we expect
most experiments to use IP, and therefore we need
to allocate an IP address to the users who opt-in
to an experiment; and make sure they are allowed
to opt-in.

It is likely that an OpenRoads network will be
created as part of, but not entirely replace, a cam-
pus production network. It will therefore be al-
located a set of IP addresses to manage indepen-
dently of the production network. For example,
in our network at Stanford, we were allocated a
block of IP addresses in the middle of a subnet for
allocation to our wireless clients, and the task of
serving these addresses was delegated to us. We
needed to verify that the requesting client is regis-
tered with the campus, and is eligible to opt-in to
an experiment. This cannot be easily achieved in a
conventional network because one cannot use mul-
tiple DHCP servers in a single broadcast domain.

We solved this using OpenFlow’s control of the
datapath. By redirecting DHCP requests we allow
two or more DHCP servers in the same broadcast
domain. Our approach is shown in Figure 1.

Using OpenFlow, we identify all DHCP requests
that are from one of our wireless APs. If not, then
the request is broadcast (as usual) and will be han-
dled by the campus-wide DHCP server. Other-
wise, we check the client’s registration via a whois
server or a list of MAC addresses registered with
us (other forms of authentication could easily be
implemented). If the client is registered, we for-
ward the request to our own DHCP server and an
IP address is allocated. Replies are unicast to the
client if possible, and otherwise they are broadcast
to all clients which made a recent request.

In our deployment, the DHCP runs on the same
physical server as the NOX controller, and is con-
nected to the network via a software Linux-based
OpenFlow switch on the same machine. By de-
ploying our own DHCP server we have been able
to customize the authentication process to fit our
needs.

3.3.1 Efficiency

To test the efficiency of our approach, we mea-
sured the response time of DHCP requests and
compare it to the campus-wide DHCP server. The
result, based on 100 samples for each network, is
presented in Table 2. Here, each DHCP request is
initiated after association with a new wireless AP.

Table 2: DHCP response time
Response Time (s)
Min Average / Std Dev Max
OpenFlow 1.08 3.52 / 3.09 22.1
Campus 11.16 14.0 / 1.59 19.6

We found that our DHCP service typically pro-
vides a faster response time than the campus-wide
DHCP server. While this result may be specific
to our deployment, it is encouraging that Open-
Flow can be used efficiently for a critical network
application.

4. MONITORING
4.1 Logging

Typical measurements of traffic statistics today
require “chokepoint(s)” through which all network
traffic must pass. This creates two obvious issues.

First, all traffic passing through the chokepoint(s)
will be logged, making opt-in more difficult. Fur-
ther, chokepoint(s) can be hard to implement in a
large network, especially if traffic is load-balanced
over multiple routers.

In contrast, we can collect data and statistics
from every single switch in an OpenFlow network
— there is no need for chokepoint(s). For example,
a flow expiration message is sent to the controller
whenever a flow has expired in the switch. This
message contains the duration of the flow as well
as how many packets and bytes were forwarded as
part of the flow. We can use this to determine the
average rate of the flow and what flows are in the
network at a given time. Also, our system logs in-
formation available via SNMP. For example, we log
the association of clients to WiFi APs. This infor-
mation can be used to reconstruct user movement
in the network.

Further, an OpenFlow network allows users to
opt-in for data collection. In fact, OpenFlow pro-
vides fine-grained control over not just whose traffic
can be logged, but also what traffic can be logged.
Using the FlowVisor, we can filter the flow expi-
ration messages seen by the controller of a given
researcher. This ensures that each researcher only
sees the permitted traffic of test subjects which
have opted-in. For example, Alice can allow an ex-
perimenter to solely access her HT'TP traffic statis-
tics without revealing other traffic statistics such
as SSH. This cannot be achieved via the common
SNMP available in switches.

In our system, we store information using the
SQLite database provided in NOX. This data is
periodically transferred into a MySQL database.
This is depicted in Figure 1. All logs are times-
tamped. This allows temporal aspects of data to be
explored and correlated. An application for which
we develop the graphing tool described in §4.2 for.

4.1.1 Use Case: Traffic Analysis

One way we use our logs is to analyze our net-
work’s traffic. Table 3 shows the breakdown of traf-
fic by type. This data was collected over a one week
period from May 31 to June 6, 2009. During this
time, 11 million flows transferred 263 million pack-
ets carrying 41GB of data. The average flow size
was about 22 packets and 159 bytes.

The dominance of HTTP and SSH traffic in our
wireless network is expected since two common ac-
tivities of our users include surfing the web and re-
motely accessing machines via SSH. The high level
of ARP activity is due to an ongoing experiment.

Table 3: Traffic breakdown of our network

Traffic Percent of Total
Type Flow Entries Packets Bytes
HTTP 31.07 41.57 T1.74
SSH 0.35 20.13 13.83
ARP 23.87 17.39 6.55
L2 Broadcast 4.90 1.37 1.90
NTP 0.37 1.45 1.51
DNS 29.35 1.36 0.96
Others 3.74 0.84 0.31
IMAP 1.15 0.05 0.02
OpenFlow 0.05 11.28 0.01
Not IP/ARP 0.01 0.00 0.00

The devices involved in the experiment use a prim-
itive networking stack which does not cache ARP
replies.

Also, the APs use in-band control to communi-
cate with their OpenFlow controller. Therefore,
the control traffic of the 30 APs is carried by the
backbone itself. This constitutes 11.3% of all pack-
ets, though these packets are generally small (they
are only 0.01% of all traffic by volume) and use only
0.05% of the available flow entries. Thus OpenFlow
has not added much overhead in terms of traffic
volume or flow entries in our deployment.

4.2 Data Graphing Tool

Distilling useful information from the large vol-
ume of data generated from our monitoring opera-
tions (from §4.1 and other sources) is difficult. Fur-
thermore, it is difficult to see the temporal vari-
ation and cross-correlation between different flow
characteristics. This is an important requirement
for accounting and debugging purposes. One way
to look at this is that it is a data visualization
problem. Being able to plot various metrics for vi-
sual inspection, along similar axes, would allow an
administrator to deduce the various activities and
issues in the network. It is also critical to observe
that it is not clear out front which metrics are in-
teresting.

In response to this data visualization problem,
we built a custom network data graphing tool (down-
loadable from [3]). This web-based tool extracts
and plots information from our MySQL database
(as shown in Figure 1). This graphing tool allows a
network administrator to compose custom queries

through a web interface, lookup the MySQL database,

and plot results on the returned webpage. The
query constraints can be any combination of the

following: a) Time range of the logs, b) Exact
value match on certain fields, ¢) Additional SQL-
like queries. Furthermore, the graphing tool pro-
duces three different types of plots and we expect
more to be added in the future. Such interactivity
is crucial since what the interesting metrics are is
not immediately clear, and therefore administra-
tors need to mix and match metrics on the fly for
visual inspection.

Figure 5 illustrates several plots which is gener-
ated through this tool’s web-based interface. For
example, one may compare the number of flows
and the numbers of users in the network to see if
a correlation exists at any point in time. The cu-
mulative distribution function of flow duration and
packet size can also be plotted to determine the me-
dian. Further, the interactive web interface allows
logged data to be efficiently analyzed and enhances
our ability to diagnose issues in the network.

4.3 Real-Time Visualization

In addition to a tool for graphing logged data
(84.2), we also developed an open-source, real-time
network monitoring tool [21] on top of the ENVI[20]
network visualization framework. This tool can vi-
sualize data supplied by the testbed’s OpenFlow
controller (§ 2). This includes the network topol-
ogy, link utilization, switch processor utilization,
user distribution, and even individual flows if de-
sired. This allows us to quickly visualize the cur-
rent state of the network.

Figure 6 shows a screenshot of this tool run-
ning in our testbed. The blue circles represent
core switches, while green circles represent wire-
less access points. The figure illustrates that a
large number of access points can be connected to
a single core switch — many of these are tunneled
from remote locations as previously discussed in
the tunneling section (§ 3.1). When the mouse
hovers over a node, additional information about
that node is shown. In the figure, the OpenFlow
datapath ID, switch vendor, IP address, hostname,
and switch version are shown for a particular ac-
cess point. Links are traffic-light color-coded based
on utilization — most links in this screen capture
are un-utilized (black).

This tool has proven to be particularly useful
for diagnosing network connectivity problems. The
alternative to using this tool is to manually ping
across each link in the network — a tedious process
in a large network.

5. RELATED WORK

g O 0 @

D:BS:

6:F3:A8

Nicira Networks, Inc. (172.27.74.216)

swan-apl7
0.8.9~1

Figure 6: A screenshot of the testbed using a network visualization tool we developed to
enhance our ability to monitor the testbed in real-time.

Accurate simulation or emulation of a wireless
environment is difficult. As a result, many wire-
less testbeds [4, 16, 17, 19, 25, 22, 10] have been
deployed. These testbeds concentrated on a wire-
less mesh network with little or no control of the
wired backbone. However, a lot of experience was
gained through deployment of these testbeds and
some has even led to companies (e.g., Meraki).

At the other end of the testbed spectrum are
wired networking testbeds such as VINI [23], Plan-
etLab [15] and Emulab [24]. These networks have
concentrated on enabling experimentation in wired
networks, with the exception of Emulab which in-
corporated some wireless APs. Hadjichrostofi et.
al. [8] also proposed an integrated wired-wireless
testbed which uses both VINI and ORBIT.

While our community has substantial experience
in deploying wired and wireless testbeds, deploying
a mobile wireless testbed which includes control of
a wired backbone network poses unique challenges
such as managing users and opt-in experiments. In
such a testbed, we can monitor actual user move-
ment and traffic. This in turn allows realistic eval-
uations of new protocols and research ideas.

6. CONCLUSION

To evaluate our research in mobile networks at-
scale we created OpenRoads. This testbed enables
us to experiment in our production network. It also
allows us evaluate and build upon one anothers’
work. We hope that lowering the barrier of entry
to realistic evaluation will help researchers innovate
in mobile wireless networks, and allow us to move
forward rapidly as a community.

Further, a common platform allows us to bene-
fit from one anothers’ experience and tools. Some
of these tools may cater to researchers, while oth-
ers may help manage production and experimental
networks. In a hope to seed this process, we have
open-sourced our tools for others to use and im-
prove upon. The tools were carefully constructed
to be complementary yet independent. As such,
each tool can be reused for other deployments.

Managing the network and supporting many live
experiments in the midst of a production network is
challenging. We hope our experience and tools will
make deploying similar testbeds in other campuses
easier.

7. ACKNOWLEDGMENTS

lineplot: Wed Jun-03 to Thu Jun-04 @ 1 sec interval

T T
n
=
2
=
—
[=]
E
=
=
| I I I I [I e I I I Iy |
01 2345678 910111213141516171819 202122 2:
Time (hr)
(a) Lineplot of number of flows
cdf: Wed Jun-03 to Thu Jun-04 @ 1 sec interval
1.0 T T T T
0.8 - —
0.6 | -
'S
[a]
[w]
0.4 u
0.2 —
0.0 ! I ! ! !
10 10! 10° 10° 10t 10° 10 10
Duration (secs)
(b) CDF of the duration of each flow
scatternlot: Wed lun-03 to Tue lun-09 @ 1 sec interval
Wed Thu Fri Sat Sun Mo
1e+06 F T T T T T .I‘ T T T T T T T T T T ¥

e v«m@ﬂvﬂ{

(| [l B il SRR Lid e
0 61218 0 61218 0 612180 61218 0 61218 0 6121¢F
Time (hr)

(c) Scatterplot of packet count of ssh flows (DstTcp-
Port=22)

Figure 5: Sample plots from the graphing
tool.

This work presented is made possible by many
people. We'd like to thank many people at NEC
and HP for providing prototype OpenFlow switches.
We are grateful to Ippei Akiyoshi for his contribu-
tion towards incorporating WiMAX into the net-
work. Advice from the people at Nicira has also
helped greatly, with Martin Casado and Ben Pfaff
deserving special mention. The assistance rendered
by Rob Sherwood, Miles Davis, Charlie Orgish,
Jiang Zhu and Guru Parulkar is also greatly ap-
preciated. This work is supported in part by a
grant from NSF.

8. REFERENCES

[1] FlowVisor. http://www.openflowswitch.
org/wk/index.php/FlowVisor.

[2] OpenFlow AP with PC Engine.
http://wuw.openflowswitch.org/wk/index.
php/OpenFlow_AP_with_PC_Engine.

[3] Openseer data graphing tool.
http://www.openflowswitch.org/wk/index.
php/Deployment.

[4] J. Bicket, D. Aguayo, S. Biswas, and
R. Morris. Architecture and evaluation of an
unplanned 802.11b mesh network. In
MobiCom ’05: Proceedings of the 11th annual
international conference on Mobile computing
and networking, pages 31-42, New York, NY,
USA, 2005. ACM.

[5] Tunneling Software for OpenFlow
Deployment. http://www.openflowswitch.
org/wk/index.php/Tunneling_Software_
for_OpenFlow_Deployment.

[6] GENLnet Global Environment for Network
Innovations. http://www.geni.net.

[7] N. Gude, T. Koponen, J. Pettit, B. Pfaff,

M. Casado, N. McKeown, and S. Shenker.
NOX: Towards and operating system for
networks. In ACM SIGCOMM Computer
Communication Review, July 2008.

[8] G. C. Hadjichristofi, A. Brender,

M. Gruteser, R. Mahindra, and I. Seskar. A
wired-wireless testbed architecture for
network layer experimentation based on orbit
and vini. In WinTECH ’07: Proceedings of
the the second ACM international workshop
on Wireless network testbeds, experimental
evaluation and characterization, pages 83-90,
New York, NY, USA, 2007. ACM.

[9] C. hsing Hsu, U. Kremer, and P. P. Models.
Iperf: A framework for automatic
construction of performance prediction

http://www.openflowswitch.org/wk/index.php/FlowVisor
http://www.openflowswitch.org/wk/index.php/FlowVisor
http://www.openflowswitch.org/wk/index.php/OpenFlow_AP_with_PC_Engine
http://www.openflowswitch.org/wk/index.php/OpenFlow_AP_with_PC_Engine
http://www.openflowswitch.org/wk/index.php/Deployment
http://www.openflowswitch.org/wk/index.php/Deployment
http://www.openflowswitch.org/wk/index.php/Tunneling_Software_for_OpenFlow_Deployment
http://www.openflowswitch.org/wk/index.php/Tunneling_Software_for_OpenFlow_Deployment
http://www.openflowswitch.org/wk/index.php/Tunneling_Software_for_OpenFlow_Deployment
http://www.geni.net

(10]

(11]

(12]

(13]
(14]

(15]

(16]

(17]

(18]

(19]

models. In In Workshop on Profile and
Feedback-Directed Compilation (PFDC, 1998.
R. P. Karrer, I. Matyasovszki, A. Botta, and
A. Pescapé. Experimental evaluation and
characterization of the magnets wireless
backbone. In WiNTECH ’06: Proceedings of
the 1st international workshop on Wireless
network testbeds, erperimental evaluation &
characterization, pages 26—-33, New York,
NY, USA, 2006. ACM.

Kok-Kiong Yap, Masayoshi Kobayashi, Rob
Sherwood, Nikhil Handigol, Te-Yuan Huang,
Michael Chan, and Nick McKeown.
OpenRoads: Empowering research in mobile
networks. In Proceedings of ACM SIGCOMM
(Poster), Barcelona, Spain, August 2009.

N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner. OpenFlow:
enabling innovation in campus networks.
ACM SIGCOMM Computer Communication
Review, 38(2):69-74, April 2008.

NOX: An OpenFlow Controller.
http://noxrepo.org/wp/.

The OpenFlow Switch Consortium.
http://wuw.openflowswitch.org.

An open platform for developing, deploying,
and accessing planetary-scale services.
http://www.planet-1lab.org/.

Purdue wireless mesh network.
https://engineering.purdue.edu/mesh.

D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu,
K. Ramach, H. Kremo, R. Siracusa, H. Liu,
and M. Singh. Overview of the orbit radio
grid testbed for evaluation of next-generation
wireless network protocols. In in Proceedings
of the IEEE Wireless Communications and
Networking Conference (WCNC), pages
1664-1669, 2005.

Rob Sherwood, Michael Chan,Glen Gibb,
Nikhil Handigol,Te-Yuan Huang,Peyman
Kazemian,Masayoshi Kobayashi, David
Underhill, Kok-Kiong Yap, and Nick
McKeown. Carving research slices out of
your production networks with OpenFlow. In
Proceedings of ACM SIGCOMM (Demo),
Barcelona, Spain, August 2009.

Y. Su and T. Gross. Validation of a
miniaturized wireless network testbed. In
WiNTECH ’08: Proceedings of the third
ACM international workshop on Wireless
network testbeds, experimental evaluation and

[20]

[21]

[22]

[25]

characterization, pages 25-32, New York,
NY, USA, 2008. ACM.

D. Underhill. An Extensible Network
Visualization and Control Framework.
Master’s thesis, Stanford University, May
2009.

D. Underhill et al. Network monitor.
http://wuw.openflowswitch.org/wp/gui.
N. H. Vaidya, J. Bernhard, V. V. Veeravalli,
P. R. Kumar, and R. K. Iyer. Illinois wireless
wind tunnel: a testbed for experimental
evaluation of wireless networks. In E-WIND
’05: Proceedings of the 2005 ACM
SIGCOMM workshop on Experimental
approaches to wireless network design and
analysis, pages 64-69, New York, NY, USA,
2005. ACM.

A virtual network infrastructure.
http://www.vini-veritas.net.

B. White, J. Lepreau, L. Stoller, R. Ricci,

S. Guruprasad, M. Newbold, M. Hibler,

C. Barb, and A. Joglekar. An integrated
experimental environment for distributed
systems and networks. In Proc. of the Fifth
Symposium on Operating Systems Design and
Implementation, pages 255-270, Boston, MA,
Dec. 2002. USENIX Association.

J. Zhou, Z. Ji, M. Varshney, Z. Xu, Y. Yang,
M. Marina, and R. Bagrodia. Whynet: a
hybrid testbed for large-scale, heterogeneous
and adaptive wireless networks. In
WiNTECH ’06: Proceedings of the 1st
international workshop on Wireless network
testbeds, experimental evaluation €
characterization, pages 111-112, New York,
NY, USA, 2006. ACM.

http://noxrepo.org/wp/
http://www.openflowswitch.org
http://www.planet-lab.org/
https://engineering.purdue.edu/mesh
http://www.openflowswitch.org/wp/gui
http://www.vini-veritas.net

	Introduction
	The OpenRoads WirelessTestbed at Stanford
	Management
	Building an OpenRoads network across campus
	Cost of Tunneling

	Slicing an AP using SSIDs
	Performance with Multiple SSIDs

	Allocating IP addresses to mobile clients
	Efficiency

	Monitoring
	Logging
	Use Case: Traffic Analysis

	Data Graphing Tool
	Real-Time Visualization

	Related Work
	Conclusion
	Acknowledgments
	References

