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1 Introduction

1.1. Evolutionary finance. Price changes and dividend payments of stocks
induce wealth dynamics among investors using different investment strate-
gies (portfolio rules) in financial markets. These dynamics act as a natural
selection force among the portfolio rules: some prove to be successful and
“survive,” the others fail and “become extinct.” The purpose of the present
paper is to investigate financial dynamics from this evolutionary perspec-
tive with the view to identifying evolutionarily stable (surviving) investment
strategies.

Evolutionary ideas have a long history in the social sciences going back
to Malthus, who played an inspirational role for Darwin (for a review of the
subject see, e.g., Hodgeson [20]). A more recent stage of development of these
ideas began in the 1950s with the publications of Alchian [2], Penrose [32]
and others. A powerful momentum to work in this area was given by the in-
terdisciplinary research conducted in the 1980s and 1990s under the auspices
of the Santa Fe Institute in New Mexico, USA, where researchers of differ-
ent backgrounds—economists, mathematicians, physicists and biologists—
combined their efforts to study evolutionary dynamics in biology, economics
and finance; see, e.g., Arthur, Holland, LeBaron, Palmer and Taylor [5],
Farmer and Lo [16], LeBaron, Arthur and Palmer [24], Blume and Easley [7],
and Blume and Durlauf [6].

Questions of survival and extinction of portfolio rules have been studied
by Blume and Easley [7, 8] and Sandroni [35] in general equilibrium models
with perfect foresight (e.g. Laffont [23], Ch. 6), where agents maximize dis-
counted sums of expected utilities. The selection results in their papers are
driven by the interplay between an agent’s consumption and the accuracy
of his subjective beliefs (i.e. the individual assessment of the probabilities of
future states). Most of the positive results in that line of research pertain to
the case where the markets under consideration are complete.

The approach to evolutionary finance pursued here marks a departure
from the conventional general equilibrium paradigm. In the model we deal
with, the asset market dynamics are determined by the dynamic interaction
of strategies of the traders, rather than by the maximization of utilities of
consumption. These strategies are taken as fundamental characteristics of
the agents, while the optimality of individual behavior and the coordination
of beliefs (or the lack of it) are not reflected in formal terms but are rather
left to the interpretation of the observed behavior. A specific feature of
this approach is that it rests only on model components that are observable
and can be estimated empirically, which makes the theory closer to practical
applications. Our modeling framework based on random dynamical systems
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is substantially new, but one can trace its connections to some classical ideas
in economics (we revive in the new context the Marshallian [28] concept of
temporary equilibrium—see the discussion in Section 2). Although one does
not require notions of rationality to define the dynamics, the main result has
a game theoretic interpretation (Theorem 2), which links this study to the
theory of market games—Shapley and Shubik [37] and others.

1.2. Outline of the model and the results. The model we propose
describes the dynamics of a financial market in which there are I investors
(traders) and K traded assets (securities). Asset supply is constant over time.
Each trader chooses a strategy prescribing to distribute, at the beginning of
each time period t = 1, 2, ..., his/her investment budget between the securi-
ties according to given proportions. Assets pay dividends, that are random
and depend on a discrete-time stochastic process of exogenous “states of the
world.”

The prices of the securities at each date are derived endogenously from
the equilibrium condition: aggregate market demand of each asset is equal to
its supply. Each investor’s individual demand depends on his/her budget and
investment proportions. The main results pertain to the case where these
proportions are fixed (constant over time). The budget of each investor
depends on time and random factors. It has two sources: the dividends paid
by the assets and capital gains. These two sources form investor’s wealth,
which is partially consumed and partially reinvested at each time period.
When analyzing the long-run performance of trading strategies, we assume
that the investment/consumption ratio is fixed and that it is the same for all
the traders.

We note that the class of fixed-mix, or constant proportions, strategies
we consider in this work is quite common in financial theory and practice;
see, e.g., Perold and Sharpe [33], Mulvey and Ziemba [29], Browne [10] and
Dempster [12, 13]. From the theoretical standpoint, this class of strategies
provides a convenient laboratory for the analysis of questions we are inter-
ested in. It makes it possible to formalize in a clear and compact way the
concept of the type of an investor which determines the evolutionary per-
formance of his/her portfolio rule in the long run. A similar approach is
common in evolutionary game theory (e.g. Weibull [40]), and in this paper
we initiate the analysis of our model by pursuing it in the context of an asset
market dynamics.

The strategy profile of the investors determines the “ecology” of the mar-
ket and its random dynamics over time. In the evolutionary perspective,
survival or extinction of investment strategies is governed by the long-run
behavior of the relative wealth of the investors, which depends on the com-
bination of the strategies chosen. A portfolio rule (or an investor using it)
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is said to survive if it accumulates in the limit a positive fraction of total
market wealth. It is said to become extinct if the share of market wealth
corresponding to it tends to zero.

An investment strategy, or a portfolio rule, is called evolutionarily stable
if the following condition holds. If a group of investors uses this rule, while
all the others use different ones, those and only those investors survive who
belong to the former group. If this condition holds regardless of the initial
state of the market, the investment strategy is called globally evolutionarily
stable. If it holds under the additional assumption that the group of investors
using other portfolio rules (distinct from the one we consider) possesses a
sufficiently small initial share of market wealth, then the above property of
stability is termed local.

We prove that among all fixed-mix (i.e. constant proportions) investment
strategies, the only globally evolutionarily stable portfolio rule is to invest
according to the proportions of the expected dividends. This recipe is similar
to the well-known Kelly’s principle of “betting one’s beliefs.” The present
paper contributes to that field of studies which originated from the pioneer-
ing work of Shannon1 and Kelly [22]—see Breiman [9], Thorp [39], Algoet
and Cover [3], Hakansson and Ziemba [18] and references therein. Most of
the previous work was concerned with models where asset prices were given
exogenously, or where the analysis was based on a reduction to such models
[7]. Our aim is to obtain analogous results in a dynamic equilibrium setting,
with endogenous prices. Intermediate steps towards this aim were made in
the previous papers [4] and [14]. Those papers dealt with a special case of
“short-lived” assets. Here, we extend the results to a model with long-lived,
dividend-paying assets and thus achieve the long-sought goal of providing a
natural and general framework for this class of results.

1.3. Plan of the paper. The structure of the paper is as follows.
Section 2 provides a rigorous description of the model, a brief outline of
which was given above. In Section 3, we formulate and discuss the main
results. Section 4 develops methods needed for the analysis of the model
under consideration. The Appendix contains proofs of the technical results
stated in Section 4.

1Although Claude Shannon—the famous founder of the mathematical theory of
information—did not publish on investment-related issues, his ideas, expressed in his lec-
tures on investment problems, should apparently be regarded as the initial source of that
strand of literature which we cite here. For the history of these ideas and the related
discussion see Cover [11].
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2 The model

2.1. Equilibrium dynamics of an asset market. In the model we deal
with, there are I ≥ 2 investors (traders) acting in a market where K ≥ 2
risky assets are traded. The situation on the market at date t = 0, 1, ... is
characterized by the set of vectors

(pt; x1
t , ..., x

I
t )

where pt ∈ RK
+ is the vector of market prices of the assets and xi

t =
(xi

t,1, ..., x
i
t,K) ∈ RK

+ is the portfolio of investor i. For each k = 1, ..., K,
the coordinate pt,k of the vector pt = (pt,1, ..., pt,K) stands for the price of one
unit of asset k at date t. The coordinate xi

t,k of the vector xi
t = (xi

t,1, ..., x
i
t,K)

indicates the amount of (“physical units” of) asset k in the portfolio xi
t. The

scalar product 〈pt, x
i
t〉 =

∑K
i=1 pt,kx

i
t,k expresses the market value of investor

i’s portfolio at date t.
Investor i’s behavior (and implicitly his/her preferences) at date t are

characterized by the demand function X i
t(pt, x

i
t−1), assigning to each pair

of vectors pt ∈ RK
+ and xi

t−1 ∈ RK
+ the vector xi

t = X i
t(pt, x

i
t−1) ∈ RK

+ . If
the investor possessed the portfolio xi

t−1 at date t − 1 (“yesterday”), then
he/she will be willing to purchase the portfolio xi

t = X i
t(pt, x

i
t−1) at date t

(“today”), provided that today’s asset price system is pt. All the coordinates
of X i

t(pt, x
i
t−1) are non-negative: borrowing and short sales are ruled out.

Define the aggregate demand function for the market under consideration
as

Xt(pt, xt−1) :=
I∑

i=1

X i
t(pt, x

i
t−1), (1)

where xt−1 = (x1
t−1, ..., x

I
t−1) is the set of portfolios of all the investors. It

is supposed that the supply of each asset in each time period is constant
and, for simplicity, normalized to 1. We examine the equilibrium market
dynamics, assuming that, in each time period, the demand on each asset is
equal to its supply:

I∑
i=1

X i
t,k(pt, x

i
t−1) = 1, k = 1, ..., K.

By using the notation (1) and e := (1, 1, ..., 1), the previous system of equa-
tions can be written in the vector form:

Xt(pt, xt−1) = e. (2)
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Each solution to this system, pt, is an equilibrium price vector. It will follow
from the assumptions we are going to impose that this vector exists, is unique
and is strictly positive for each xt−1 satisfying

xt−1 = (x1
t−1, ..., x

I
t−1) ∈ RK×I

+ ,

I∑
i=1

xi
t−1 = e. (3)

Equations (2) and

xi
t = X i

t(pt, x
i
t−1), i = 1, ..., I, (4)

define a dynamical system describing the evolution of the asset market. The
state of this dynamical system at time t = 1, 2, ... is a pair (pt, xt), where
xt = (x1

t , ..., x
I
t ) ∈ RK×I

+ is a collection of investors’ portfolios satisfying∑I
i=1 xi

t = e and pt is a non-negative K-dimensional vector whose coordinates
are the equilibrium asset prices prevailing at date t. For date 0, the set of
initial endowments (initial portfolios) x0 = (x1

0, ..., x
I
0) satisfying (3) is given.

The knowledge of the state xt−1 at time t − 1 allows us to compute the
equilibrium price vector pt at time t as the solution to equation (2). Based
on pt and xt−1, we can determine xt = (x1

t , ..., x
I
t ) from (4). By iterating this

procedure, we can generate a path

(p1, x1), (p2, x2), ... (5)

of the dynamical system in question.
In the model considered here, the demand functions X i

t(·, ·) of investors
depend on random factors (via random asset dividends). Therefore paths (5)
are random processes, and so we will deal with a random dynamical system.
We are interested, in particular, in the long-run behavior (as t →∞) of paths
of this system in connection with questions of evolutionary market dynamics.

2.2. Investors’ budgets and demand functions. In the model un-
der consideration, investor i’s budget at date t, on which his/her demand
depends, is given by

Bi
t(pt, x

i
t−1) := 〈dt, x

i
t−1〉+ 〈pt, x

i
t−1〉. (6)

There are two sources from which the budget is formed: the value 〈pt, x
i
t−1〉

of yesterday’s portfolio xi
t−1, expressed in terms of the current prices pt, and

the dividend

〈dt, x
i
t−1〉 =

K∑
k=1

dt,kx
i
t−1,k
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yielded by the portfolio xi
t−1. It is supposed that (one unit of) asset k pays

the dividend dt,k ≥ 0 at date t ≥ 1. The dividends depend on random factors
as described below.

Randomness is modeled as follows. There is a finite set S and a sequence
s0, s1, ... of random variables with values in S. The random parameter st

characterizes the state of the world at date t. The dividends dt,k of the assets
k = 1, ..., K are supposed to be functions of the history st := (s0, ..., st) of
states of the world prior to date t:

dt,k = dt,k(s
t) ≥ 0 (k = 1, ..., K, t = 1, 2, ...).

We impose the following fundamental assumptions regarding dt,k(·):
(d1) for all st, we have

∑K
k=1 dt,k(s

t) > 0;
(d2) for each k = 1, 2, ..., K, the expectation Edt,k(s

t) is strictly positive.

The first assumption means that always at least one asset pays a strictly
positive dividend. According to the second condition, for each asset k the
probability that it pays a strictly positive dividend is strictly positive.

We assume that the individual demand function of investor i is of the
form

X i
t,k(pt, x

i
t−1) = µi

t,k

Bi
t(pt, x

i
t−1)

pt,k

, (7)

where µi
t,1, ..., µ

i
t,K are nonnegative numbers satisfying

µi
t,1 + ... + µi

t,K < 1. (8)

According to (6) and (7), the trader acts in the market as follows. He/she gets
the dividends 〈dt, x

i
t−1〉 from the portfolio xi

t−1 and rebalances the portfolio
(by selling some assets and buying others) at the prices pt so that the new
portfolio xi

t = X i
t(pt, x

i
t−1) satisfies

pk
t X

i
t,k(pt, x

i
t−1) = µi

t,kB
i
t(pt, x

i
t−1).

Thus the portfolio xi
t is constructed by investing the fraction µi

t,k of the budget
Bi

t(pt, x
i
t−1) (given by (6))) into the kth position xi

t,k of xi
t.

If pt,k = 0, then the expression on the right-hand side of (7) is not defined,
and in this case we put X i

t,k(pt, x
i
t−1) = 0. We define the price pt,k of asset k

as zero if this asset is not traded; in this case, the holdings of this asset in
the portfolio of each investor are zero, i.e. X i

t,k(pt, x
i
t−1) = 0. This possibility,

however, will be excluded by the assumptions we are going to impose. Under
these assumptions all the equilibrium asset prices will be strictly positive.
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According to (8), the sum µi
t,1 + ... + µi

t,K is strictly less than one. This
means that not all of the investor’s budget is used for purchasing assets.
Some fraction of the budget is used for consumption. This fraction,

µi
t,0 := 1− (µi

t,1 + ... + µi
t,K), (9)

is the investor i’s consumption rate.
2.3. Investors’ strategies and the random dynamical system

they generate. The vectors µi
t = (µi

t,1, ..., µ
i
t,K) describing trader i’s invest-

ment decisions can depend on the observed states of the world: µi
t = µi

t(s
t).

A trading (investment) strategy of investor i is a sequence of non-zero non-
negative vector functions

µi
t(s

t) = (µi
t,1(s

t), ..., µi
t,K(st)), t = 1, 2, ...

satisfying (8) for all t and all realizations of the states of the world. As
long as the vectors dt = (dt,1, ..., dt,K), t = 1, 2, ..., depend on st, the de-
mand functions (7) also depend on st, and so the state (pt, xt) of the random
dynamical system under consideration is a function of the history st of the
states of the world from time zero to time t. If a strategy profile (µt(s

t))∞t=1 =
(µ1

t (s
t), ..., µI

t (s
t))∞t=1 of all the investors is fixed, the random sate of the mar-

ket (xt(s
t), pt(s

t)) (where xt(s
t) = (x1

t (s
t), ..., xI

t (s
t))) evolves according to

the following system of equations

pt,k =
I∑

i=1

µi
t,k〈dt + pt, x

i
t−1〉, k = 1, 2, ..., K; (10)

pt,kx
i
t,k = µi

t,k〈dt + pt, x
i
t−1〉. (11)

The vector pt = pt(s
t) ∈ RK

+ satisfying (10) exists and is unique. This
follows from the fact that, for each st and each vector xi

t−1 satisfying (3),
the operator transforming a vector p = (p1, ..., pK) ∈ RK

+ into the vector
q = (q1, ..., qK) ∈ RK

+ with coordinates

qk =
I∑

i=1

µi
t,k〈dt + p, xi

t−1〉 (12)

is contracting in the norm |p| :=
∑

k |pk|. Indeed,

|q − q′| =
K∑

k=1

|qk − q′k| =
K∑

k=1

|
I∑

i=1

µi
t,k〈p− p′, xi

t−1〉| ≤ (max
i

K∑
k=1

µi
t,k)|p− p′|,

(13)
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where maxi

∑K
k=1 µi

t,k < 1 (see (8)) and |〈p − p′, xi
t−1〉| ≤ |p − p′| because

0 ≤ xi
t−1,k ≤ 1 (see (3)).

The unique price vector pt ≥ 0 satisfying (10) is strictly positive if one of
the following conditions holds:

(I) µi
t,k > 0, 0 ≤ xi

0 6= 0;

(II)
∑I

i=1 µi
k > 0, dt,k(s

t) > 0, 0 ≤ xi
0 6= 0.

Indeed, if (I) is valid, then we have

pt,k =
I∑

i=1

µi
t,k〈dt + pt, x

i
t−1〉 ≥ min

j
(µj

t,k)
I∑

i=1

〈dt + pt, x
i
t−1〉 ≥

min
j

(µj
t,k)

I∑
i=1

〈dt, x
i
t−1〉 = min

j
(µj

t,k)〈dt, e〉 > 0

because 〈dt, e〉 =
∑K

k=1 dt,k > 0 by virtue of (d1). Once pt > 0, the budget of
each investor 〈dt + pt, x

i
t−1〉 is strictly positive, provided that 0 ≤ xi

t−1 6= 0.
Hence, xi

t > 0 for each t ≥ 1. (All inequalities between vectors are understood
coordinatewise.)

Suppose (II) holds. Then we have

pt,k =
I∑

i=1

µi
t,k〈dt + pt, x

i
t−1〉 ≥ (

I∑
i=1

µi
t,k) min

i
〈dt + pt, x

i
t−1〉.

If 0 ≤ xi
t−1 6= 0, then 〈dt, x

i
t−1〉 > 0, and so pt > 0. Furthermore, xi

t,k 6= 0 for

some k because xi
t,k = (pt,k)

−1
∑I

i=1 µi
t,k〈dt + pt, x

i
t−1〉 and µi

t,k > 0 for some
k.

The validity of at least one of conditions (I) or (II) is essentially necessary
for the dynamical system in question to be non-degenerate in the following
sense. If neither condition is supposed to hold, then it might happen that
pt,k = 0 for some t and k. Indeed, denote by ei the vector whose coordinates
are equal to 0 except the ith coordinate which is equal to 1 and put K = I =
2, xi

0 = ei, d1 = e1 and µi
1 = ei/2. Then p1,2 = µ1

1,2〈d1, x
1
0〉 + µ2

1,2〈d1, x
2
0〉 =

0 ·1+(1/2) ·0 = 0. Throughout the paper, we are going to deal with a model
in which condition (I) holds; condition (II) is provided here only for the sake
of completeness.

2.4. Market evolution and Marshallian temporary equilibrium.
In the model we deal with, the dynamics of an asset market is modeled in
terms of a sequence of temporary equilibria. At each date t the investors’
strategies µi

t,k, the asset dividends dt,k and the portfolios xi
t−1 determine—in

accordance with (10)—the asset prices pt = (p1
t , ..., p

K
t ) equilibrating aggre-

gate asset demand and supply. The asset holdings xi
t−1 = (xi

t−1,1, ..., x
i
t−1,K)
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play the role of initial endowments available at the beginning of date t. The
portfolios xi

t constructed according to (11) are transferred to date t + 1 and
then in turn serve as initial endowments for the investors.

The dynamics of the asset market described above are similar to the
dynamics of the commodity market as outlined in the classical treatise by
Alfred Marshall [28] (Book V, Chapter II “Temporary Equilibrium of De-
mand and Supply”). Marshall’s ideas were introduced into formal economics
by Samuelson [34], pp. 321–323. Equations analogous to (10), (11) were
derived in continuous time by Lotka [26]; they became the classics of math-
ematical evolutionary biology. In rigorous terms, the Marshallian concept of
temporary equilibrium, as it is understood in the present work, was in much
detail analyzed in an economics context by Schlicht [36]. The equations on
pp. 29–30 in the monograph [36] are direct continuous-time, deterministic
counterparts of our equations (10) and (11). They underlie the Marshallian
temporary equilibrium approach.

As it was noticed by Samuelson [34] and emphasized by Schlicht [36],
in order to study the process of market dynamics by using the Marshallian
“moving equilibrium method,” one needs to distinguish between at least
two sets of economic variables changing with different speeds. Then the
set of variables changing slower (in our case, the set xt = (x1

t , ...., x
I
t ) of

investors’ portfolios) can be temporarily fixed, while the other (in our case,
the asset prices pt) can be assumed to rapidly reach the unique state of partial
equilibrium. Samuelson [34] writes about this approach:

I, myself, find it convenient to visualize equilibrium processes of
quite different speed, some very slow compared to others. Within each
long run there is a shorter run, and within each shorter run there is
a still shorter run, and so forth in an infinite regression. For analytic
purposes it is often convenient to treat slow processes as data and
concentrate upon the processes of interest. For example, in a short
run study of the level of investment, income, and employment, it is
often convenient to assume that the stock of capital is perfectly or
sensibly fixed.

As it follows from the above citation, Samuelson thinks about a hierarchy
of various equilibrium processes with different speeds. In our model, it is
sufficient to deal with only two levels of such a hierarchy. We leave the
price adjustment process leading to the solution of the partial equilibrium
problem (10) beyond the scope of the model. It can be shown, however,
that this equilibrium will be reached at an exponential rate in the course
of any naturally defined tâtonnement procedure (cf. (12) and (13)). Results
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yielding a rigorous justification of the above approach, involving “rapid” and
“slow” variables, are provided in continuous time by the theory of singular
perturbations—e.g. Smith [38].

The concept of a temporary, or moving, equilibrium was introduced and
analyzed apparently for the first time by Marshall. However, in the last four
decades this term has been by and large associated with a different notion,
going back to Lindahl [25] and Hicks [19]. This notion was developed in
formal settings by Grandmont and others (see, e.g., the volume [17]). The
characteristic feature of the Lindahl-Hicks temporary equilibrium is the idea
of forecasts or beliefs about the future states of the world, which all the
market participants possess and which are formalized in terms of stochastic
kernels (transition functions) conditioning the distributions of future states of
the world upon the agents’ private information. A discussion of the modern
state of this direction of research is provided by Magill and Quinzii [27].

In this work, we pursue a completely different approach. Our model
might indirectly take into account agents’ forecasts or beliefs, but they can
be only implicitly incorporated into the agents’ investment strategies. These
strategies are the only agents’ characteristics we rely upon in our modeling.
Such characteristics can be observed and estimated based on the real market
data, and we formulate our results in the form of recommendations for an
investor what strategies to follow.

To distinguish the above approach to temporary equilibrium from the one
based on the Hicks–Lindahl concepts, we suggest the terms “Marshallian”
or “evolutionary temporary equilibrium.” The former term is motivated by
the already cited Marshall’s [28] ideas. The latter is justified not only by the
main focus of the model on questions of survival and extinction of portfolio
rules, but also by deep analogies between the dynamic processes governed
by the evolutionary equations (10), (11) and similarly described processes
in evolving complex systems in physics, mechanics, chemical kinetics, evolu-
tionary biology, ecology and other sciences—see, e.g., Hofbauer and Sigmund
[21].

3 The main results

3.1. Dynamics of market shares. Our further analysis will be based on
the following assumptions:

(i) the states of the world s0, s1, s2, ... form a sequence of independent
identically distributed (i.i.d.) elements in S such that the probability P{st =
s} is strictly positive for each s ∈ S;

(ii) the asset dividends dt,k(s
t) are functions of the current state st of the

11



world:
dt,k(s

t) = Dk(st),

where the functions Dk(s) ( s ∈ S, k = 1, 2, ..., K) do not depend on t, are
non-negative and satisfy

(D1)
∑K

k=1 Dk(s) > 0, s ∈ S;
(D2) EDk(st) > 0, k = 1, ..., K.

Each investor i chooses an investment strategy (portfolio rule) char-
acterized by a fixed non-negative vector µi = (µi

1, ..., µ
i
K) such that 0 <

µi
1+...+µi

K < 1. The numbers µi
k indicate the fractions of investor i’s budget

according to which he/she distributes wealth between the assets k = 1, ..., K.
These fractions remain the same over time, so that we deal here with simple,
or fixed-mix, investment strategies. In the remainder of the paper we will
consider only those portfolio rules (µi

1, ..., µ
i
K) which are completely mixed,

i.e., µi
k > 0 for each k = 1, ...K. Furthermore, we will assume that the

consumption rate µi
0 = 1 −

∑K
k=1 µi

k is the same for all the investors and
it is equal to 1 − ρ, where ρ is some given number in (0, 1). We suppose
that the consumption rate is the same for all the market traders because we
are mainly interested in comparing the long-run performance of investment
strategies. This can be done only for a group of traders having the same
consumption rate. Otherwise, a seemingly lower performance of a strategy
may be simply due to a higher consumption rate of the investor.

As long as the sum
∑K

k=1 µi
k does not depend on i and is equal to some

given number ρ ∈ (0, 1), it is convenient to characterise the investment deci-
sions of each investor i in terms of the vector of investment proportions

λi = (λi
1, ..., λ

i
K), λi

k := µi
k/ρ.

The numbers λi
k are strictly positive and λi

1 + ...+λi
K = 1. The set of vectors

whose coordinates satisfy these conditions will be denoted by ∆K
+ . From now

on, we will associate the terms “investment strategy” or “portfolio rule” with
such vectors of investment proportions.

If each investor i = 1, ..., I selects a portfolio rule λi = (λi
1, ..., λ

i
K) ∈ ∆K

+ ,
the strategy profile (λ1, ..., λI) determines, in accordance with equations

pt,k = ρ
I∑

i=1

λi
k〈dt + pt, x

i
t−1〉, k = 1, 2, ..., K, (14)

pt,kx
i
t,k = ρλi

k〈dt + pt, x
i
t−1〉, k = 1, 2, ..., K, (15)

equivalent to (10) and (11), the random path of market dynamics (pt, xt),
t = 1, 2, .... Both the prices pt = (pt,1, ..., pt,K) and the asset holdings xi

t =
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(xi
t,1, ..., x

i
t,K) depend on st—the history of the states of the world prior to

time t.
Denote by

wi
t := 〈pt + dt, x

i
t−1〉 (16)

investor i’s wealth available for consumption and investment at date t ≥ 1.
The total market wealth is equal to Wt =

∑I
i=1 wi

t. (From formulas (18)
and (19) below, it follows that Wt > 0.) We are primarily interested in
the long-run behavior of the relative wealth, or market shares, ri

t := wi
t/Wt

of the traders, i.e. in the asymptotic properties of the sequence of vectors
rt = (r1

t , ..., r
I
t ) as t → ∞. To analyze these properties, we will derive

equations allowing to compute the vector rt+1 based on the knowledge of the
vector rt and the state of the world st+1 realized at date t + 1.

From (14) we get

pt+1,k = ρ
I∑

i=1

λi
k〈dt+1 + pt+1, x

i
t〉 = ρ

I∑
i=1

λi
kw

i
t+1 = ρ〈λk, wt+1〉,

xi
t,k =

λi
kw

i
t

〈λk, wt〉
, k = 1, 2, ..., K,

where λk := (λ1
k, ..., λ

I
k) and wt := (w1

t , ..., w
I
t ). Consequently,

wi
t+1 :=

K∑
k=1

[pt+1,k + Dk(st+1)]x
i
t =

K∑
k=1

[ρ〈λk, wt+1〉+ Dk(st+1)]
λi

kw
i
t

〈λk, wt〉
. (17)

By summing up these equations over i = 1, ..., I, we obtain

Wt+1 =
K∑

k=1

[ρ〈λk, wt+1〉+ Dk(st+1)]

∑I
i=1 λi

kw
i
t

〈λk, wt〉
= ρWt+1 +

K∑
k=1

Dk(st+1).

This leads to the formula

Wt+1 =
D(st+1)

1− ρ
, (18)

where

D(st+1) =
K∑

k=1

Dk(st+1) (> 0) (19)

13



is the sum of the dividends of all the assets. Dividing both sides of equation
(17) by Wt+1 and using formula (18), we find

ri
t+1 =

K∑
k=1

[ρ〈λk, rt+1〉+ (1− ρ)
Dk(st+1)

D(st+1)
]

λi
kw

i
t/Wt

〈λk, wt〉/Wt

.

Thus we arrive at the system of equations:

ri
t+1 =

K∑
k=1

[ρ〈λk, rt+1〉+ (1− ρ)Rk(st+1)]
λi

kr
i
t

〈λk, rt〉
, i = 1, ..., I, (20)

where

Rk(st+1) =
Dk(st+1)

D(st+1)
, k = 1, ..., K,

are the relative dividends of the assets k = 1, ..., K.
Let ∆I denote the set of vectors r = (r1, ..., rI) ≥ 0 whose norm |r| :=∑
|ri| is equal to one. It can be shown (see Section 4 below) that, for any

rt = (r1
t , ..., r

I
t ) ∈ ∆I and any st+1 ∈ S, the system of equations (20) has

a unique solution rt+1 ≥ 0. We have rt+1 ∈ ∆I , which can be verified by
summing up equations (20) and using the fact that

∑K
k=1 Rk(s) = 1, s ∈ S.

We will denote the solution rt+1 to system (20) (as a function of st+1 and
rt) by F (st+1, rt). The mapping F (st+1, ·) transforms ∆I into ∆I . Thus we
deal here with a random dynamical system

rt+1 = F (st+1, rt) (21)

on the unit simplex ∆I . We will assume that a strictly positive non-random
vector r0 ∈ ∆I is fixed. Starting from this initial state, we can generate a
path (trajectory) r0, r1(s

1), r2(s
2), ... of the random system (21) according to

the formula
rt+1(s

t+1) = F (st+1, rt(s
t)), t = 0, 1, ...,

(If t = 0, we formally write r0 = r0(s
0) having in mind that r0 is a constant.)

Remark. The model for the dynamics of investors’ market shares we
have described above was proposed in [15]. Its presentation in this paper is
slightly different from that in [15]. (In particular, we here write ρ in place
of 1 − λ0 and λi

k instead of λi
k/(1 − λ0) in [15].) In the limit as ρ → 0, the

model reduces to the one studied in [14]. In particular, if ρ = 0, the random
dynamical system described by equations (20) coincides with that examined
in [14].

3.2. Survival and extinction of portfolio rules. We examine the
dynamics of the relative wealth ri

t, governed by equations (20), from an

14



evolutionary perspective. We are interested in questions of “survival and
extinction” of portfolio rules. We say that a portfolio rule λi = (λi

1, ..., λ
i
K)

(or investor i using it) survives with probability one in the market selection
process (20) if, for the relative wealth ri

t of investor i, we have limt→∞ ri
t >

0 almost surely. We say that λi becomes extinct with probability one if
limt→∞ ri

t = 0 almost surely.
A central role in this work is played by the following definition.

Definition 1 A portfolio rule λ = (λ1, ..., λK) is called globally evolution-
arily stable if the following condition holds. Suppose, in a group of investors
i = 1, 2, ..., J (1 ≤ J < I), all use the portfolio rule λ, while all the others,
i = J + 1, ..., I use portfolio rules λ̂i distinct from λ. Then those investors
who belong to the former group (i = 1, ..., J) survive with probability one,
whereas those who belong to the latter (i = J + 1, ..., I) become extinct with
probability one.

In the above definition, it is supposed that the initial state r0 in the
market selection process governed by equations (20) is any strictly positive
vector r0 ∈ ∆I . This is reflected in the term “global evolutionary stability.”
An analogous local concept (cf. [15]) is defined similarly, but in the definition
of local evolutionary stability, the initial market share rJ+1

0 + ... + rI
0 of the

group of investors who use strategies λ̂i distinct from λ is supposed to be
small enough.

Our main goal is to identify that portfolio rule which is globally evolu-
tionarily stable. Clearly, if it exists it must be unique. Indeed if there are
two such rules, λ 6= λ′, we can divide the population of investors into two
groups assuming that the first uses λ and the second λ′. Then, according
to the definition of global evolutionary stability, both groups must become
extinct with probability one, which is impossible since the sum of the relative
wealth of all the investors is equal to one.

3.3. Central result. Define

λ∗ = (λ∗1, ..., λ
∗
K), λ∗k = ERk(st), k = 1, ..., K,

so that λ∗1, ..., λ
∗
K are the expected relative dividends of assets k = 1, ..., K.

The portfolio rule (investment strategy) λ∗ is called the Kelly portfolio rule.
It prescribes to invest in accordance with the principle of “betting one’s
beliefs,” as formulated in the pioneering paper by Kelly [22], for further
studies in this direction see Breiman [9], Thorp [39], Algoet and Cover [3]
and Hakansson and Ziemba [18].

Recall that, according to a convention made in Section 2, we consider
in this paper only completely mixed portfolio rules. Therefore the vectors

15



λ and λ̂i involved in Definition 1 are supposed to be strictly positive. The
Kelly rule is completely mixed by virtue of assumptions (D1) and (D2).

Throughout the paper, we will assume that the functions R1(s), ..., RK(s)
are linearly independent (there are no redundant assets).

The main result of this paper is as follows.

Theorem 1 The Kelly rule is globally evolutionarily stable.

In order to prove this theorem we have to consider a group of investors
i = 1, ..., J using the portfolio rule λ∗, assume that all the other investors i =
J+1, ..., I use portfolio rules λi 6= λ∗ and show that the former group survives,
while the latter becomes extinct. In general, J should be any number between
1 ≤ J < I. We note, however, that it is sufficient to prove the theorem
assuming that J = 1, in which case the result reduces to the assertion that
r1
t → 1 almost surely. To perform the reduction of the case J > 1 to the

case J = 1, we “aggregate” the group of investors i = 1, 2, ..., J into one by
setting

r̄1
t = r1

t + ... + rJ
t .

By adding up equations (20) over i = 1, ..., J , we obtain:

r̄1
t+1 =

K∑
k=1

[ρ〈λk, rt+1〉+ (1− ρ)Rk(st+1)]
λ∗kr̄

1
t

〈λk, rt〉
,

where

〈λk, r〉 = λ∗kr̄
1 +

I∑
i=J+1

λi
kr

i.

Thus the original model reduces to the analogous one in which there are
I − J + 1 investors (i = 1, J + 1, ..., I) so that investor 1 uses the Kelly
strategy λ∗ and all the others, i = J + 1, ..., I, use strategies distinct from
λ∗. If we have proved Theorem 1 in the special case J = 1, we know that
ri
t → 0 almost surely for all i = J + 1, ..., I. Consequently, r̄1

t → 1, which
means that the group of investors i = 1, ..., I (which we treat as a single,
“aggregate,” investor) accumulates in the limit all market wealth. It remains
to observe that in the original model, the proportions between the relative
wealth of investors i, j who belong to the group 1, ..., J using the Kelly rule
do not change in time. This is so because for all such investors, the growth
rates of their relative wealth are the same:

ri
t+1

ri
t

=
K∑

k=1

[ρ〈λk, rt+1〉+ (1− ρ)Rk(st+1)]
λ∗k

〈λk, rt〉
, i = 1, ..., J.
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Consequently,
ri
t+1

ri
t

=
rj
t+1

rj
t

, i, j = 1, ..., J,

and so
ri
t+1

r1
t+1

=
ri
t

r1
t

=
ri
0

r1
0

, i = 1, ..., J.

Therefore ri
t = βir1

t (i = 1, ..., J) for all t, where βi = ri
0/r

1
0 is a strictly

positive constant. Since

r̄1
t =

J∑
i=1

ri
t = (

J∑
i=1

βi)r1
t → 1 (a.s.),

we obtain that ri
t → βi(

∑J
i=1 βi)−1 > 0 (a.s.) for all i = 1, ..., J , which means

that all the “Kelly investors” i = 1, ..., J survive.
Thus in order to prove Theorem 1 it is sufficient to establish the following

fact: if investor 1 uses the Kelly rule, while all the others use strategies
distinct from the Kelly rule, investor 1 is almost surely the single survivor in
the market selection process. We will prove this assertion in Section 4 based
on a number of auxiliary results. These results provide methods needed for
the analysis of the model at hand, and some of them are of independent
interest.

3.4. Random asset market game. We would like to discuss our
main result from a game-theoretic point of view. Consider a non-cooperative
game with I players (investors), whose strategies are completely mixed simple
portfolio rules λi ∈ ∆K

+ . A strategy profile Λ := (λ1, ..., λI) defines according
to (20) a random dynamical system generating for each i the random process
ri
0, r

i
1, r

i
2, ... of the market shares of trader i = 1, ..., I. Define the random

payoff function of investor i as Φi(Λ) := lim supt→∞ ri
t. The random variable

Φi(Λ) is always well-defined and takes values in [0,1]. These data define a
non-cooperative game with random payoffs, which we will call the random
asset market game. Consider the strategy profile Λ∗ := (λ∗1, ..., λ∗I) for which
λ∗i := λ∗ (the Kelly strategy profile).

Theorem 2 The Kelly strategy profile forms with probability one a symmet-
ric dominant strategy Nash equilibrium in the random asset market game.

The assertion of the theorem means that if one of the players i, say player
i = 1, employs the strategy λ∗ and all the other players use any strategies
λ2, ..., λI ∈ ∆K

+ then

Φ1(λ
∗, λ2, ..., λI) ≥ Φ1(λ

1, λ2, ..., λI)

17



for any λ1 ∈ ∆K
+ . In other words, investor 1 cannot be better off by deviating

from λ∗, regardless of what the other investors’ strategies are.
Theorem 2 is an immediate consequence of Theorem 1. Indeed, if at least

one of investors i = 2, ..., I uses λ∗, then any deviation of investor 1 from λ∗

will imply Φ1(λ
1, λ2, ..., λI) = 0, since in the limit all the market wealth will

be gathered almost surely by those who use λ∗. If only player 1 employs λ∗,
then Φ1(λ

∗, λ2, ..., λI) = 1, which is not less than Φ1(λ
1, λ2, ..., λI) because

this function takes values in [0, 1].
A static (one-period) version of the above game in which the payoff func-

tions were defined in terms of expected payoffs was considered in the paper
by Alós-Ferrer and Ania [1]. That paper dealt with a model involving short
lived assets (the case ρ = 0). The definition of the game in [1] does not
involve the asymptotic performance of investment strategies in the long run,
and in this connection, the results in [1] are different from ours.

4 Techniques for the analysis of evolutionary

market dynamics

4.1. The mapping defining the random dynamical system. In this
section we develop methods needed for the study of the model under consid-
eration. We here provide only the statements and discussions of the results;
their proofs are relegated to the Appendix. We begin with the analysis of
the mapping defining the random dynamical system (20).

Let ρ be a number satisfying 0 ≤ ρ < 1. For each s ∈ S, consider the
mapping F (s, r) = (F 1(s, r), ..., F I(s, r)) of the unit simplex ∆I into itself
defined by

F i(s, r) =
K∑

k=1

[ρ〈λk, F (s, r)〉+ (1− ρ)Rk(s)]
λi

kr
i

〈λk, r〉
, i = 1, ..., I. (22)

The fact that the mapping under consideration is well-defined is established
in Proposition 1 below. Fix some element s of the state space S and a vector
r = (r1, ..., rI) ∈ ∆I . Consider the affine operator B : RI

+ → RI
+ transforming

a vector x = (x1, ..., xI) ∈ RI
+ into the vector y = (y1, ..., yI) ∈ RI

+ defined by

yi =
K∑

k=1

[ρ〈λk, x〉+ (1− ρ)Rk]
λi

kr
i

〈λk, r〉
,

where Rk = Rk(s).
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Proposition 1 The operator B possesses a unique fixed point in RI
+. This

point belongs to the unit simplex ∆I .

Proposition 2 We have

I∑
i=1

|F i(s, r)〉−F i(s, r̄)| ≤ 1

(1− ρ)

I∑
i=1

K∑
k=1

| λi
kr

i

〈λk, r〉
− λi

kr̄
i

〈λk, r̄〉
|, r, r̄ ∈ ∆I . (23)

It follows from (23) and the inequalities

〈λk, r〉 =
I∑

i=1

λi
kr

i > 0, 〈λk, r̄〉 =
I∑

i=1

λi
kr̄

i > 0,

(holding because λi
k > 0) that the mapping F (s, r) is continuous in r ∈ ∆I .

For each s ∈ S and r = (r1, ..., rI) ∈ ∆I , define

gi(s, r) =
K∑

k=1

[ρ〈λk, F (s, r)〉+ (1− ρ)Rk(s)]
λi

k

〈λk, r〉
, i = 1, ..., I. (24)

It follows from (22) that if ri > 0, then

gi(s, r) =
F i(s, r)

ri

so that gi(s, r) is the growth rate of the ith coordinate under the mapping
F . Define

µ∗ = min
i,k

λi
k, µ∗ = max

i,k
λi

k, H = µ∗/µ∗.

The proposition below shows that the growth rate is uniformly bounded away
from zero and infinity.

Proposition 3 For each r ∈ ∆I and each i = 1, ..., I, we have

H−1 ≤ gi(s, r) ≤ H, s ∈ S. (25)

The function gi(s, r) is continuous in r ∈ ∆I .

4.2. Return on the Kelly portfolio. Define

f(s, r) =
K∑

k=1

[ρ〈λk, F (s, r)〉+ (1− ρ)Rk(s)]
λ∗k

〈λk, r〉
, (26)
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where λ∗k = ERk(s), k = 1, ..., K. Suppose, at date t, the relative wealth of
the investors i = 1, ..., I are given by the vector r = (r1, ..., rI) ∈ ∆I . Then
the (relative) asset prices at dates t and t + 1 are

pk = 〈λk, r〉, qk(s) = 〈λk, F (s, r)〉, (27)

provided the state of the world realized at date t + 1 is s. An investor’s
portfolio in which unit wealth is distributed between the assets according to
the proportions λ∗k, k = 1, ..., K, is called the Kelly portfolio. The (gross)
return on this portfolio, taking into account the dividends and consumption,
is given by the function f(s, r) defined by (26), which can be written as

f(s, r) =
K∑

k=1

[ρqk(s) + (1− ρ)Rk(s)]
λ∗k
pk

.

If one of the investors i = 1, ..., I, say investor 1, employs the investment
strategy λ∗ = (λ∗1, ..., λ

∗
K) (i.e., λ1

k = λ∗k, k = 1, ..., K), then the growth rate
of his/her market share is equal to f(s, r):

g1(s, r) = f(s, r)

(see (24) and (26)).
An important result on which the analysis of the model at hand is based

is contained in the following theorem.

Theorem 3 For each r ∈ ∆I , we have

E ln f(s, r) ≥ 0. (28)

This inequality is strict if and only if

〈λk, r〉 6= λ∗k for at least one k = 1, ..., K. (29)

This result means that the expected logarithmic return on the Kelly
portfolio (λ∗1, ..., λ

∗
K) is non-negative. It is strictly positive if and only if

(λ∗1, ..., λ
∗
K) does not coincide with the market portfolio (p1, ..., pK). Recall

that the total amount of each asset is normalized to 1, so that the total wealth
invested into asset k is pk = 〈λk, r〉. We emphasize that, in Theorem 3, it
is not assumed that any of the investors i = 1, ..., I uses the Kelly strategy.
The result is applicable without this assumption.

4.3. The Kelly portfolio and the market portfolio. According to
Theorem 3, the expected logarithmic return on the Kelly portfolio (λ∗1, ..., λ

∗
K)

is non-negative. It is strictly positive if and only if the market portfolio
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(p1, ..., pK) does not coincide with (λ∗1, ..., λ
∗
K). Of course it can happen at

some moment of time that (λ∗1, ..., λ
∗
K) = (p1, ..., pK). But can it happen that

the market portfolio coincides with (λ∗1, ..., λ
∗
K) at two consecutive moments

of time? In other words, can the system of equalities

qk(s) = pk = λ∗k (k = 1, ..., K, s ∈ S) (30)

hold? Recall that we denote by pk the price of the asset k corresponding to
the vector r = (r1, ..., rI) of relative wealth at some fixed moment of time,

pk = 〈λk, r〉 =
I∑

i=1

λi
kr

i

and by qk(s) the price of the asset at the next moment of time, when the
state of the world realized is s:

qk(s) = 〈λk, F (s, r)〉 =
I∑

i=1

λi
kF

i(s, r).

The question we formulated is important for the analysis of the asymptotic
behavior of the relative wealth of an investor using the Kelly rule. As Propo-
sition 4 below shows, the answer to this question (under the assumptions we
impose) is negative.

Recall that we assume that there are no redundant assets, i.e., the func-
tions R1(s), ..., RK(s) are linearly independent. This assumption will be used
in the following proposition.

Proposition 4 Suppose one of the following assumptions is fulfilled.
(a) All the investors i = 1, 2, ..., I use portfolio rules λi = (λi

1, ..., λ
i
K)

distinct from the Kelly rule λ∗ = (λ∗1, ..., λ
∗
K).

(b) All the investors i = 2, 3, ..., I use portfolio rules λi = (λi
1, ..., λ

i
K) dis-

tinct from the Kelly rule λ∗ = (λ∗1, ..., λ
∗
K), and the wealth share r1of investor

1 is less than one.
Then equations (30) cannot hold.

4.4. Limiting behavior of the Kelly investor’s relative wealth.
Let r0 be a strictly positive vector in ∆I . Define recursively the sequence of
random vectors r0, r1(s

1), r2(s
2), ... by the formula rt = F (st, rt−1). Then

rt = (r1
t , ..., r

I
t ) is the vector of relative wealths of the investors i = 1, ..., I

at date t, depending on the realization st = (s1, ..., st) of states of the world.
It follows from Proposition 3 that rt > 0 as long as rt−1 > 0 and so all the
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vectors rt(s
t) are strictly positive for all t and st. Consequently, the random

variables
ln ri

t = ln ri
t(s

t), i = 1, ..., I, t = 0, 1, ...

are well-defined and finite. Clearly, they have finite expectations because
each of them takes on a finite number of values (since the set S is finite).

Suppose investor 1 uses the Kelly rule

λ∗ = (λ∗1, ..., λ
∗
K) = (ER1(s), ..., ERK(s)).

Consider the growth rate r1
t+1/r

1
t of investor 1’s relative wealth. It can be

expressed as follows:

r1
t+1

r1
t

= g1(st+1, rt) =
F 1(st+1, rt)

r1
t

[rt = rt(s
t)]

(see (24)), and since the strategy λ1 of investor 1 coincides with the Kelly
rule λ∗, we have

r1
t+1

r1
t

= g1(st+1, rt) = f(st+1, rt), (31)

where f(s, r) is the function defined by (26).
Denote by ξt = ξt(s

t) the logarithm of the relative wealth of investor 1,
ξt = ln r1

t . We claim that the sequence ξt is a submartingale:

E(ξt+1|st) ≥ ξt. (32)

Indeed, we have

E(ξt+1|st)− ξt = E[(ξt+1 − ξt)|st] = E[(ln r1
t+1 − ln r1

t )|st] = E[(ln
r1
t+1

r1
t

)|st]

= E[ln f(st+1, rt)|st] = E[ln f(s, rt)]|rt=rt(st) =
∑
s∈S

π(s) ln f(s, rt(s
t)),

where π(s) > 0 is the probability that st+1 = s. The last two equalities in
the above chain of relations follow from the fact that the random variables
s1, s2, ... are independent and identically distributed. By virtue of Theorem 3,∑

s∈S π(s) ln f(s, rt(s
t)) ≥ 0, which proves (32). Since 0 < r1

t ≤ 1, we have
ξt ≤ 0, and so ξt, t = 0, 1, ..., is a non-positive submartingale. As is well-
known, a non-positive submartingale converges almost surely (a.s.) ξt → ξ∞
(a.s.) as t →∞ (see, e.g., [31], Section IV.5). This implies r1

t = eξt → eξ∞ >
0 (a.s.). This leads to the following result.

Theorem 4 The relative wealth of a Kelly investor converges a.s., and the
limit is strictly positive.
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It follows from Theorem 4 that an investor using the Kelly strategy sur-
vives with probability one. A key result of this study is Theorem 5 below,
asserting that if one of the investors uses the Kelly rule and all the others use
other strategies, distinct from the Kelly one, then the Kelly investor is the
only survivor in the market selection process. As has been noticed in 3.3,
this result immediately implies Theorem 1.

Theorem 5 Let the strategy of investor 1 coincide with the Kelly rule: λ1
k =

λ∗k, k = 1, ..., K. Let the strategies of investors i = 2, ..., I be distinct from
the Kelly rule:

(λi
1, ..., λ

i
K) 6= (λ∗1, ..., λ

∗
K).

Then the relative wealth r1
t of investor 1 converges to one almost surely.

We note that if ρ = 0, Theorem 5 follows from the main result of the
paper [14]. Methods developed in this work are different in some respects
from those in [14]. Although they are applicable to a substantially more
complex model, they do not give exponential estimates for the convergence
of the relative wealth process.

Appendix

The Appendix contains proofs of the results presented in the previous section.
Proof of Proposition 1. Consider any x, x̄ ∈ RI

+ and put y = B(x), ȳ = B(x̄). We
have

|y − ȳ| =
I∑

i=1

|yi − ȳi| = ρ

I∑
i=1

|
K∑

k=1

〈λk, x− x̄〉
λi

kr
i

〈λk, r〉
|

≤ ρ
K∑

k=1

I∑
i=1

|〈λk, x− x̄〉|
λi

kr
i

〈λk, r〉
= ρ

K∑
k=1

|〈λk, x− x̄〉|

≤ ρ
K∑

k=1

I∑
j=1

λj
k|x

j − x̄j | = ρ
I∑

j=1

|xj − x̄j | = ρ|x− x̄|.

Thus the operator B : RI
+ → RI

+ is contracting and hence it contains a unique
fixed point x ∈ RI

+. To show that x ∈ ∆I we sum up the equations

xi =
K∑

k=1

[ρ〈λk, x〉+ (1− ρ)Rk]
λi

kr
i

〈λk, r〉

over i = 1, ..., I and obtain

|x| =
K∑

k=1

[ρ〈λk, x〉+ (1− ρ)Rk]
∑I

i=1 λi
kr

i

〈λk, r〉
=

K∑
k=1

[ρ〈λk, x〉+ (1− ρ)Rk]
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= ρ|x|+ (1− ρ),

which yields |x| = 1. �
Proof of Proposition 2. For any r, r̄ ∈ ∆I and i = 1, ..., I, we have

|F i(s, r)− F i(s, r̄)| =

|
K∑

k=1

[ρ〈λk, F (s, r)〉+ (1− ρ)Rk(s)]
λi

kr
i

〈λk, r〉
− [ρ〈λk, F (s, r̄)〉+ (1− ρ)Rk(s)]

λi
kr̄

i

〈λk, r̄〉
|

≤ ρ
K∑

k=1

|〈λk, F (s, r)〉
λi

kr
i

〈λk, r〉
− 〈λk, F (s, r̄)〉

λi
kr̄

i

〈λk, r̄〉
|+ (1− ρ)

K∑
k=1

|
λi

kr
i

〈λk, r〉
−

λi
kr̄

i

〈λk, r̄〉
|

≤ ρ

K∑
k=1

〈λk, F (s, r)〉|
λi

kr
i

〈λk, r〉
−

λi
kr̄

i

〈λk, r̄〉
|

+ρ
K∑

k=1

|〈λk, F (s, r)〉 − 〈λk, F (s, r̄)〉|
λi

kr̄
i

〈λk, r̄〉
+ (1− ρ)

K∑
k=1

|
λi

kr
i

〈λk, r〉
−

λi
kr̄

i

〈λk, r̄〉
|

≤ ρ

K∑
k=1

|〈λk, F (s, r)〉 − 〈λk, F (s, r̄)〉|
λi

kr̄
i

〈λk, r̄〉
+

K∑
k=1

|
λi

kr
i

〈λk, r〉
−

λi
kr̄

i

〈λk, r̄〉
|.

By summing up these inequalities over i = 1, ..., I, we obtain

I∑
i=1

|F i(s, r)− F i(s, r̄)|

≤ ρ
K∑

k=1

|〈λk, F (s, r)〉 − 〈λk, F (s, r̄)〉|+
I∑

i=1

K∑
k=1

|
λi

kr
i

〈λk, r〉
−

λi
kr̄

i

〈λk, r̄〉
|

≤ ρ
I∑

i=1

|F i(s, r)− F i(s, r̄)|+
I∑

i=1

K∑
k=1

|
λi

kr
i

〈λk, r〉
−

λi
kr̄

i

〈λk, r̄〉
|,

which yields (23). �
Proof of Proposition 3. Since µ∗ ≤ 〈λk, r〉 ≤ µ∗, we obtain

H−1 =
µ∗
µ∗

≤
λi

k

〈λk, r〉
≤ µ∗

µ∗
= H,

which yields (25) because

K∑
k=1

[ρ〈λk, F (s, r)〉+ (1− ρ)Rk(s)] = ρ

K∑
k=1

〈λk, F (s, r)〉+ (1− ρ)
K∑

k=1

Rk(s) = 1.
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The function gi(s, r) is continuous in r ∈ ∆I , because F (s, r) is continuous in r
and 〈λk, r〉 ≥ µ∗ > 0 (see (24)). �

Proof of Theorem 3. 1st step. Multiplying both sides of (22) by λi
m and

summing up over i = 1, ..., I, we get

〈λm, F (s, r)〉 =
K∑

k=1

[ρ〈λk, F (s, r)〉+ (1− ρ)Rk(s)]
∑I

i=1 λi
kλ

i
mri

〈λk, r〉
(33)

(m = 1, ...,K). By using the notation introduced in (27), equations (33) and
inequality (28) can be written as

qm(s) =
K∑

k=1

[ρqk(s) + (1− ρ)Rk(s)]
∑I

i=1 λi
mλi

kr
i

pk
, m = 1, ...,K, (34)

and

E ln
K∑

k=1

[ρqk(s) + (1− ρ)Rk(s)]
λ∗k
pk

≥ 0. (35)

Condition (29) is necessary for this inequality to be strict (the “only if” part in
(29)) because pk = λ∗k for all k = 1, ...,K implies that the left-hand side of (35) is
zero.

2nd step. We fix the argument s and omit it in the notation. Consider the
K ×K matrix

A = (amk), amk = δmk − ρ

∑I
i=1 λi

mλi
kr

i

pk
,

where δmk = 1 if m = k and δmk = 0 if m 6= k. Put

b = (b1, ..., bK), bm = (1− ρ)
K∑

k=1

Rk

∑I
i=1 λi

mλi
kr

i

pk
. (36)

Then (for the fixed s) the system of equations (34) can be written

Aq = b (37)

[q = q(s)]. Indeed, the mth coordinate (Aq − b)m of the vector Aq − b can be
expressed as follows

(Aq − b)m =
K∑

k=1

amkqk − bm

= qm − ρ
K∑

k=1

qk

∑I
i=1 λi

mλi
kr

i

pk
− (1− ρ)

K∑
k=1

Rk

∑I
i=1 λi

mλi
kr

i

pk

= qm −
K∑

k=1

[ρqk + (1− ρ)Rk]
∑I

i=1 λi
mλi

kr
i

pk
,
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which is equal to the difference between the left-hand side and the right-hand side
of (34).

We can represent the matrix A as A = Id−ρC, where Id is the identity matrix
and

C = (cmk), cmk =
∑I

i=1 λi
mλi

kr
i

pk
.

The norm of the linear operator C is not greater than one, because

|Cx| =
K∑

m=1

|
K∑

k=1

cmkxk| ≤
K∑

m=1

K∑
k=1

cmk|xk| = |x|, (38)

where
K∑

m=1

cmk =
K∑

m=1

∑I
i=1 λi

mλi
kr

i

pk
=

∑I
i=1 λi

kr
i

pk
= 1. (39)

Consequently, the operator ρC is contracting, and so each of the equivalent equa-
tions Aq = 0 and q = ρCq has a unique solution. Thus the matrix A is non-
degenerate, and the solution to the linear system (37) can be represented as
q = A−1b.

3rd step. Define

ck = ρ
λ∗k
pk

, d = (1− ρ)
K∑

k=1

Rk
λ∗k
pk

. (40)

Then we have

〈c, q〉+ d =
K∑

k=1

[ρqk + (1− ρ)Rk]
λ∗k
pk

. (41)

This expression appears in (35), and our goal is to estimate the expected logarithm
of it (when Rk and q depend on s). To this end we write

〈c, q〉 = 〈c, A−1b〉 = 〈(A−1)′c, b〉 = 〈(A′)−1c, b〉, (42)

where A′ denotes the conjugate matrix. In (42), we use the identity (A−1)′ =
(A′)−1, holding for each invertible linear operator A.

By virtue of (42),
〈c, q〉 = 〈b, l〉, (43)

where l = (A′)−1c, i.e., the vector l is the solution to the linear system A′l = c.
The matrix A′ is given by

A′ = (a′km), a′km = amk = δmk − ρ

∑I
i=1 λi

mλi
kr

i

pk
,

and the linear system A′l = c can be written

K∑
m=1

(δmk − ρ

∑I
i=1 λi

mλi
kr

i

pk
)lm = ρ

λ∗k
pk

, k = 1, ...,K,
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(see (40)) or equivalently,

lk = ρ(
K∑

m=1

∑I
i=1 λi

mλi
kr

i

pk
lm +

λ∗k
pk

), k = 1, ...,K. (44)

Further, in view of (40) and (36), we obtain

d + 〈l, b〉 = (1− ρ)
K∑

k=1

Rk
λ∗k
pk

+ (1− ρ)
K∑

m=1

lm

K∑
k=1

Rk

∑I
i=1 λi

mλi
kr

i

pk

= (1− ρ)
K∑

k=1

Rk
λ∗k
pk

+ (1− ρ)
K∑

k=1

Rk

K∑
m=1

lm

∑I
i=1 λi

mλi
kr

i

pk

= (1− ρ)
K∑

k=1

Rk[
K∑

m=1

lm

∑I
i=1 λi

mλi
kr

i

pk
+

λ∗k
pk

] =
(1− ρ)

ρ

K∑
k=1

Rklk, (45)

where the last equality follows from (44). Consequently,

〈c, q〉+ d = 〈l, b〉+ d =
(1− ρ)

ρ

K∑
k=1

Rklk (46)

(see (41) and (43)).
4th step. According to Step 1 of the proof, we have to establish inequality (35)

for every solution q(s), s ∈ S, of system (34) and show that this inequality is strict
if

(p1, ..., pK) 6= (λ∗1, ..., λ
∗
K). (47)

The considerations presented in Steps 2 and 3, allow to reduce this problem to the
following one: for the solution l = (l1, ..., lK) to system (44), show that

E ln[
(1− ρ)

ρ

K∑
k=1

Rk(s)lk] ≥ 0

(see (46) and (43)). Additionally, it has to be shown that the last inequality is
strict if assumption (47) holds. The advantage of the new problem comparative to
the original one lies in the fact that system (44), in contrast with (34), does not
depend on s.

We write (44) equivalently as

(1− ρ)
ρ

pklk = ρ[
K∑

m=1

pm
(1− ρ)

ρ
lm

I∑
i=1

λi
mλi

kr
i

pm
+

(1− ρ)
ρ

λ∗k],

and, by changing variables

fk =
(1− ρ)

ρ
lkpk,
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we transform (44) to

fk = ρ
K∑

m=1

fm

∑I
i=1 λi

mλi
kr

i

pm
+ (1− ρ)λ∗k, k = 1, ...,K. (48)

Then
(1− ρ)

ρ

K∑
k=1

Rklk =
K∑

k=1

Rk
fk

pk
,

and the problem reduces to the following one: given the solution (f1, ..., fK) to
system (48), show that

E ln
K∑

k=1

Rk(s)
fk

pk
≥ 0 (49)

with strict inequality if (p1, ..., pK) 6= (λ∗1, ..., λ
∗
K).

Note that the affine operator defined by the right-hand side of (48) is contract-
ing (see (38) and (39)) and leaves the non-negative cone RK

+ invariant. Therefore
there exists a unique vector f = (f1, ..., fK) solving (48). Furthermore, this vector
is strictly positive (which follows from the strict positivity of λ∗ = (λ∗1, ..., λ

∗
K))

and satisfies
∑K

k=1 fk = 1. The last equality can be obtained by summing up
equations (48) over k = 1, ...,K.

By virtue of Jensen’s inequality, applied to the concave function ln(·), we have

E ln
K∑

k=1

Rk(s)
fk

pk
≥ E

K∑
k=1

Rk(s) ln
fk

pk
=

K∑
k=1

λ∗k ln
fk

pk
.

(We use here the fact that
∑K

k=1 Rk(s) = 1 for all s.) Thus it is sufficient to prove
that if a vector (f1, ..., fK) satisfies (48), then

K∑
k=1

λ∗k ln
fk

pk
≥ 0, (50)

and inequality (50) is strict when assumption (47) is fulfilled. This problem is
purely deterministic: no random parameter s is involved either in (48) or in (50).

5th step. Put gk = fk/pk, k = 1, ...,K. Then, from (48), we get

pkgk = ρ

K∑
m=1

gm

I∑
i=1

λi
mλi

kr
i + (1− ρ)λ∗k, k = 1, ...,K. (51)

Let us multiply both sides of these equations by ln gk and sum up over k = 1, ...,K:

K∑
k=1

pkgk ln gk = ρ

K∑
k=1

(ln gk)
K∑

m=1

gm

I∑
i=1

λi
mλi

kr
i + (1− ρ)

K∑
k=1

λ∗k ln gk.
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This yields

K∑
k=1

λ∗k ln gk =
1

(1− ρ)
[

K∑
k=1

pkgk ln gk − ρ
K∑

k=1

(ln gk)
K∑

m=1

gm

I∑
i=1

λi
mλi

kr
i].

Further, we have
K∑

k=1

λ∗k ln
fk

pk
=

K∑
k=1

λ∗k ln gk

(recall that gk = fk/pk). Thus, in order to prove the desired inequality (50) it is
sufficient to verify the relation

K∑
k=1

pkgk ln gk − ρ
K∑

k=1

(ln gk)
K∑

m=1

gm

I∑
i=1

λi
mλi

kr
i ≥ 0. (52)

If inequality (52) is strict, then (50) is strict as well.
We have

K∑
k=1

pkgk ln gk =
K∑

k=1

fk ln
fk

pk
≥ 0, (53)

by virtue of the well-known inequality (recall that f, p ∈ ∆K)

K∑
k=1

fk ln fk ≥
K∑

k=1

fk ln pk, (54)

which is strict if
(f1, ..., fK) 6= (p1, ..., pK). (55)

Therefore relation (52) is valid if

K∑
k=1

(ln gk)
K∑

m=1

gm

I∑
i=1

λi
mλi

kr
i ≤ 0. (56)

In the rest of the proof, we will assume that the opposite inequality holds:

K∑
k=1

(ln gk)
K∑

m=1

gm

I∑
i=1

λi
mλi

kr
i > 0. (57)

Then (52) will be obtained if we establish that

K∑
k=1

pkgk ln gk ≥
K∑

k=1

(ln gk)
K∑

m=1

gm

I∑
i=1

λi
mλi

kr
i. (58)
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Indeed, then we have

K∑
k=1

pkgk ln gk ≥
K∑

k=1

(ln gk)
K∑

m=1

gm

I∑
i=1

λi
mλi

kr
i ≥ ρ

K∑
k=1

(ln gk)
K∑

m=1

gm

I∑
i=1

λi
mλi

kr
i,

which yields (52). In the above chain of relations, the last equality holds by virtue
of (57).

To verify inequality (58) we write

K∑
k=1

pkgk ln gk =
K∑

k=1

I∑
i=1

λi
kr

igk ln gk =
I∑

i=1

ri
K∑

k=1

λi
kgk ln gk,

and
K∑

k=1

(ln gk)
K∑

m=1

gm

I∑
i=1

λi
mλi

kr
i =

I∑
i=1

ri
K∑

k=1

K∑
m=1

(λi
k ln gk)(gmλi

m).

Thus to prove (58) it remains to check that

K∑
k=1

λi
kgk ln gk ≥ (

K∑
k=1

λi
k ln gk)(

K∑
k=1

gkλ
i
k) (59)

for each i = 1, ..., I.
Let us fix i and put λk = λi

k. Inequality (59) can be written

E[g ln g] ≥ (E ln g)Eg,

where “E” stands for the weighted average

Eg =
K∑

k=1

gkλk [λk > 0,
K∑

k=1

λk = 1].

Observe that the function φ(g) = g ln g is strictly convex. Consequently,

Eφ(g) ≥ φ(Eg), (60)

and the inequality is strict if gk 6= gm for some k and m. Thus

E[g ln g] ≥ (Eg) lnEg ≥ (Eg)(E ln g), (61)

where the former inequality in this chain of relations coincides with (60) and
the latter is a consequence of the concavity of the function ln(·). Furthermore,
both inequalities in (61) are strict provided that gk 6= gm for some k. If the
last condition does not hold, then fk/pk = c for some constant c, which must
necessarily be equal to one because

∑
fk =

∑
pk = 1. Thus if gk = gm for all

k, m, then fk = pk, k = 1, 2, ...,K, which implies (see below) that pk = λ∗k for all
k.
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6th step. At the previous step of the proof, we established inequality (52) and
hence (50). Moreover, the arguments conducted show that inequality (52) (and
hence (50)) is strict if condition (55) is fulfilled. Indeed, if relation (56) holds then,
under assumption (55), we have a strict inequality in (53), which implies a strict
inequality in (52). Alternatively, if relation (57), opposite to (56), holds, then
strict inequalities in (61) and (59) imply strict inequalities in (58) and (52).

Thus to complete the proof it suffices to show that if fk = pk, k = 1, 2, ...,K,
then pk = λ∗k, k = 1, 2, ...,K. Indeed, if fk = pk, then we have

pk = ρ
K∑

m=1

pm

∑I
i=1 λi

mλi
kr

i

pm
+ (1− ρ)λ∗k, k = 1, ...,K,

which implies

pk = ρ
K∑

m=1

I∑
i=1

λi
mλi

kr
i + (1− ρ)λ∗k =

ρ
I∑

i=1

λi
kr

i + (1− ρ)λ∗k = ρpk + (1− ρ)λ∗k, k = 1, ...,K.

Thus (1− ρ)pk = (1− ρ)λ∗k, and so pk = λ∗k. �
Proof of Proposition 4. The variables qk(s), pk and rk (k = 1, ...,K) are related

to each other by the system of equations (34). Suppose equations (30) hold. Then,
from (34), we obtain:

λ∗m =
K∑

k=1

[ρλ∗k + (1− ρ)Rk(s)]
∑I

i=1 λi
mλi

kr
i

λ∗k
, m = 1, ...,K,

or equivalently,

λ∗m =
K∑

k=1

R̄k(s)
I∑

i=1

λi
mλi

kr
i

λ∗k
, m = 1, ...,K, (62)

where
λ∗k = ER̄k(s), R̄k(s) = ρλ∗k + (1− ρ)Rk(s).

Observe that if there are no redundant assets, the relation
∑K

k=1 γkR̄k(s) = 0
implies γ1 = ... = γK = 0. Indeed, suppose that

K∑
k=1

γk[ρλ∗k + (1− ρ)Rk(s)] = 0. (63)

Then we have

0 = E

K∑
k=1

γk[ρλ∗k + (1− ρ)Rk(s)] =
K∑

k=1

γk[ρλ∗k + (1− ρ)λ∗k] =
K∑

k=1

γkλ
∗
k,
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which in view of (63) yields

K∑
k=1

γkRk(s) = − ρ

1− ρ

K∑
k=1

γkλ
∗
k = 0,

and so γ1 = ... = γK = 0 because the functions Rk(·), k = 1, ...,K, are linearly
independent.

From formula (62) and the relation λ∗m = pm =
∑I

i=1 λi
mri, we obtain

I∑
i=1

λi
mri =

K∑
k=1

R̄k(s)
I∑

i=1

λi
mλi

kr
i

λ∗k
, m = 1, ...,K. (64)

We have
∑K

k=1 R̄k(s) = 1, and so equations (64) imply

K∑
k=1

R̄k(s)γm
k = 0, m = 1, ...,K,

where

γm
k =

1
λ∗k

I∑
i=1

λi
mλi

kr
i −

I∑
i=1

λi
mri.

Since there are no redundant assets, we have γm
k = 0 for each m and k. This gives

I∑
i=1

λi
mλi

kr
i − λ∗k

I∑
i=1

λi
mri = 0, k, m = 1, ...,K,

which can be written as

I∑
i=1

λi
m(λi

k − λ∗k)r
i = 0, k, m = 1, ...,K.

We derive two expressions from this equation. The first by setting k = m in the
foregoing formula. The second by adding up over m = 1, ...,K. We find

I∑
i=1

λi
k(λ

i
k − λ∗k)r

i = 0, k = 1, ...,K, and
I∑

i=1

(λi
k − λ∗k)r

i = 0.

Multiplying the second equation by −λ∗k and adding it up with the first, we obtain

0 =
I∑

i=1

[λi
k(λ

i
k − λ∗k)r

i − λ∗k(λ
i
k − λ∗k)r

i] =
I∑

i=1

(λi
k − λ∗k)

2ri.

Consequently, we have

(λi
k − λ∗k)

2ri = 0, i = 1, ..., I, k = 1, ...,K. (65)
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Suppose condition (a) holds. Since
∑I

i=1 ri = 1 and ri ≥ 0, we have rj > 0 for
some j = 1, ..., I. Then, from (65), we get

λj
k − λ∗k = 0, k = 1, ...,K, (66)

which is a contradiction.
If condition (b) is fulfilled, then

∑I
i=2 ri = 1 − r1 > 0, and so rj > 0 for

some j = 2, ..., I. This implies (66), and the contradiction obtained completes the
proof. �

Proof of Theorem 5. By virtue of Theorem 4, the limit r1
∞ := lim r1

t exists a.s.
and is strictly positive. Suppose the assertion we wish to prove is not valid. Then
we have

P{0 < lim r1
t < 1} > 0. (67)

Let us write for shortness Et(·) in place of E(·|st). If ξt is a non-positive
submartingale, then Et−1ξt+1−ξt−1 → 0 a.s. (see the Lemma below). By applying
this fact to the non-positive submartingale ξt = ln r1

t , we obtain

Et−1(ln
r1
t

r1
t−1

+ ln
r1
t+1

r1
t

) = Et−1 ln
r1
t+1

r1
t−1

= Et−1ξt+1 − ξt−1 → 0 (a.s.). (68)

By using the fact that the random elements st−1, st and st+1 are independent and
representing the histories st, st+1 as

st = (st−1, st), st+1 = (st−1, st, st+1),

we get

Et−1(ln
r1
t

r1
t−1

+ ln
r1
t+1

r1
t

) = E[(ln
r1
t

r1
t−1

)|st−1] + E[ln(
r1
t+1

r1
t

)|st−1] =

∑
s∈S

P{st = s} ln
r1
t (s

t−1, s)
r1
t−1(st−1)

+
∑
s∈S

P{st = s}
∑
σ∈S

P{st+1 = σ} ln
r1
t+1(s

t−1, s, σ)
r1
t (st−1, s)

=

∑
s∈S

π(s) ln
r1
t (s

t−1, s)
r1
t−1(st−1)

+
∑
s∈S

π(s)
∑
σ∈S

π(σ) ln
r1
t+1(s

t−1, s, σ)
r1
t (st−1, s)

=

∑
s∈S

π(s) ln f(s, rt−1(st−1)) +
∑
s∈S

π(s)
∑
σ∈S

π(σ) ln f(σ, rt(st−1, s)) =

∑
s∈S

π(s) ln f(s, rt−1(st−1)) +
∑
s∈S

π(s)
∑
σ∈S

π(σ) ln f(σ, F (s, rt−1(st−1)). (69)

The last but one equality in the above chain of relations is valid because the
strategy of investor 1 coincides with the Kelly rule (λ1 = λ∗) and the last equality
holds because rt(st−1, s) = F (s, rt−1(st−1)).
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By virtue of (67), (68) and (69), there exists a realization (s1, ..., st, ...) of
the process of states of the world such that, for the sequence of vectors rt−1 =
rt−1(st−1) ∈ ∆I , we have

0 < lim r1
t−1 < 1, (70)∑

s∈S

π(s) ln f(s, rt−1) +
∑
s∈S

π(s)
∑
σ∈S

π(σ) ln f(σ, F (s, rt−1)) → 0. (71)

In the rest of the proof, we will fix such a realization (s1, ..., st, ...) and write rt−1

in place of rt−1(st−1).
Since the simplex ∆I is compact, there exists a sequence t1 < t2 < ... and a

vector r ∈ ∆I such that
rtn−1 → r ∈ ∆I . (72)

It follows from (70) and (72) that the first coordinate r1 if the vector r = (r1, ..., rI)
satisfies

0 < r1 < 1. (73)

Relations (71) and (72) imply∑
s∈S

π(s) ln f(s, r) +
∑
s∈S

π(s)
∑
σ∈S

π(σ) ln f(σ, F (s, r)) = 0 (74)

because the function ln f(s, r) = ln g1(s, r) is continuous in r ∈ ∆I (see Proposi-
tion 3).

By virtue of Theorem 3,∑
s∈S

π(s) ln f(s, r) ≥ 0,
∑
σ∈S

π(σ) ln f(σ, F (s, r)) ≥ 0 (for all s ∈ S).

Consequently, it follows from (74) that∑
s∈S

π(s) ln f(s, r) = 0, (75)

and ∑
σ∈S

π(σ) ln f(σ, F (s, r)) = 0 for all s ∈ S. (76)

According to Theorem 2, relation (75) can hold only if

〈λk, r〉 = λ∗k, k = 1, ...,K, (77)

and equations (76) imply

〈λk, F (s, r)〉 = λ∗k, k = 1, ...,K, s ∈ S. (78)

By virtue of Proposition 4, relations (73), (77) and (78) cannot hold simultaneously.
This is a contradiction. �
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In the proof of Theorem 5 we used the following fact.

Lemma. Let ξt be a non-positive submartingale. Then the sequence of non-
negative random variables ζt = Et−1ξt+1 − ξt−1 converges to zero a.s.

Proof. We have ζt ≥ 0 by the definition of a submartingale. Further, Eζt =
(Eξt+1 − Eξt)+ (Eξt − Eξt−1), and so

N∑
t=1

Eζt =
N∑

t=1

(Eξt+1 − Eξt) +
N∑

t=1

(Eξt − Eξt−1)

= EξN+1 − Eξ1 + EξN − Eξ0 ≤ −Eξ1 − Eξ0

because Eξt ≤ 0 for each t. Therefore the series of the expectations
∑∞

t=1 Eζt of
the non-negative random variables ζt converges, which implies (see, e.g., Corollary
to Theorem 11, in Chapter VI in [30]) that ζt → 0 (a.s.). �
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