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Analysis of Ring-Stiffened 
Cylindrical Shells 
A new analytical and numerical method is presented for modeling and analysis of 
cylindrical shells stiffened by circumferential rings. This method treats the shell and 
ring stiffeners as individual structural components, and considers the ring eccentricity 
with respect to the shell middle surface. Through use of  the distributed transfer 
functions of the structural components, various static and dynamic problems of stiff- 
ened shells are systematically formulated. With this transfer function formulation, 
the static and dynamic response, natural frequencies and mode shapes, and buckling 
loads of general stiffened cylindrical shells under arbitrary external excitations and 
boundary conditions can be determined in exact and closed form. The proposed 
method is illustrated on a Donnell-Mushtari shell, and compared with finiie element 
method and two other modeling techniques. 

1 Introduction 
Cylindrical shells stiffened by stringers and tings have wide 

engineering applications. The modeling techniques for such 
structure systems can be divided into two categories. The first 
category smears the stiffness of the stiffeners on the shell, and 
treats the stiffened shell as an orthotropic one; for instance, see 
Wang (1970) and the references therein. Such treatment is fine 
when the stiffeners are densely placed. However, if stiffeners 
are sparsely spaced that there are not enough stiffeners in each 
half wavelength in the circumferential and longitudinal direc- 
tions of the shell, or if the actual deformation and stress distribu- 
tions of the stiffened shell are needed, orthotropic approxima- 
tion will loose accuracy. In this case, it is necessary to consider 
stiffeners as individual structural components, which gives rise 
to the second category of modeling techniques, namely, the 
analysis of combined shell-stiffener component systems. 

Modeling stiffened cylindrical shells as combined component 
systems has been studied by many authors. Of various static 
and dynamic problems, free vibration of different stiffened 
shells has received great attention. Garnet and Goldberg (1962) 
and Godzvich and Ivanova (1965) considered ring-stiffened 
cylindrical shells. Schnell and Heinrichsbauer (1964) studied 
longitudinally stiffened thin-walled cylindrical shells. Egle and 
Sewall (1968) analyzed a ring-and-stringer-stiffened circular 
cylindrical shell by a Rayleigh-Ritz procedure. Wang and Rine- 
hart (1974) modeled longitudinally stiffened cylindrical shells 
with arbitrary edge boundary conditions. Wang and Hsu ( 1985 ) 
proposed a model for stiffened composite cylindrical shells. 
Mead and Bardell (1987) investigated periodically stiffened 
cylindrical shells. 

Among other problems, Wang and Lin (1973) examined the 
stability of stringer-stiffened cylindrical shells under axial pres- 
sure and simply supported boundary conditions; Reddy (1980) 
presented a bifurcation analysis for stringer-stiffened cylinders 
sustaining elastic-plastic deformation; and Sridharan et al. 
(1992) studied post-buckling of stiffened composite shells. 

Several analytical and numerical methods for stiffened cylin- 
drical shells have been developed. Forsberg (1969) obtained an 
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exact solution for natural frequencies of ring-stiffened cylinders 
subjected to different boundary conditions. A1-Najafi and War- 
burton (1970) applied the finite element method to evaluate the 
natural frequencies and mode shapes of ring-stiffened cylindri- 
cal shells with each stiffening ring treated as a discrete element. 
Wang (1970) yielded a Fourier series solution of ring-and- 
stringer-stiffened cylindrical shells by treating the shell, rings, 
and stringers as structural components, and imposing deforma- 
tion compatibility among those components. Wilken and Soedel 
(1976) used a receptance method to describe the modal charac- 
teristics of ring-stiffened shells. By Laplace transform and nu- 
merical inverse Laplace transform, Dekos. and Oates (1981) 
predicted the dynamic response of ring-stiffened circular cylin- 
drical shells subjected to axis-symmetric loading and boundary 
restriction conditions. Rigo (1992) developed the stiffened 
sheathing method and LBR-3 software for computing the re- 
sponse of orthotropic cylindrical shells. Combining wave propa- 
gation method and transfer matrix method, Huntington and Lyr- 
intzis (1992) developed a modified wave method for analysis 
of skin-stringer panels which improves the numerical stability 
of transfer matrix method. 

This paper proposes a new analytic and numerical method for 
constrained/combined, ring-stiffened cylindrical shells, which 
falls in the second category of modeling techniques. A typical 
example is shown in Fig. 1, where the shell consists of several 
serially connected segments of different geometry and material 
parameters, each shell segment may be constrained by springs 
and dampers that are circumferential distributed, the ring stiffen- 
ers are placed either inwardly, or outwardly, or symmetrically 
with respect to the shell middle surface, and the whole shell is 
subject to arbitrary external excitations and boundary condi- 
tions. The distributed transfer function formulation proposed in 
Yang (1992, 1994) is extended to model stiffened shells. In 
the analysis, the shell and stiffeners are modeled as individual 
structural components. Through both Fourier expansion and La- 
place transform of the shell displacements, the initial and bound- 
ary value problem of the shell is cast into a spatial state-space 
form in the s-domain. The distributed transfer functions of the 
shell segments are then derived, based on which the shell and 
stiffeners are assembled by imposing displacement continuity 
and force balance on the shell-stiffener contact surface, leading 
to a global dynamic equilibrium equation. Solution of the equi- 
librium equation gives accurate estimation of the static deflec- 
tion, natural frequencies and mode shapes, bucking loads, and 
forced response of stiffened cylindrical shells under arbitrary 
boundary conditions and external excitations. 

The proposed method has the following advantages. First, 
the transfer function method provides exact and closed-form 
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Fig. 1 A constrained/combined, ring-stiffened cylindrical shell 

solutions for various static, dynamic, and control problems of 
stiffened cylindrical shells. Second, the transfer function method 
systematically treats different shell models (Love-Timoshenko 
or Donnell-Mushtari type, elastic or viscoelastic, stationary or 
spinning shells, etc.), and arbitrary boundary conditions and 
external excitations in a simple and unified manner, rendering 
numerical simulation and computer coding extremely conve- 
nient. Third, the transfer functions is especially capable of syn- 
thesizing combined cylindrical shells as shown in Fig. 1. All 
these will be demonstrated in the subsequent analysis and the 
numerical simulation. 

2 Distributed Transfer Functions of Cylindrical 
Shells 

The response of the homogeneous cylindrical shell in Fig. 2 
is governed by 

Amkij ~ + Bmko ~ + Cmko k=l i=0 j=0 Oxi--JooJ 

= f m ( x , O , t ) ,  m =  1 , 2 , 3  (1) 

where u ~ (k = 1, 2, 3) are the shell displacements in the longitu- 
dinal (x-),  circumferential (0-) and radial (z-) coordinate direc- 
tions, respectively, nk is the highest order of differentiation of 
u k, A~ku, Bmkt, and Cmk0 are constants of the shell, and fro(x, O, 
t) are the external loads acted on the shell, Here, Eq. (1) has 
been nondimensionalized so that x = 0 and x = 1 are the 
left and right boundaries of the shell. The boundary and initial 
conditions of the shell are 

and 

k = 1, 3 (3a)  

O~Uk(X~, 0, t ) ]  = k~(0 ' 
t) ,  

OX~-JOOJ J~=xo 

l =  1 ,2  . . . . .  nb (2a)  

uk(x, O, t)lt=0 = u~(x, 0), 

o tUk(x 'O ' t )  t=o= u~°"(x'O)' k =  1 , 2 , 3  (2b) 

where x,  = 0 and 1 for a = 1 and 2, respectively, /3tko are 
constants, and U(0,  t), uok(x, O) and u~"(x, O) are those pro- 
posed by given functions representing the boundary and initial 
disturbances. The number of boundary conditions no = n~ + n2 
+ n3, and is 8 in most situations. Equations (1) and (2) repre- 
sent many shell models, such as Donnell-Mushtari, Love-Ti- 
moshenko, Flugge-Novozhilov, Reissner, Vlasov, and Sanders. 

To find the solution of the initial-boundary value problem 
formed by (1) and (2) ,  the shell displacements and all the 
given functions of disturbances are expanded into Fourier series 
in circumferential direction 0 

uk(x, 0, t) = Y. [u~,.(x, t) cos nO + u~,.(x, t) sin nO], 
n=0 

Fig. 2 A homogeneous cylindrical shell 

u2(x, O, t) = Y~ [u~..(x, t) sin nO + u~,,,(x, t) cos nO] 
n=O 

(3b) 

fro(X, O, t) = E [fT.(x,  t) cos nO + f~,.(x, t) sin nO], 
n=O 

m = 1 , 2 , 3  (3c)  

U~o(x,O) ~ k,o k,o = [ul . . (x)  cos nO + u2,.(x) sin nO], 
n=0 

k = 1, 3 (3d)  

u~(x,O) ~ 2.o 2.0 = [ul , . (x)  sin nO + u2,.(x) cos nO] (3e) 
n=0 

u~"(x, O) Y. k,t u k'~ tx~ sin nO] ( 3 f )  = [u0.L.(x) COS nO + o,2,.~ 
n=0 

u2't(x, O) Y, 2,t 2,, = [u0,1..(x) sin nO + U0,z,.(x) cos nO] (3g)  
n=0 

hi(0, t) = Y~ [k~,.(t) cos nO + k~,.(t) sin nO], 
tl=0 

l =  1 ,2  . . . . .  nb. (3h) 

Here, the subscripts (1, n)  and (2, n)  indicate that the terms in 
Fourier series are related to cos nO and sin nO, respectively. If 
all excitations are symmetric with respect to 0 = 0 and the shell 
is homogeneous and isotropic, each of the above Fourier series 
will only contain either cosine or sine- terms, thus reducing the 
number of unknowns by half, 

Substituting the Fourier series into Eqs. ( 1 ) and (2) ,  conduct- 
ing Laplace transform with time t, and setting the coefficients 
of cos nO and sin nO to be equal on the both sides of the 
resulting equations, lead to an infinite number of equations (m 
= 1 , 2 , 3 ,  n = 0 , 1 , 2  . . . .  ) 

~ Dm~i~2j~(s)(__l)j 0 Ui,______2 
k=l i=0 j=0 Oxi-2j 

[(i+ 1)/2] .,qi-(2j- l) Trk ") 
+ E Omki(2j-1)(S)(--1) j+ ' ' "  t"~'n~ 

j= l  uuL - j 

=f%(x, s) + g%(x, s) 

E 'Dmki(2j)(S)(--1) j 19 U2,n 
k=l '= j=0 OXi-2J 

[(i+ 1)/2] } 
+ ~ Dmki(Zj-l)(S)(--1) j oi-(2j-1)Ulk,n 

j= l  Oxi-(2j - 1) 

~ m ~m = f2..(x,  s) + g2,.(x, s) 
~2 2 -- /7 .k for k 1 and 3, and U~,. Uz,. and where U~k. = .s,. = = U2,n -- 

~2 ~k m X u1 . . . . . .  and fj,~( , s) are the Laplace transforms of f ~ ( x ,  t) 

~w////////////////////~a,,,~~'~'~4~-- i . . . . . . .  

Shell Segments / /  

I , ,  [] \ . 

~'//I / s~ff~.~ ~ _ I Safon~. 

q 

Outward ~ C  S n  ml 
Stiffeners ons t 
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and Uk,., respectively; gj.n(X,~m S) are given in terms of uj,.~'° (x),' 
the complex numbers Dingo(s) = (AmmoS ~ + Bm~,js + Cm~o)n~; 
and s is the complex Laplace transform parameter. Note that 

~k the displacement functions a .k,,. and u~,,. do not couple if n is 
not equal to m, 

The above equations are cast in a state-space form 

Or~.(x, s) 
Ox 

- -  = Y . ( s ) o . ( x ,  s) + f . ( x ,  s) + g . (x ,  s) ,  

n = 0, 1 . . . .  (4)  

where the state-space vector contains the displacement func- 
tions tL ~ • i.e., i ,m,  

r r r T r r } r  C2.~ r/,, = { 771,~,. ~2, l ,n  T~ 3,l,n ~ 3,2,n 77 2,2,n ?7 1,2,n 

( ~ Oak O.~- t ak } r 
~k,i,n ~-" blot aX ' ' '  -~X n~-il'n ~ Cnk' 

k =  1 ,2 ,3 ,  i =  1,2. 

F.  (s) is a 2rib X 2no complex matrix containing the coefficients 
A,.kV, Bm~y, and C~kU of (1),  and the complex 2no-vectorsfo(x, 
s) and g.(x, s) are composed of f~,(x,  s) and gj".(x, s), 
respectively. Similarly, the boundary conditions (2a) can be 
transformed into the form 

M.(s)rl.(O, s) + N.(s)~%(1, s) = y . ( s )  (6)  

where the boundary matrices M.(s) and N.(s) (~ CZ".Xz"~) 
contain the coefficients/3tkU in (2a) ,  and the vector y . ( s )  con- 
tain the Laplace transforms of the boundary excitation functions 
kkm. One example of the above state-space form will be illus- 
trated in Section 4. 

The solution of the Eqs, (4) and (6) is (Yang and Tan, 1992) 

rl,,(x, s) = G.(x, ~, s)( f . (~,  s) + g.(~, s))d~ 

+ H.(x, s)y . (s)  

where the 2rib X 2nb complex matrices 

[ H . ( x ,  s)M.(s)e -r.~`)¢, ~ < x 
G.(x, ~, s) = [ - H . ( x ,  s)N.(s)e F.('~I-¢), ~ > x 

H.(x, s) = eC(")X(M.(s) + N.(s)eS,(s)) -~ 

are the distributed transfer functions of the shell. The displace- 
ment functions are found from r/,: 

u'(x,  s) = 2~ [~7.,,(x, s) cos nO 
n=O 

+ r/.,.,+.2+.3+l(x, s) sin nO] (9a)  

x t 1 
I I _ - x  

m m 

i ! II 
- " , , ,  

~ she. 

Fig. 3 A cylindrical shell stiffened by circumferential rings 

O0 

I I 

(b) 

Fig. 4 Interaction between the shell and the/th ring: (a) geometry; (b) 
tractions 

c o  

u2(x, s) = ~ [~7.,.,+1(x, s) sin nO 
( 5 a )  .=o 

+ ~7.,2.,+.2+.3+1(x, s) cos nO] (9b) 
00 

u3(x, s) = Y~ [r/.,o,+.z+l(x, s) COS nO 
( 5 / , )  .=o 

+ rl.,z.,+2,,~+.~+l(x, s) sin nO] (9c)  

where rl. a is the j th  element of ~7., 
In the above derivation, no approximation has been made; 

the transfer function formulation provides an exact and closed- 
form solution. The result here is quite general because different 
shell models and arbitrary boundary and initial conditions are 
dealt with by the same formula. 

The transfer function formulation is directly applicable to the 
eigenvalue problems associated with free vibration and buckling 
of cylindrical shells, which are described by 

[M.(s ;  p-) + N.(s; ff)er,(':t~)]~0 = 0 (10) 

with p" being a load parameter and tp a nonzero complex vector. 
The eigenvalues are the roots of the characteristic equation 

det [M.(s;  p) + N.(s; lr)e e.<`;m] = 0. (11) 

For free vibration of the shel l , / r  = 0 and s is the eigenvalue; 
the corresponding mode shape is determined by ~7.(x, s) = 

(7) eV'P;°)xqJ and (9).  For a static buckling problem, s = 0 and/Y 
is the eigenvalue; the bucking mode shape is given by ~7.(x, p--) 
= eF,,c°;m0. For free vibration of a prestressed cylindrical shell, 
p-is a nonzero constant and the s is the eigenvalue; the mode 

(8a)  shape is given by rl.(x, s) = eF,(~;~)~0. 
The transfer functions can also be used to determine the 

dynamic response and stability of the cylindrical shell under 
(8b) various forcing sources, and to design active vibration control- 

lers and smart structure mechanism (Yang. 1994). 

3 Analysis  o f  Ring-Stiffened Cylindrical  Shells 
In Fig. 3. a homogeneous cylindrical shell is stiffened by N r 

circumferential rings at x = x~, i = 1 . . . . .  N r. Assume that the 
influence of the ring width is negligible. Denote the middle 
surface displacement of the ith ring by U~k(O, t), where the 
subscript refers to the ith stiffening ring, and the superscript r 
indicates that the parameters are related to the tings, The dy- 
namic equations of the stiffening ring in general are 

2~ "~ ( 0 2 0 )OJu~k(O,t) 
a ~ m k j -  + B~,.kj + k=, j=0 at2 ~ Y"kJ 

= qTm + q~m (12) 

where m = 1, 2, 3, i = 1 . . . . .  N ~, the constants a~mkj, 13~mkj, 
and Y~mkj are related to the geometry and material parameters 
of the rings, and q~'m are the external loads applied to the ith 
ring. Here q~m are the tractions between the shell and the ith 
ring; see Fig. 4, where qTI = q~x, q~2 = qi~ and q~3 = qi'~. Like 
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Eq. (1),  (12) is quite general and represents many different 
curved beam models. 

For thin-walled cylindrical shells, the Kirchhoff hypothesis 
holds and the displacements of the shell and tings satisfy the 
following matching conditions: 

u7l( O, t) = [u ~ - e i u , ~  ]x=x, (13a) 

[ 1] 
u~(O , t )  = u ~ -  e~ ~ u , ~  (13b) 

x=x i 

u73(O, t) = u3(xi, O, t) (13c) 

where u,~ = Ou3/Ox, u,~ = Ou3/O0, and e~ is the eccentricity 
of the centroid of the ith stiffening ring from the middle surface 
of the shell; see Fig. 4 (a ) .  The e~ is positive (negative or zero) 
if the ring is inward (outward or symmetric). 

The analysis of the stiffened shell follows three steps: Fourier 
expansion, Laplace transform, and state-space formulation. The 
Fourier series of the displacements and loads are 

uf~(O,t) ~ "~ "~ = [u~,~,.(t) cos nO + u~,%.(t) sin nO], 
n=0 

k = 1,3 (14a) 

u%(O, t) ~ ~.2 ~,~ , = [ura,.(t) sin nO + u~,z.(t) cos nO] (14b) 
n=O 

qr~(o, t) ~ i'k i,~ = [q~a.n(t) cos nO + qma( t )  sin nO], 
n=O 

k =  1 , 2 , 3  (14c) 

q~(O, t) ~ i k COS i,k = [qg, l . ( t )  nO + q~,2,.(t) sin nO], 
n=0 

k =  1 ,2 ,3 .  (14d) 

Substituting (3a, b) ,  (14a, b) into (12) and (13), one has 

i,m i,m i,m i,m q~a,. cos nO + qr, z,. sin nO = - sin nO --q~,l. COS n0 qr,2,n 

nk ( 02 
-{- Z OLimkj V 

k=l j=O 

n2 ( 02  nei ~ 
R .= txi,~2j Ot 2 

0 ) O:u, k, 

/ 

O ) 0 j 
+ ¢~m2: ~ + 7~m2j 00"-- 7 

× (u3.. cos nO - u3. sin nO)Ix=i, - ei 

0 ) 
x Z O~,m~ V + ~'~'j ~7 + ~"'~ 

j=O 

0 0 j 3 sin nO)lx=x, (15) x --Ox - ~  (u~,. c o s  nO + u~,. 

for m = 1, 2 and 3, where n is the circumferential wave number 
of the shell. Laplace transform of (15) and application of the 
state-space form (4) lead to 

~ ' " (S )  = Li'n(s)'on(xi, s) - ~ ' n ( s )  (16) 

where ,~'~(s) is the vector of the tractions between the shell 
and rings, ,~ (s )  is the vector of the external loads, including 
the initial disturbances, and the matrix U'~(s)  consists of the 
parameters of the ith ring (see the Appendix). 

Since the traction forces ,~r,. are pointwise along the x-direc- 
tion, the total forces 7r. applied to the shell can be expressed 
by 

N r 

Try(x, s) =f , , (x ,  s) + ~ T~Li'n(S)~n(Xi, s ) 3 ( x  - xi) (17) 
i=l 

where 6(x  - xi) is the delta function, f . ( x ,  s) is the resultant 

of the external loads on the shell and tings, and the equivalent 
forces due to the initial disturbances of the rings, Tf are scaling 
matrices guaranteeing the same dimension of ,~,n in (16) and 
f .  in (4).  By (4),  we have 

~Tn(x, s) = e vo<s)x e-F,:")~[%((, S) 

+ g.(~, s ) ld~  + ~7.(0, s ) } .  (18) 

Substituting (17) into the above gives 
N r 

rl.(x, s) = A~°)(x, s) + Y~ Bn,j(x, s)rl.(xj, s) 
j=l  

+ C}°)(x, s)r?.(O, s) (19) 

where 

£ A~°)(x, s) = e v,:*)x e-F.('°¢[f.(~, s) + g.(~, s ) ld~  

B.. j(x,  s) = eF,(*)(x-x)TrLJ'"(s)u(x - xj), j = 1 . . . . .  N r 

C(~°)(x, s) = e F,,(s)x 

and u(x  - xj) is the unit step function. Eliminating 77.(xj, s) 
from (19) by setting x = &, i = 1 . . . . .  N", and solving the 
N ~ resulting equations yield 

rln(X, s) = X . (x ,  s) + C.(x ,  s)rl.(O, s) (20) 

where the matrices .Y..(x, s) and C.(x,  s) are obtained from the 
N%tep recurrence procedure 

A~ni)(x, s) = A~i-l)(x, s) 

+ B . , i ( x , s ) [ 1 -  B . , i ( x l , s ) ] - lA~ i - l ) ( x i , s )  (21a) 

C ~ i ) ( x ,  s )  = C ~  i l ) ( x ,  s )  

+ B.,i(x,  s ) [ l  - B..i(xi, s)]-lC(.i-l)(&, s) (21b) 

for i = 1, 2 . . . . .  N ~, with A.(x,  s) = A~N~)(x, s) and C.(x,  
s) = C U ) ( x ,  s). 

Finally, by plugging (20) into the boundary conditiofis (6),  
we obtain the response of the ting-stiffened cylindrical shell 
under various external loads, and initial and boundary condi- 
tions 

tin(X, s) = A . (x ,  s) + C.(x ,  s ) [ M . ( s )  + N.(s )C. (1 ,  s)] -t 

× [%(s )  - N.(s)PT.(1, s ) l .  (22) 

For the eigenvalue problems of the stiffened shell, the character- 
istic equation by (22) is 

d e t [ M . ( s ; g )  + N . ( s ; F ) Q ( 1 ,  s ;F)]  =O (23) 

and the discussion after Eq. (11 ) applies. 
Constrained cylindrical shells can be viewed as the degener- 

ate cases of stiffened shells. Assume that the shell is constrained 
by N ~ pairs of uniformly distributed springs and dampers, lo- 
cated at x = x~ (i = 1 . . . . .  N ~) and along the circle 0 - 0 -< 
27r. At x = x~, the constraint forces by the springs and dampers 
are described by 

}( [q~l 0 
~ q~2 = -- Ki + Di u a if2 
L q~3 ~ u 3 ~3 .... 

where the matrices Kj and D~ contain the spring and damper 
coefficients, respectively, and the W count for the unstretched 
status of the springs. It can be shown that the matrix U'"(s )  in 
(16) is expressed in terms of the elements of K~ + sDt. The 
response of the constrained shell can be determined based on 
(21) and (22). 

1008 / Vol. 62, DECEMBER 1995 Transactions of the ASME 

Downloaded From: https://appliedmechanics.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



In summary, the distributed transfer function analysis of the (i) u(x~, 0, t) = 0 or 
ring-stiffened shell follows three steps: (a) for given shell and 
ring parameters and boundary conditions, form the state-space 
matrices F.(s) ,  M.(s) ,  N.(s),  and Li'"(s); (b) determine A. (x, 
s) and C.(x, s) by the recurrence procedure (21); and (c) 
evaluate the response of the shell by (22). 

The result herein can be applied to stepped cylindrical shells 
stiffened by circumferential rings. A stepped shell is composed 
of a number of serially connected uniform shell segments. The 
analysis for such structures first obtains the distributed transfer 
functions and response of each stiffened shell segment based (ii) v(~ ,  0, t) = 0 or 
on (22), and then assembles all the shell segments by a synthe- 
sis given in our recent paper (Zhou and Yang, 1995). 

4 Donne l l -Mush ta r i  Shell 

As an application of the theory developed, free vibration 
of the Donnell-Mushtari shell is considered. Without loss of 
generality, assume that the shell is homogeneous, isotropic, and 
elastic. The dimensionless equations of motion are (Markus, 
1988) 

1 02u 1 02u 1 + v 02v 

y"~l Ox--'-i+2 ( 1 -  v ) ~  + 2T---~ OxO0 

= o  1 -- v 2 R k Yl =~, 

E h 2 [  1 2k ] 0 
2(1 + v)  R u,o + ~ v a  + was = Yl T1 Jx=~ 

(iii) w ( ~ , 0 ,  t) = 0 or 

E h 4 1 1  2 - v  ] 
12(1 - v 2) R 3 ~ W,xxx + w a:oo = 0 

Yl Yt ~=~ 

(25a) 

(25b) 

(25c) 

v Ow OZu (iv) wal~=~ = 0 or 
Yl Ox = P ~ -  (24a) 

1 + v 02u 1 - v 02v 02v Ow 02v 
- -  + - -  + = ~ (24b) 

2yl 0x00 2y~ Ox 2 002 00 - ~  - 12(1 "o2"(R --~ W,xx + vwoo = 0 (25d) 

with 

v O u + O v  k ( 1 0 4 w  2 a4w 04w~ 

~/~ Ox=OO---------2 + 004 ] 

1 ( 02w 
+ ~ N~o ~Ox------~ 

-N 02w 02w "x 
+ 2  .eo yl--7~-~xoo + N o o ~ )  

0 2 W  
= ~ - ~ -  (24c) 

where .~ = 0 and 1 for i = 1 and 2, and u~ = ,gu/Ox, etc. 
The Fourier series of the shell displacements are written as 

oo oo 

u = ~. u . ( x , t )  cosnO, v = Y~ v . ( x , t )  sinnO, 
nffiO n = 0  

w = ~, w.(x,  t) cos nO. (26) 
n = 0  

1 1(h)2 
(u,v,w)=~(Uo, Vo, Wo), k = ~  ~ , 

p(1 - 1 j 2 ) R  2 L Eh 
~0= E , Yl = ~ ,  J =  1 - v  2 '  

Here u0, Vo, and Wo are the displacements of the shell middle 
surface in the coordinate directions x, 0, and z, respectively; 
R, L, and h are the radius, length, and thickness of the shell, 
respectively; E and v are Young's modulus and Poison's ratio; 
p is the density per unit volume; and Nxo, N0o and N.oo are the 
membrane stresses. 

Four pairs of boundary conditions are as follows: 

Following the procedure outlined in Section 2, ~7. and F. in (4) 
are found as 

O~ n 0~) n 01~) n 021~n 031~n~ 

~. (x , s )=  a . ~ - ~ . ~ ,  ax o~ 2 L-~J ' 

[ F n  F12] 
F.(s)  = l-F21 F22J 

(27) 
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where 

Fi i ( s  ) = 

Ft2(s) = 

F22 = 

0 1 0 0 

Y~( l - u 2  n 2 +  s2p) 0 0 l + v  

0 

0 

0 0 

0 vy~ 

0 0 

2ny~ 0 0 
1 - v  

0 

0 

0 

0 0 

1 + v 2nZyl 2 2ps2712 
y~n - -  - -  + - -  

1 - v  1 - v  1 - v  

0 0 1 -0 0 0 0 

0 0 J 0 0 0 0 

0 0 F2L = 0 0 0 0 

n~l 4 
o o y~2 0 

k k 

1 0 

0 1 

0 0 

4(  1 n 4 ~ ) n2T 4Noo 2ny3N,,ao 2n2y12 + 
-Y~ k +  + k  s2 ~ kJ 

By (25), (26), and (27), r h must satisfy the boundary conditions 

BiF.~7.(.~, s) = 0, / = 1, 2 (28) 

where 

1 0 0 0 0 0 0 
0 1/71 nv  0 - v  0 0 
0 0 1 0 0 0 0 

F.  = - n  0 0 1 /y t  0 - k n l ( 6 y ~ )  0 
0 0 0 0 1 0 0 
0 0 0 0 0 - ( 2  - v )nZ /y j  0 
0 0 0 0 0 1 0 
0 0 0 0 --vn 2 0 l / y ~  

0 
0 
0 
0 
0 

0 
0 

"r~N,o 
kJ 

-- - - n T T  1 

0 ° 

0 

1 

0 

(29) 

and Bi is a 4 × 8 matrix containing 1 or 0. Write B~ = [Bi ( j ,  
k)] .  Define the Kronecker delta by 6~ = 1 for k = m and 0 for 
k * m. If the kth boundary condition is of displacement type 
(u = 0, or v = 0, or w = 0, or W,x = 0),  the nonzero elements 
of the kth row of B~ are 

Bi ( j ,  2 j  - 1) = 6~j-i. (30a) 

If the kth boundary condition is of force type (N= = 0, or N=o 
= 0, Q= = 0, or M= = 0),  then the nonzero element of the kth 
row of Bi is given by 

B, ( j ,  k) = 62kj. (30b) 

The boundary matrices in (6)  take the form 

Mr(s)  = L 04x8 N.(s )  = B2L.J " (31) 

The displacements uI:, v~, and w~ of the ith stiffening ring 
are governed by 

02u~ 
q~ + q~, = piAi Ot 2 

1 ONTo 
- - - +  q~o + q~o= p i A ~ - -  
R 00 

R 2 002 

(32a) 

02vf 
(32b) 0t 2 

r 0 Wi - - - -  - -  N 02w~  2 r 1 02M~o + Nio + + q~z = p i A i - -  (32c) 
R oo 002 Ot 2 

where Pi and Ai are the density and the cross section area of 
the ith nng, respectively, and the superscript r indicates that 
the physical parameters are related to the ring. Here the middle 
surface of the shell has been chosen as the reference plane. The 
internal forces of the ring are related to the shell displacements 
by 

r w +  1 0 v  k~2 02w (33a) 
Nio = k], - ~ ~ R2OO 2 

Mi0 = k 2( O2w 
- R R 00]  - k~2 R200--'----- 7 (33b) 

where the coordinate z is measured from the middle surface of 
the shell, 

k~, = EiA, ,  k~z = EiA~e,, k~2 = Eilip, (34) 

and ei is the eccentricity of the ring centroid shown (see Fig. 
4 ( a ) ) ,  and lip is the second-order moment of the ring cross 
section with respect to the middle surface of the shell. 

The key in estimating the response of the stiffened shell is to 
determine the matrix Li'"(s) in (16), whose nonzero elements 
L~.'t" are obtained as follows: 

L~'.'~ = ~R2piAfy~s 2, L~'.~ = -kR2piAiYl2eis 2, 

2ii~4 L~',~ = (nZk], + piAiRZs 2) ] - - ~  
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) 2tv~ 
L~'~ = - nk~l n3k~2  npiA*RsEei 1 - v 

R 

• • 22 L~8:'~ = - k'H - ~ k~2n 2 + ~ + n2Noo + RZp, Ais 2 -~T4k 

with k = (1 - v2)/(EhZ). 
For the comparison purpose, the stiffened cylindrical shell is 

also approximated as an orthotropic shell by smearing the ten- 
sion and bending stiffness of the rings on the shell. The internal 
force-strain relations in this case are given by 

N x }  Eh 1 + AD,  0 e~o 
No = --_ v 2 Coo 
N~o 1 1 -  v £ exoo ) 

o - 7  {o) 
+ AOtb (35a)  

v 01{  } Me = 1 + ADb 0 Ko 
Mxo 12(1 - v 2) 0 1 - v K~0 

+ ABtb (35b) 

where 

1 u, 
:,D, = ~ - ~  (1 - ~,2) Z kh, 

t=1  

12 N~ 1 N~ 

"~ 2 2 ,  Z i ~ l  
:,o~ ~ ( 1 - , : ) Z ~ '  :,B,~= Zkh. 

i=1  

For the shell simply supported (N~ = v = w = M, = 0) at its 
both ends, the frequency equation is 

det (A + w2I) = 0 (36) 

where 

Table 1 The fundamental frequency of the oylinddcal shell with inward 
stiffeners 

N r Proposed Ottholtopic 

Method Approximation 

l 0.2699(6) 0.2622(6) 
2 0.2777(6) 0.271 I(6) 
3 0.2849(6) 0.2791(6) 
4 0 . 2914 (6 )  0.2863(6) 
5 0 .2974(6 )  0.2927(6) 
6 0 . 3 0 2 8 ( 6 )  0.2985(6) 
7 0 . 3048 (5 )  0.3038(6) 
8 0 . 3053 (5 )  0.3051(5) 
9 0 . 3058 (5 )  0.3056(5) 
1o 0 .3061(5)  0.306o(5) 

~,~ = _ [ 1 + A D t -  2n2ABtb 

I m , 4  )] 
+ k ~ - - ~ - -  + TI 2 + n4(1 + z~Db) . 

5 N u m e r i c a l  R e s u l t s  

Consider a Donnell-Mushtari shell stiffened by N r identical 
nngs  that are equally spaced along the longitudinal direction x. 
The parameters of the shell and stiffening rings are chosen as 

Shell: R = L =  100, h = 1, E =  l0  4, v = 0.3 

Rings: Ei = 1 0  4, Ui = 0 . 3 ,  b i = 1, hi = 2 

where bi and hi are the width and height of the rings, as shown 
in Fig. 4 ( a ) .  The shell is simply supported at the both ends; 
i . e . , N x = v  = w = M x = 0 a t x =  1 and 100. 

The natural frequencies of the ring-stiffened shell are deter- 
mined by four methods: ( i)  the proposed transfer function 
method (23);  (ii) the orthotropic approximation (36) ; (iii) the 
stepped shell modeling given by Zhou and Yang (1995);  and 
( iv)  the finite element method. It should be noted that the last 
two methods are only valid for shells with symmetric stiffeners, 
i.e., the stiffener eccentricity ei in Fig. 4 ( a )  is zero. In this 
case, with each ring and the connecting shell segment taken as 
a short cylindrical shell, the whole stiffened shell becomes a 

A = 
E 

~(1 - v~)R 2 

//m27r 2 1 -- v '~ 1 + v v 
"\ ~ + 2 n2j  ~2Y, nmTr -- --T1 mTr 

l + v  
n r n ' / l  

2T~ 

13 
- -  ~ m T r  

Yl 

_ ( _ ~ _ 1  - v m27r 2 + (1 + AD,)n  2) 

n(1 + ADt)  - At~bn 3 

n(1 + AD,) - AJ~tbrt 3 

- -33 
A mn 

with 

A/~tb = AB,b(1 -- v 2) 1 Nr 
EhRL ' ~ = p + ~ ~ pib~hi 

i=1  

stepped shell, which, accordingly, can be analyzed by the 
stepped shell synthesis and the finite element method. However, 
if inward or outward stiffeners are used (see Fig. 1 ), the shell 
can not be modeled as a stepped shell because the middle sur- 
faces of those short shells do not coincide; the stepped shell 
assumption in Methods (i i i)  and ( iv)  may lead to inaccurate 
results. 
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Table 2 The fundamental frequency of the cylindrical shell with outward 
stiffeners 

N r Proposed Otthottopic 
M e t h o d  A p p r o x i m a t i o n  

1 0.2670(6) 0.2617(6) 
2 0.2742(6) 0.2702(6) 
3 0.2814(6) 0,2777(6) 
4 0.2881(6) 0.2844(6) 
5 0.2940(6) 0.2905(6) 
6 0.2993(6) 0.2960(6) 
7 0.3040(6) 0.3009(6) 
8 0.3083(6) 0,3054(6) 
9 0.3102(5) 0.3094(6) 
10 0.3108(5) 0,3106(5) 

Shown in Tables 1 and 2 is the fundamental (lowest) natural 
frequency of the cylindrical shell with inward and outward stiff- 
ening rings, respectively, with the number N r of the stiffeners 
varying from 1 to 10. The results obtained by the proposed 
method and the orthotropic approximation are in good 
agreement in all the cases. This is expected because the fre- 
quency is a global parameter and the orthotropic stiffness treat- 
ment is accurate enough for the frequency calculation if the 
stiffeners are densely spaced. However, it is impossible for the 
orthotropic approximation to predict the kinks and jumps in the 
distributions of the stresses or internal forces of the stiffened 
shell, as shall be seen in Figs. 5-8.  

For the shell with symmetric stiffeners, its fundamental (low- 
est) natural frequency is calculated by the aforementioned four 
methods; see Table 3. It is seen that the frequency predicted by 
the first two methods is lower than that by the last two, espe- 
cially for a larger N r. This is mainly due to the fact that the 
stiffener width b~, and therefore the tension and bending stiff- 
ness of the rings in the longitudinal direction are ignored in the 
proposed method and the orthotropic approximation. In all three 

xl0-s 
0.5 

U 

-2 . 

-2.5 , , - 

2 xlO'9 . . . .  

o 

M. 
4 ~ Co) 
.6 

0.2 0.4 0.6 0.8 

x 

Fig. 6 ElgenfuncUons of the shell with two symmetric stiffeners ( N  r = 
2, fundamental frequency = 0.2602): (a) mode shapes; (b) moment and 
shear force 

tables, the digit in the brackets is the circumferential wave 
number n corresponding to the lowest natural frequency. 

The mode shapes (u, v, w), and the distributions of the 
bending moment (Mx) and shear force (Qx) of the stiffened 
shell are plotted in Figs. 5 to 8 by the proposed transfer function 
method, corresponding to the fundamental frequency in Table 
3 for N" = 1, 2, 3, 4. The rings have most significant effect 
on the transverse displacement w and almost no effect on the 
longitudinal displacement u. The kinks in the M:plots and 
jumps in the Qx are clearly seen, which can not be obtained by 
the orthotropic approximation. As N r increases, more kinks and 

0.5 x l ~  

0 

-0.5 

-1 

-1,5 

-2 

U 

-2.5 ,, , 

6 xlO'9 . 

4 

2 

-2 

.4 

.6 

-8 0:2 o'.4 
Co) 0'.6 o',8 

Fig. 5 Elgenfuncctl0ns of the shell with one symmetric stiffener (N r = 1, 
fundamental frequency = 0.2567): (a) mode shapes; (b) moment and 
shear force 
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Fig. 7 Elgenfunctlons of the shell with three symmetric stiffeners ( N "  = 
3, fundamental frequency = 0.2627): (a) m o d e  shapes ;  ( b )  m o m e n t  and 
s h e a r  force  
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Fig. 8 Eigenfunctions of the shell with four symmetric stiffeners (N r = 

4, fundamental  f requency  = 0.26,50): (a) m o d e  shapes ;  (b) m o m e n t  and 
shear force 

initial and boundary conditions, and external loads. Conse- 
quently, the method is very convenient in computer coding and 
numerical simulation. 

The numerical simulation on the free vibration of the stiff- 
ened Donnell-Mushtari shell reveals the following: 

(i)  If the number of the stiffeners is small, the stiffener 
positions have great influence on the shell response. If the num- 
ber of stiffeners is large enough, smearing the stiffener stiffness 
on the shell is a good approximation for natural frequency calcu- 
lation, but it is not accurate in estimating the stress/internal 
force distributions. 

(ii) The stiffener eccentricity has significance influence on 
the natural frequencies and the dynamic behavior of the stiff- 
ened shell. 

It should be noted that the current investigation takes into 
consideration the ring eccentricity and ring position with respect 
to the shell middle surface, which are difficult to depict in many 
modeling techniques. The transfer function method developed 
in this paper can easily handle inward, outward and symmetric 
ring stiffeners. 
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jumps occur in the moment and shear force curves near the 
loc~ions of the stiffeners. 

6 Conclusions 
We have analyzed cylindrical shells stiffened by circumferen- 

tial rings. The shell and stiffening rings are modeled as individ- 
ual structural components. By Fourier expansion, Laplace trans- 
form, and a spatial state-space formalism, the distributed trans- 
fer functions of the shell and rings are determined in exact 
and closed form. By imposing force balance and displacement 
compatibility among the structural components, the contact 
forces between the shell and stiffening rings are expressed in 
terms of the shell displacements by the transfer functions. In 
this way a general formulation for exact solution of various 
static and dynamic problems for constrained/combined, stiff- 
ened cylindrical shells is obtained. 

The proposed transfer function method provides a systematic 
way to study ring-stiffened cylindrical shells; the solution proce- 
dure is the same for different shell models, stiffening conditions, 

Table 3 The fundamental frequency of the cylindrical shell with symmet- 
ric stiffeners 

N r Proposed Orthotropic Stepped Shell Finite Element 

Method Approximation Synthesis Method 

1 0.2567(7) 0.2497(7) 0.2571(7) 0.2542(7) 

2 0.2602(6) 0.2570(7) 0.2631(6) 0.2606(6) 

3 0.2627(7) 0.2603(6) 0.2676(6) 0.2650(6) 

4 0.2650(6) 0.2627(6) 0.2720(6) 0.2692(6) 

5 0.2672(6) 0.2650(6) 0.2762(6) 0.2733(6) 

6 0.2693(6) 0.2672(6) O.28O4(6) 0.2772(6) 

7 0.2714(6) 0.2693(6) 0.2843(6) 0.2810(6) 

8 0.2733(6) 0.2714(6) 0.2881(6) 0.2847(6) 

9 0.2752(6) 0.2733(6) 0.2918(6) 0.2882(6) 

10 0.2770(6) 0.2752(6) 0.2953(6) 0.2915(6) 
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Define 

A P P E N D I X  

dm,o(s) = a,.k: 2 + BIn*uS + Ymk~j 

li~ = ~ nj, 12m = nl + n2 + n3 + ~ nj. 
j= l  j= l  

Let 6j be Kronecker delta. Let [y] be the integer part of the 
number y. Denote the elements of U'"(s) by ~'" L j.,, j ,  k = 1, 
. . . .  2nb. The nonzero elements of U'"(s) are as follows: 

[nkl2] 
,',n = 6~1.~ E dimk(2j)S(--1) yn2j Ltlm,t 

j=o 

[n2/2l 
-- : n , + 2 , : 2 n 3  he, { ~ dim2(2j)(s)(_l )Jn2 q 

ut R j=O 

[(nk+ 1)/21 
i,n Ll,...l = 61 ~k ~ dimk(2j-l)(S)(-l)J+ln 2j-I 

j=l 
[(n2+ 1 )•2] 

_ 6,]~+n2+n~ nei 
" "~- { ~ dim2(2j-l)(S)(-1)Jn 2j-I } 

j= l  
[(nk+ 1 )•2] 

' '  = 61,* Lt~,~ ~ di~k(2j_l)(S)(-1)Jn 2j-I 
j=l  

[(nk+I)/2l 
- -  ~12nl+2n2+2n3 rtei Tt  Z 

j~l 
[nk121 

L~2~,l ~ dimk(2j)(s)(-1)Jn 2j 
j=o 

d,m2(2~-l)(S)(-1)Jn 2j-1 } 

[n2/2] 
_ 67~+,2+, 3 nei "~- { ~ d,m2(2j)(-1)J+ln 2j} 

j=o 
[(nt+ 1)/2] 

i,lt Lt2,.,.,+.2+.3 = - e i  ~. diml(2j- l)(S)(-1)Jn 2j-I 
)=1 

[nil2] 
Li, n t2,.,2.,+~2+2~3 = - e ~  ~ dimm(~)(s)(-1)Jn 2j 

j=o 
[(nl+ 1)/21 

i,n Lt2,:,+~2+~3 = - e j  ~ diml(2j_l)(S)(-1)in 2j-I 
j= l  

[nl/21 
i,n L~2.,,2~,+2.~+2~ 3 = - e l  ~ d~ml(2j)(s)(-1)Jn 2j. 

j=0 t 
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