
Using the XML Key Management Specification
(and breaking X.509 rules as you go)

Stephen Farrell1 and José Kahan2

1 Distributed Systems Group,
Department of Computer Science,
Trinity College, Dublin 2, Ireland,
stephen.farrell@cs.tcd.ie,

https://www.cs.tcd.ie/Stephen.Farrell/
2 W3C / ERCIM,

INRIA Rhône-Alpes,
ZIRST, 655 av. de l’Europe, Montbonnot,
FR-38334 ST ISMIER CEDEX, France,

jose.kahan@w3.org,
http://www.w3.org/People/Jose/

Abstract. Implementing X.509 based public-key infrastructure requires
following a complex set of rules to establish if a public key certificate is
valid. The XML Key Management Specification has been developed as
one way in which the implementation burden can be reduced by moving
some of this complexity from clients and onto a server. In this paper we
give a brief overview of the XML key management specification standard,
and describe how, in addition to the above, this system also provides us
with the means to sensibly break many of the rules specified for X.509
based public key infrastructure.

1 Introduction

In this paper we will describe how the XML Key Management Specification
(XKMS) [1, 2] can be used as a kind of intranet “front-end” to an X.509 based
Public Key Infrastructure (PKI). Such PKIs mainly try to follow the rules spec-
ified in most detail in RFC 3280 [3].

Once we have seen how an XKMS responder can be used in such a situation
we will then examine a number of ways in which the responder can offer better
service to clients, by breaking the rules of X.509!

2 The XML Key Management Specification

The XML Key Management Specification (XKMS) [1] is a W3C Recommenda-
tion designed to ease the costs of PKI deployment without sacrificing its bene-
fits. It is suitable for use in conjunction with the XML-Signature [4] and XML-
Encryption [5] W3C Recommendations as well as in other application contexts,



2

such as email. As stated, XKMS is a W3C Recommendation, the pinnacle of
the W3C standards process: it has been reviewed by W3C Members and other
interested parties and there exists enough implementation and interoperability
proof to validate its concepts. The XKMS W3C Recommendation was published
on 28 June 2005 though the original W3C Note on XKMS dates from 2001.

We will now give a brief overview of XKMS - a companion paper [6] de-
scribes XKMS in more detail and also reports on interoperability status. XKMS
consists of two different parts: the XML Key Information Service Specification
(X-KISS) and the XML Key Registration Service Specification (X-KRSS). X-
KISS defines a protocol to support the delegation by an application to a service
of the detailed processing of key information associated with an XML-Signature,
XML-Encryption, or other usage of the XML-Signature <ds:KeyInfo> element.
X-KRSS defines a protocol for the registration of a public key by a key pair
holder, with the intent that the key subsequently be usable in conjunction with
X-KISS or a PKI. XKMS is designed to be protocol independent and it proposes
bindings [2] over SOAP/1.2 as well as plain HTTP.

2.1 X-KISS

Reducing the complexity of applications using XML-Signature is one of the key
objectives of the protocol design. X-KISS clients are relieved of the complexity
of the underlying PKI used to establish trust relationships. These relationships
may be based upon a different specification, such as X.509/PKIX, or PGP[7].

In addition, sometimes the information provided by a signer can be insuffi-
cient for performing cryptographic verification or to be able to decide whether
to trust a signature. Alternatively, the information provided by the signer may
be in a format that is not supported by the client. In these cases communication
with an X-KISS service can be useful as a way to get that “missing” information.

Examples where the key information could be insufficient for the client in-
clude:

– The key may be specified by a name only.

– The key may be encoded in an X.509 certificate that the client cannot parse.

– In the case of an encryption operation, the client may not know the public
key of the recipient (e.g., just having a name).

X-KISS works via two different services: Locate and Validate.

Locate resolves a <ds:Keyinfo> element but does not require the service
to make an assertion concerning the validity of the data in the <ds:Keyinfo>

element. Validate does all that Locate does, but in addition, the client obtains
an assertion (at that time, according to that responder) specifying the status of
the binding between the public key and other data, for example a name or a set
of extended attributes. Furthermore the service represents that each of the other
data elements returned are bound to the same public key.



3

2.2 X-KRSS

X-KRSS handles the registration and subsequent management of public key
information. An X-KRSS service may bind information such as a name, an iden-
tifier or other attributes, to a public key, on reception of a client request. The
key may be generated by the client or by the service on request. The Registra-
tion protocol may also be used for subsequent management operations including
recovery of the private key and reissue or revocation of the key binding. The
protocol provides ways of authenticating the requester and the possession of a
private key. Additionally it provides a means of communicating the private key
to the client in the case that the private key is generated by the registration
service.

The operations constituting X-KRSS are:

– Register: Information is bound to a public key through a key binding.
Generation of the key pair may be performed by either the client or the
Registration service.

– Reissue: A previously registered key binding is updated. It is similar to the
initial registration of a key and the principal reason a client would make a
Reissue request is to cause the registration service to generate new credentials
in the underlying PKI, e.g., X.509 Certificates.

– Revoke: A previously registered key binding may be revoked. A revocation
request need only contain sufficient information to identify the key binding
to be revoked and the authority for the revocation request.

– Recover: The private key associated with a key binding is recovered. The
private key must have been previously escrowed with the recovery service,
for example by means of the X-KRSS registration of a server generated key.

2.3 Using XKMS as a PKI front-end

PKIs aim to allow every user and every application to verify the identity of
everyone with which they communicate and to ensure that the counter-party
identity is appropriate for the transaction and also that the identity/key binding
is still valid (not revoked). Unfortunately, the infrastructure needed to support
this places such burdensome demands on application developers that it can be
difficult to develop a secure application that achieves all of these goals simulta-
neously.

In order to verify a given signed document, a party must locate the corre-
sponding public-key certificate, verify its validity, and parse it to extract the cor-
responding public-key. Traditionally with PKI, these operations are carried out
by a (PKI) client application. This requires complex configuration settings, e.g.,
rules/configuration for mapping application identities to X.500 names. More-
over, as different PKIs can have different conventions, this can complicate the
integration of PKI with applications.

In XKMS, these trust decisions are delegated to a common server, so that
they can be centralized and applied consistently across platforms. The only con-
figuration information that an XKMS client needs is the URL of the server and



4

the public key the server will be using to sign its replies. Different trust models
can be supported by using different server URLs.

Figure 1 gives an example of one way in which XKMS can validate requests
between a client and an application server (we assume that both the client and
application server have previously used X-KRSS to register their public keys in
the XKMS service). The workflow is as follows:

1. The client uses the Validate request to get a public key for the server.
2. The client sends a signed request to the application server; the request in-

cludes a copy of the client’s public-key certificate and is encrypted with the
server’s public key.

3. The application server decrypts the request, and forwards the client’s public
key certificate to the XKMS service using a Validate request, asking to
validate it and to extract the public-key contained within.

4. The application server processes the client request.

Fig. 1. Validating a request using XKMS

2

4

1 3

Client App. Server

XKMS Service

PKI

Note that in the preceding example, the XKMS service does not sign or
verify the signature of the client’s request. These operations have to be done
locally. Also note that the PKI that is behind the XKMS responder is completely
transparent to the client - it could be based on X.509 or something else. Likewise,
this transparency allows for the exchange of one PKI with another one with
minimal change for the client and application server code. Finally, the client and
the application server could contact different XKMS services; in this case, one
XKMS server could act as client to get the required information from the other
server.



5

In addition to acting as a relatively straightforward “front-end” for the usual
X.509 based PKI, XKMS is also intended to be usable in other contexts, in
particular where PGP [7] based data formats are used instead of X.509 based
ones or where a PKI is built from scratch based on “native” XML formats like
the <ds:KeyInfo> structure defined in XML-Signature [4].

3 Breaking X.509 rules using XKMS

in this paper we are interested in considering how an XKMS responder, placed
in front of an X.509 PKI can usefully break the rules of that PKI in order to
provide better service to the responder’s clients. We first consider the types of
rule which can be broken, and then give a number of examples where breaking
each type of rule is of benefit.

Many of the rule-breaks, or “cheats”, we outline below might be considered
to be features of a PKI. For example, if an XKMS responder uses a different
name for an entity, someone could respond that the PKI could have done the
same thing via the use of another SubjectAltName extension. However, even if
some PKI could achieve the same effect, the point is that for a given deployed
PKI, changing the name of the entity is cheating, at least in PKI terms. Whether
this indicates that X.509 based PKIs are too rigid, is a topic potentially worth
discussing though not one we address here.

Note that many, but not all, of the “cheats” here could also be implemented
by a non-conformant implementation of the SCVP protocol [8], however a con-
forming XKMS implementation can do all of these things, as well as acting as a
more “traditional” PKI front-end when circumstances warrant.

3.1 A classification of the rules-to-be-broken

RFC 3280 [3] describes in detail the contents of certificates and related data
structures and (mainly in Section 6) describes an algorithm which can be im-
plemented in order to check the validity of certificate paths. The rules which
are explicitly and/or implicitly specified therein could be broken down into the
following classes:

– Certificate content. Rules as to how to interpret the content of a certifi-
cate.

– Certificate status checking. Rules stating whether or not a previously
issued certificate remains valid.

– Valid path constraints. Rules which valid certificate paths follow (many
of these are derived from the validation algorithm).

For each of these classes we will give examples of how breaking related rules
can be useful. Note that the classes themselves are not really significant, but
they do help to organize our presentation and also help us to find additional
ways in which we can break X.509 rules!



6

3.2 Certificate content related rules

We begin by breaking the most basic rules of X.509 based PKI. We will go into
more detail on the first rule-break, for later ones we leave the details of the
XKMS messaging required as an exercise for the reader.

Changing the name of the certificate holder . In many cases organizations will
have gone to much trouble to ensure that the certificate holder (subject and/or
subjectAlternateName) fields contain unique values, for example, via the in-
clusion of employee numbers or other serial numbers. Non-human entities (like
applications) may have similarly constructed names for consistency. This makes
these names cumbersome and unsuitable for many applications, for numerous
reasons, not least the fact perhaps the applications didn’t actually exist when
the PKI naming debate was raging within the enterprise. An XKMS responder
can therefore usefully maintain its own translation of names, perhaps via a set
of tables and/or some algorithm. In this way, an entity known to the PKI as
"L=Internet;O=Example Org; CN=Joseph User+SN=123456798" might sensi-
ble be mapped to "joe". In terms of XKMS processes, the steps that occur
could be as follows:

1. Application received XML-Signature produced by Joe, with Joe’s X.509 cer-
tificate in a <ds:KeyInfo>.

2. Application does a Validate containing that <ds:KeyInfo>, but without ever
looking “inside”.

3. Responder does PKI things to validate the certificate and then maps from
the subject field (above) and the name of the application (or other context)
to "joe".

4. Responder returns a binding containing the appropriate ds:keyValue and a
<ds:KeyName> containing simply the string "joe".

5. Application correctly accepts that XML-Signature is from Joe and does fur-
ther XML processing on the relevant documents.

In a variation on the above, the responder could simply invent a pseudonym

for the certificate holder each time it sees a new XKMS-client/application pair
(or following many other algorithms). This would make the application less likely
to cause privacy problems since application state would contain the pseudonym
and not a real identity. It would also make it harder to correlate the same user’s
actions over multiple applications.

Another related “cheat” would be where the responder uses some name res-

olution service (like DNS), and maps from the requested name to one present
in a certificate (or vice-versa). This could be useful to handle load-balancing
and other cases where the names currently in X.509 certificates don’t match
those that the application requires. Of course, this means putting some “trust”
in whatever resolver is used by the XKMS responder, but that may well be as
secure, and cheaper than, frequently getting new X.509 certificates.



7

Hidden key escrow. In response to a query from an application which is about to
do an encryption operation (e.g. an S/MIME enabled mail user agent), an XKMS
responder could produce a response which contains a public key for which the
corresponding private key is known to some other application (e.g. an outbound
SMTP server). In the example, the mail client will (unknown to it!) encrypt
for the SMTP server, which can decrypt, presumably then apply some useful
policy checks, and subsequently re- encrypt for the intended recipient. Say that
now the SMTP server uses the XKMS responder to find the intended recipient’s
key. Either via configuration, or even some visible and/or hidden values in the
KeyBinding returned (e.g. a proprietary X.509 extension), to the mail client, the
XKMS responder can know how to respond.

Ignoring expiration. X.509 certificates expire, unfortunately. For many applica-
tions, there is no real need to update certificates other than to handle the fact
that certificates expire. XKMS can rescue us here by simply checking the not-
Before and notAfter values in a certificate and running the RFC 3280 validation
algorithm for some time in that interval, that is, the responder can ignore the
certificate’s validity period entirely. In this way, Joe can go on using the same
certificate indefinitely possibly saving money for the organization (if certificate
renewal is a chargeable service). For any application which has its own concept
of account revocation or expiry this mode of operation is entirely sufficient (i.e.
the notAfter field of the X.509 certificate adds no value in such cases).

Creating an entirely new certificate. In response to a locate or validate request
a responder could do the standard PKI operations to validate some certificate
for the public key in question, but then create a new certificate, issued by the
responder (or at least signed using a key under the responder’s control) which
will be more likely to satisfy the application requirements. Basically, this al-
lows the responder to include any of the above “cheats” in an X.509 certificate,
which is useful if the ultimate X.509 relying party will trust the responder-issued
certificate. This is slightly different from normal PKI models, in that the respon-
der may for example change the subject field to better match the application
requirements.

This “cheat” also allows the responder to handle potential cryptographic

weaknesses, for example related to hash-function robustness. If the responder
has a local repository of certificates, then it can perhaps be confident that those
certificates retain their integrity even if the hash functions used therein are cur-
rently considered weak. The newly created certificate can then use better hash
functions or else countermeasures like long, random serial numbers in order to
create a certificate which will be acceptable to the X.509 relying-party.

If the responder is creating new certificates for some application where the
certificate is only used for a short period, then the responder could re-use serial

numbers in order to make it simpler to handle revocation of such certificates.
For example, if the XKMS client application uses the certificate for a CMS [9]
based confidentiality service, but throws away the certificate shortly after use,
then the responder could use a small set of serial numbers for all certificates. The



8

net effect is that CRLs never get long enough to cause problems, while relying
party applications can do standard revocation checks. This “cheat” shows that
even the most fundamental “rule” of X.509 (that an issuer MUST NOT re-use
serial numbers) can usefully be broken!

Covert channel. Where a responder creates new certificates there are many
X.509 fields which can be used as a kind of covert channel between the XKMS
responder and intermediaries who see the certificate or perhaps the private key
holder (if the certificate is carried end-to-end in an encrypting application). Such
a covert channel could be used to carry (or link to) authorization information
or any other application data. The fields that could be used in this way without
affecting the use of the public key contained in the certificate include the serial
number, unique identifiers, issuer, subject, algorithm identifiers (both inner and
outer), and many of the standard extensions. The version number could also
potentially be used, though probably at the expense of suffering decoding errors
in intermediaries. Note that if CMS is used for encryption then the serial number
covert channel gets through to the private key holder even if the certificate does
not. Although a similar trick can be done using short-lived X.509 certificates,
this “cheat” differs in two respects: the certificates are likely to be even more
short lived since an XKMS client will more frequently contact its responder,
hence the covert channel has higher bandwidth. Secondly, the XKMS protocol
inherently supports us in doing this, whereas in an X.509 context a modified
LDAP server might be the best way to implement this.

3.3 Certificate status related rules

Handing revocation of certificates has always been a really problematic area for
X.509 based PKIs. In this section we will examine ways in which we can help by
breaking the rules of X.509.

Entirely ignoring revocation. The most obvious way to solve the revocation
problem is to get rid of it. This is straightforward enough - the responder simply
runs the validation algorithm but skips the certificate status checking stages
entirely. It may be useful to for the responder to keep its own, application-
specific blacklist as well as a global blacklist and to use that as the basis on
which it decides the Status of KeyBindings.

Ignoring business motivated revocations. If an enterprise pays a service provider
to operate a PKI on their behalf then that service provider might create a CA
for that purpose. When the customer no longer wants to use that service, the
service provider might revoke that CA’s certificate, thus potentially invalidating
all of the end entity certificates issued by that CA. An XKMS responder is in a
useful position to ignore this revocation in order to provide business continuity
where the customer is switching from one service provider to another, or to
an in-house PKI. More generally, one could perhaps argue that leveraging the
flexibility of XKMS makes many business transitions easier, when compared with
X.509 compliant solutions.



9

Ignoring authority revocation. Access to the required CRLs or OCSP responders
for end entity certificates may be possible in many circumstances. However, for
some PKIs it will be hard to find the relevant CRLs or OCSP responders in
order to ensure that no CA on the path has been revoked. An XKMS responder
could usefully maintain its own list of revoked CAs and therefore not have to
attempt to access these ARLs or equivalent.

Ignoring revocation timing. An XKMS responder could be configured so as to
ignore revocation timing information (e.g. the next update field etc.) and could
simply periodically access certificate status information, presumably from a fairly
reliable source. This amounts to having the XKMS responder (administrator)
choose the level of acceptable risk, in terms of potential missed revocations. In
many circumstances the XKMS responder will be in a much better position than
the X.509 certificate issuer to properly evaluate this risk - thus leading to a more
easily deployed system.

3.4 Path validation related rules

X.509 based PKIs define a range of certificate extensions which are aimed at
controlling which paths are valid and which are not. There are many cases where
we may want to disagree with the constraints that CA’s would like to impose
and XKMS allows this to be done easily.

Ignoring all certificate policy checks. Certificate policies, even if initially sensible,
may well not last as long as certificates, for example introducing new applications
into a bridge-CA structure may make many issued certificates useless. An XKMS
responder could therefore effectively “strip” out all certificate policy handling,
and in particular all policy mapping.

Ignoring basic constraints. A responder could totally ignore the basic constraints
extension (or its path length constraint) and treat an end entity as a CA. This
could be useful to integrate with some quasi-standard or less frequently seen
PKIs such as those used in some grid computing environments [10].

4 Conclusions

We have given a brief outline of XKMS and one of its main use cases: use as
a locally trusted intranet server. However, by showing ways in which XKMS
can usefully be used to break restrictive X.509 rules, we have also demonstrated
that XKMS can be used as more than just a front-end for X.509 based (or other)
PKIs.

It should also be clear that we could have given many more examples - in
fact one could possibly construct an interesting “cheat” for almost all certificate
and CRL fields, and for almost all MUST or SHOULD statements in RFC 3280
[3]. However, we are, of course, not recommending that XKMS implementers



10

implement these “cheats” - they each only make sense in specific contexts. We
do expect that over time, some of them (or others) will be found to be useful
enough to warrant inclusion in XKMS implementations - perhaps at some stage
some might even find their way back into the X.509 related standards!

Finally, the fact that there are so many potentially useful ways in which the
X.509 PKI rules can be broken, given the opportunity offered by XKMS, may
indicate that those rules are somewhat too onerous, at least when an on-line
trusted server is available as is the case with XKMS (and, whenever it is finally
completed, with SCVP).

References

1. P. Hallam-Baker and S. H. Mysore (eds.): XML Key Management Specification
(XKMS 2.0). Recommendation, W3C (2005) http://www.w3.org/TR/2005/REC-
xkms2-20050628/.

2. P. Hallam-Baker and S. H. Mysore (eds.): XML Key Management
Specification (XKMS 2.0) Bindings. Recommendation, W3C (2005)
http://www.w3.org/TR/2005/REC-xkms2-bindings-20050628/.

3. R. Housley, W. Polk, W. Ford, D. Solo: Internet X.509 Public Key Infrastructure
Certificate and Certificate Revocation List (CRL) Profile. RFC, IETF (2002)
http://www.ietf.org/rfc/rfc3280.txt.

4. D. Eastlake et al (eds.): XML-Signature Syntax and Processing. Recommendation,
W3C (2002) http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/.

5. D. Eastlake and J. Reagle (eds.): XML Encryption Syntax and Processing.
Recommendation, W3C (2002) http://www.w3.org/TR/2002/REC-xmlenc-core-
20021210/.

6. G. Alvaro, S. Farrell, T. Lindberg, R. Lockhart, Y. Zhang: XKMS Working Group
Interoperability Status Report. In: to appear in Proceedings of EuroPKI 2005,
Univerrsity of Kent, Canterbury, England. (2005) http://www.europki.org/.

7. P. Zimmermann: Pretty Good Privacy (PGP), PGP User’s Guide. Technical
report, MIT (1994)

8. T. Freeman, R. Housley, A. Malpani, D. Cooper, T. Polk: Simple Certificate Valida-
tion Protocol (SCVP). Internet Draft, IETF (2005) http://www.ietf.org/internet-
drafts/draft-ietf-pkix-scvp-18.txt.

9. R. Housley: Cryptographic Message Syntax. RFC, IETF (2004)
http://www.ietf.org/rfc/rfc3852.txt.

10. S. Tuecke, V. Welch, D. Engert, L. Pearlman, M. Thompson: Internet X.509
Public Key Infrastructure (PKI) Proxy Certificate Profile. RFC, IETF (2004)
http://www.ietf.org/rfc/rfc3820.txt.


