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1. Introduction 

Diabetes Mellitus (DM) is a disease that was identified centuries ago, in around 1500 BC (King 
and Rubin, 2003). The word ‘Diabetes’ means “running through” (Holt, 2004) which is used to 
describe the excessive output of urine in this disease. “Mellitus” meaning “sweet” identifies 
the nature of the urine in patients suffering from DM (Widmaier et al., 2004). Thomas Willis 
was the first to differentiate DM from other polyurias in 1674 (Eknoyan and Nagy, 2005).  In 
1776, Matthew Dobson demonstrated that the sugar present in the urine was also present in 
the blood and was associated with its rise (Holt, 2004).   In 1848, Claude Bernard’s experiments 
on the liver showed that glycogen stored in the liver produced sugar and he hypothesized that 
glycogenolysis caused the disease. Although his discovery that “sugar production is a normal 
function of the animal” was revolutionary, it did not quite explain the etiology of the disease. 
In 1889, Oskar Minkowski confirmed that the ablation of the pancreas in dogs resulted in DM 
(Farmer, 1952). Frederick Banting and Charles Best were the medical scientists that discovered 
insulin, later in 1921, the lack of which, it was made clear, caused DM (Voet and Voet, 2004). 
They used the extract of a dog’s fresh pancreas and demonstrated that upon administration of 
10mL of extract to blood, blood glucose level is decreased from 0.3% to 0.17% (Rosenfeld, 
2002). Some 30 years later, in 1953, Frederick Sanger was able to determine the complete amino 
acid sequence of the protein for the first time in history (Boron and Boulpaep, 2009).  
Today, DM is defined as a carbohydrate disorder characterized by impaired insulin 
secretion and/or peripheral insulin resistance leading to hyperglycemia (Beers and Berkow. 
1999). It is considered to be the third leading cause of death after heart disease and cancer in 
the United States (Voet and Voet, 2004) and its incidence is expected to rise to 366 million 
people by the year 2030 (Wild et al., 2004). 
Diabetic patients have symptoms such as, thirst, polyuria, blurring of vision and weight loss. 
In extreme cases, ketoacidosis may develop leading to coma and ultimately death (Alberti and 
Zimmet, 1998). Diabetes Mellitus is classified according to etiology to two major types: 

1.1 Type 1 diabetes mellitus 
Although both type 1 Diabetes Mellitus (type 1 DM) and type 2 Diabetes Mellitus (type 2 
DM) are characterized clinically by hyperglycemia, they have their differences. Type 1 DM 
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occurs commonly during childhood or adolescence therefore also named juvenile onset DM 
and may develop diabetic ketoacidosis (Beers and Berkow, 1999). Of all diabetes cases, 10% 
are type 1 DM (Holt, 2004). It includes all autoimmune and idiopathic causes of insulin-
secreting ǃ cell destruction resulting in absolute insulin deficiency (Alberti and Zimmet, 
1998). The patient is usually genetically predisposed to DM, however, an environmental 
insult, such as a virus is needed to trigger the pathological process of the disease (Wilson et 
al. 1991). It is evident that CD4+ and CD8+ T lymphocytes are activated in the pancreatic 
lymph node and later infiltrate the pancreas causing inflammation (insulitis) (Yang and 
Santamaria, 2003).  During this time, the body develops an immune response that sees 
pancreatic islet cells as ‘nonself’ and starts destroying its ǃ cells (Wilson et al., 1991). Specific 
causes of ǃ cell destruction, such as cystic fibrosis or mitochondrial defects, are excluded 
from this classification (Alberti and Zimmet, 1998). Recently, type 1 DM was subdivided 
into type 1 A and type 1 B. Type 1A diabetes mellitus is described as a disease with immune 
mediated, selective destruction of insulin producing ǃ cells, with the presence of anti-islet 
autoantibodies. Whereas type 1B diabetes mellitus, exhibits inflammation of the pancreas, 
but lack of anti-islet autoantibodies (Rhoades and Bell, 2009). Patients with type 1 DM 
require daily subcutaneous insulin administration as a treatment (Seifter et al., 2005). 
Administration of exogenous insulin cannot be compared to the fine control of minute to 
minute insulin secretion that the pancreas provides (Hakim, 2002); for that reason, human 
islet cell transplantation has been accepted and applied as an alternative treatment for 
patients with type 1 DM (George, 2009). 

1.2 Type 2 diabetes mellitus 
Type 2 DM is also known “Adult-onset Diabetes” (Beers et al., 2006), and represents 90-95% 

of diabetic patients (Creager et al., 2003; Seifter et al., 2005). This percentage is expected to 

increase in the year of 2025 to reach 300 million diabetic patients (Rhoades and Bell, 2009) 

due to sedentary lifestyle and increase in obesity in addition to age progression (Boron and 

Boulpaep, 2009; King et al., 2005). As the intake of glucose increases insulin secretion is 

elevated. After a while, insulin secretion becomes inadequate due to peripheral resistance of 

insulin receptors (Beers et al., 2006; King et al., 2005). Insulin resistance decreases glucose-

mediated insulin transport and metabolism (Rhoades and Bell, 2009), resulting in a defect of 

the compensatory insulin secretion (Mcphee et al., 2008).  It is worth noting that in type 2 

DM reactive oxygen species are generated resulting in endothelial dysfunction, 

cardiovascular complications and renal disease (Hayashi et al., 2010; Seifter et al., 2005). 

Insulin resistance develops when insulin signaling pathway is interfered in adipose, skeletal 

and hepatic cells (Seifter et al., 2005). As a result of insulin resistance, glucose transport 

inside adipocytes and skeletal muscle is reduced and the suppression of glucose output 

from the liver is impaired. (Rhoades and Bell, 2009) 

2. Complications of diabetes mellitus 

Chronic hyperglycemia causes blood vessels injury (Seifter et al., 2005) which is divided into 
two types depending on the size of vessels injured.  Small vessels injury in diabetes is a 
microvascular complication whereas injury of large blood vessels determines a 
macrovascular complication (Hayashi et al., 2010, Kalani, 2008). Microvascular and 
macrovascular complications occur in DM both types 1 and 2 (Retenakaran and Zinman, 

www.intechopen.com



Type 1 Diabetes Mellitus: Redefining the Future  
of Cardiovascular Complications with Novel Treatments   

 

221 

2008; Rhoades and Bell, 2009). These injuries cause on the long run acceleration in 
atherosclerotic formation (Seifter et al., 2005). In type 1 diabetic patients, hyperglycemia has 
been correlated with a variety of events in cardiovascular pathology, initiated with 
endothelial dysfunction and progressed to develop arterial stiffness (Tabit et al., 2010).  
Thus, a relation has been clearly established to link glycemia with cardiovascular events in 
type 1 DM, based on the fact that glycemia itself is the only factor mediating a risk factor for 
cardiovascular risk in the absence of other risk factors (Retenakaran and Zinman, 2008).  
One way of reducing cardiovascular risk and renal outcomes in type 1 DM is to initiate an 
early intensive therapy for its management.   

2.1 Microvascular complications 
Microvascular complications include nephropathy, retinopathy and neuropathy (Coccheri, 
2007; Fowler, 2008; Seifter et al., 2005).  There is a direct clinical practice to link these 
complications with DM type 1 rather than type 2 (Retenakaran and Zinman, 2008).  Of note, 
type 2 DM may manifest development of microvascular complication 7 years preceding 
diagnosis (King et al., 2005). 

2.2 Macrovascular complications 
These define the pathophysiology of cardiac disease in type 1 DM which includes 

atherosclerosis, coronary artery diseases, stroke and peripheral arterial disease (Retenakaran 

and Zinman, 2008; Seifter et al., 2005). These cardiovascular complications are mostly 

focused in clinical practice to type 2 DM (Fowler, 2008), and increased in rate as well in type 

1 DM (Mcphee et al., 2008); however, the mortality impact of cardiovascular diseases in both 

DM types 1 and 2 is similar (Juutilainen et al., 2008) contributing to 80 % of the mortality and 

morbidity (Coccheri, 2007). More alarmingly, development of macrovascular complication 

might not manifest in type 1 DM until 10 years proceeding diagnosis (King et al., 2005).  

Endothelial and smooth muscle dysfunction has been associated with type 1 diabetic patients, 

which in turn might cause hypertension, a major risk factor for developing cardiovascular 

diseases (Retenakaran and Zinman, 2008).  Also lipid abnormalities in type 1 DM, decrease in 

HDL and increase in LDL compositions, are being incidents of causing cardiovascular diseases 

(Retenakaran and Zinman, 2008). High levels of ketone bodies are produced from the body as 

an alternate fuel in the absence of glucose as a main source of energy in severe starving 

conditions, mainly hyperglycemia (Seifter et al., 2005), or an acute multiplication of type 1 but 

not type 2 DM (Rhoades and Bell, 2009).  Three types of ketones can be generated in the body 

these are acetone whose odor can be detected overtly via breath, acetacetic acid and ǃ-

hydroxybutyric acid whose levels may elevate in the blood and be excreted in urine, which is 

followed by cations and fluid loss ultimately leading to coma (Rhoades and Bell, 2009).  

3. Renin angiotensin system 

With the discovery of renin in 1898, Robert Tigerstedt and Per Bergman were able to fill a 
gap present in the understanding of fluid balance, hypertension and cardiovascular disease 
(Basso and Terragno, 2001; Phillips and Schmidt-Ott, 1999). The Renin Angiotensin System 
(RAS) plays an important role in maintaining normal blood volume and blood pressure. 
When salt and water intake is reduced, the role of RAS becomes critical (Rhoades and Bell, 
2008). Upon low plasma volume, intrarenal baroreceptors found in the afferent arteriole 
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walls sense a decrease in stretch and neighboring granular cells increase renin synthesis and 
release (Boron and Boulpaep, 2009). The granular cells of the juxtaglomerular apparatus of 
the kidney produce renin (Widmaier et al., 2004). At first, preprorenin is synthesized in the 
granular cells; its 23 amino acid signal peptide is then cleaved to form prorenin (Sepehrdad 
et al., 2007). This proenzyme undergoes further modification- clipping the 43 amino acid 
segment from the N-terminal – to produce renin (Pool, 2007). Despite the conversion of 
prorenin to renin, prorenin remains the predominant form in the systemic circulation and 
represents 90% of the total plasma renin in humans (Pimenta and Oparil, 2009). Renin 
belongs to the family of aspartyl proteases, including pepsin, cathepsin D and chymosin 
(Verdeccia et al., 2008). Unlike other aspartyl proteases however, renin is able to work at 
neutral pH.  Moreover, renin is specific for one substrate only- angiotensinogen (Sepehrdad 
et al., 2007). Made up of two lobes with a cleft in between renin accommodates the liver-
derived angiotensinogen in its active site, where a peptide bond of angiotensinogen is 
hydrolyzed and the decapeptide Angiotensin I (Ang I) is released (Verdeccia et al., 2008). 
Furthermore, this conversion is catalyzed 4-fold upon the binding of renin to its receptor 
(Pool, 2007). Angiotensin converting enzyme (ACE) is the principal enzyme that converts 
Ang I to the octapeptide Ang II (60% conversion); some other enzymes such as chymases, 
cathepsin G and other serine proteases account for the rest of the conversion (Weir, 2007). 

3.1 Cross talk between RAS and litus 
Angiotensin II was always considered in close proximity with diseases and vascular 

complications.  This is implied from data linking high levels of Ang II to DM and 

vasoconstriction (causing hypertension) (Karam et al., 2005), in addition to glomerular 

damaging ending up with nephropathy (Coccheri, 2007). Other than its direct effect as a 

potent vasoconstrictor, it was denoted to alter Endothelin-1 (ET-1) production (Karam et al.,  

2005), remodel cardiovascular structure (Parmar and Jadav, 2007), modulate heart and 

vessels (Nuwayri-salti et al., 2007), augment transforming growth factor–beta (TGF-ǃ) and 

boost proliferative and inflammatory events (Wiggins and Kelly, 2009). In conjunction; 

modulation of insulin significance is obtained (Karam et al., 2005), either by directly halting 

signaling mechanism of insulin per se or damaging structure and function of ǃ-cells via local 

pancreatic RAS (Coccheri, 2007). Angiotensin II has 2 receptors: Ang II Type 1 receptor 

(AT1R) and Ang II Type 2 receptor (AT2R). But until now AT1R rather than AT2R is 

assessed in the pathophysiology (Karam et al.,  2005; Rao, 2010) directing therapeutic agents 

either to target Ang II formation or block its binding to AT1R via Angiotensin converting 

enzyme inhibitors (ACEIs)  and Ang II Receptor Blocker(ARB) respectively (Karam et al.,  

2005).  AT1R blockers improved vascular smooth muscle cell vasoconstriction and declined 

the hypertrophy of cardiomyocytes (CM) counteracting Ang II deleterious effect (Al Jaroudi 

et al., 2005) once bound to the G-coupled protein receptor (AT1 R) (Parmar and Jadav, 2007; 

Wiggins and Kelly, 2009). Quite interestingly, ACEIs ameliorated insulin sensitivity and 

mitigated new onset of DM type 2 (Hadi and Suwaidi, 2007; Scheen, 2004). Pooled together, 

these G-coupled transmembrane proteins mimic insulin receptor action (Nuwayri-Salti et al., 

2007). Among several evidences, AT2R is more related to apoptotic actions thereby 

antagonizing insulin’s growth effect, resulting in one way or another to boost cardiac 

hypertrophy mainly in type 1 DM (Al Jaroudi et al., 2005). To complete this picture, a 

balance should be assured between both Ang II receptors to modulate a normal cardiac 

status in type 1 DM along the endothelial cells and cardiomyocytes (Al Jaroudi et al., 2005).  
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The idea of blocking RAS at its point of origin was initiated around 50 years ago (Pool, 
2007). The origin of these direct renin inhibitors (DRIs) was either analogues of the 
prosegment peptide of renin or of the AGT’s N-terminal amino acid sequence (Gradman 
and Kad, 2008). Many peptidomimetic synthetic drugs used for renin inhibition have been 
launched including pepsatitn (the first renin inhibtor) and other oral drugs, including 
remikiren, enalkiren  and zankiren (Pimenta and Oparil, 2009), but their low efficiency 
related to large molecular size, first-pass metabolism, incomplete intestinal absorption, 
hydrophobicity and short half-lives attributed their poor oral activity and bioavailability, 
besides the high production cost (Pool, 2007; Waldmeier et al., 2007).   The drug Tekturna® 

(United States) or Rasilez ® (Europe) , known with the generic name of Aliskiren, ascribed to 
Dr. Alice Huxley (Gradman and Kad, 2008), manufactured by Novartis Pharmaceuticals, 
was the first of the nonpeptide DRIs to be approved by the Food and Drug Administration 
(FDA) (Azizi, 2008). Thereby becoming the commercially available renin blocker in markets, 
prescribed through United States and Canada for an effective essential hypertension 
treatment in March 2007 (Azizi, 2008), and approved by European Medicine Agency 
(EMEA) in August 2007 (Pool, 2007; Azizi, 2008).  

4. Endothelin system 

In 1985, Hickey et al. discovered a potent vasoconstricting substance from cultured 

endothelial cells and named it endotensin or endothelial contracting factor. Later on, 

Yanagisawa et al. isolated the same substance from cultured porcine aortic and endothelial 

cells and renamed it endothelin. Endothelin (ET) is a naturally occurring polypeptide 

(Prasad et al., 2009) produced by the endothelium (Shah et al.,2009; Wikes et al., 2003; Ying 

wu, 2003) and consists of 21 amino acids. It is present in three isoforms ET-1, ET-2 and ET-3 

(Agapitov et al., 2002; Prasad et al., 2009). These three isoforms are encoded by different 

genes but have similar structure and function (Wilkes et al., 2003). They have conserved 

sequences of amino acids mainly at the 6 C terminus and 4 cysteine residues that form 2 

disulfide bridges between residues 1 to 15 and 3 to 11 and the main difference is at the N-

terminus  (Prasad et al., 2009). They are vasoconstrictors synthesized by vascular, right atrial 

and left ventricular endothelial cells, vascular smooth muscle cells and fibromyocytes. In 

addition, they are synthesized in extra vascular tissues such as the lungs, spleen, pancreas 

and nervous system (Penna et al., 2006). All studies done on endothelial systems focused on 

ET-1, because represents the majority of the circulating endothelins (Prasad et al., 2009; 

Schneider et al., 2002) and has important role in the  regulation of the cardiovascular system 

(Penna et al., 2006; Prasad et al., 2009). 

4.1 Endothelin-1 
Endothelin-1 is the most common isoform correlated with the cardiovascular system 
(Kalani, 2008). It was identified in the late 1980s by Dr. Yanagisawa and his colleagues and 
found to be a very potent vasoconstrictor (Prasad et al., 2009; Steiner and Preston, 2008; 
Thorin and Webb, 2009). It has ionotropic, chemotactic and mitogenic activities. It influences 
salt and water retention through its effect on RAS, vasopressin release and stimulation of 
sympathetic nervous system. So the ultimate role of ET-1 is to increase blood pressure 
(Agapitov et al., 2002) and to maintain vascular tone (Thorin and Webb, 2009). It is produced 
mostly from endothelial cells in addition to fibroblasts, cardiacmyocytes (Agapitov et al., 
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2002; Schorlemmer et al., 2008), leukocytes, macrophages (Thorin and Webb, 2009), kidney, 
central nervous system and posterior pituitary (Agapitov et al., 2002). 
Endothelin-1 exerts a paracrine/autocrine effect. In the circulation, the levels of ET-1 are in 
picomolars lower than that needed to cause vasoconstriction (Prasad et al., 2009). Also 
endothelial cells secrete more ET-1 toward the vicinity of vascular smooth muscle cells than 
into the lumen of the blood vessels (Agapitov et al., 2002). 

4.2 Endothelin-1 synthesis and clearance 
Endothelin-1 synthesis begins with the cleavage of a 200 amino acid peptide called pre-
proendothelin-1 (preproET-1) to form preendothelin-1 (preET-1) (Agapitov et al., 2002; 
Penna et al., 2006). PreET-1 is then cleaved by furin endopeptidase to form big endothelin-1 
(big ET-1) of 38-39 amino acids that is further metabolized by Endothelin Converting 
Enzyme-1 (ECE-1) to generate ET-1 of 21 amino acids (Agapitov et al., 2002; Penna et al., 
2006). Moreover, chymase enzyme was found to produce ET(1-31) by breaking down big 
ET-1 at Tyr31-Gly32 bond  (Agapitov et al., 2002). 
Furthermore, the regulation of ET-1 synthesis is at the gene level which means at the level of 

ET-1 messenger RNA (mRNA). The ET-1 mRNA is up-regulated by several factors 

including: interleukins, insulin, Ang II, tumor necrosis factor alpha and growth factor while 

it is down regulated by hypoxia, shear stress and nitric oxide (Thorin and Webb, 2009). The 

clearance of ET-1 from the plasma involves different mechanisms including: (1) endocytosis 

in the lungs, (2) enzymatic degradation in the liver and the kidney and (3) ET-1 binding to 

ETB receptor thus forming ETB Receptor-Legand complex that is broken down by 

endocytosis (Kalani, 2008). 

4.3 Cross talk between endothelin system and renin angiotensin system 
The Renin Angiotensin and the Endothelin Systems are the most potent identified 
vasoconstrictory systems and has been suggested to be correlated with each other (Rossi et al., 
1999; McEwan et al., 2000). This was demonstrated by several cell culture studies in cardiac 
fibroblasts. These studies showed that AngII increases preproET-1 mRNA expression, ET-1 
levels and thus causes cardiomyocyte hypertrophy through regulation of ETAR. Also increased 
levels of ETBR via Ang II have also been identified in cultured CM (McEwan et al., 2000).  
The potential sites at which RAS increases ET-1 levels may be at the preproET-1 gene that 
possesses a jun sequence which is defined as the regulatory region of preproET-1. It is the 
site at which transcriptional regulation takes place by factors acting through G-protein-
phospholipase and C-protein kinase C pathway. Another site for interaction of RAS and ET 
system is at the chymase enzyme which is abundant in the myocardium where it was found 
to produce ET (1-31) from big ETs, bearing in mind that the main function of chymase 
enzyme in the heart is to produce Ang II from Ang I (Rossi et al., 1999). Therefore, elevated 
levels of ET-1 can be reduced by blocking the RAS system. Studies on patients suffering 
from hypertension or diabetes showed decrease in the level of ET-1 when ACEI was 
administered (Schneider et al., 2002). 
Therapies targeting these complications include the use of ARBs which proved their value 
as antihypertensive drugs. Losartan, an ARB, was found to decrease the destructive changes 
caused by Ang II on cardiac muscle beside its (Berk, 1999; Fiordaliso et al., 2000) capacity to 
reduce blood pressure. Recently, Al Jaroudi et al. proved that losartan in diabetic 
normotensive rats supplemented with insulin was able to prevent nearly totally myocardial 
degeneration caused by diabetes (Al Jaroudi et al., 2005) (Fig. 1). 
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Fig. 1. Indirect immunofluorescence of CM and vascular endothelium from the different rat 

groups depicting insulin receptors. Noted is the increase of fluorescence in the NL group 

(Fig. b) when compared to the normal (N) (Fig. a) at the myocytes (arrow). There is also 

increase fluorescence of the myocytes of the (DL) group as compared to the (D) group, and 

of the (DIL) group as compared to the (DI) group (arrow).  

e. Diabetic + insulin (DI) 

b. Normal + Losartan (NL) a. Normal (N) 

c. Diabetic  (D) d. Diabetic + Losartan (DL) 

f. Diabetic  insulin +Losartan 
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Later, Karam et al. reported that the supplementation with insulin and administration of 
pharmacologic doses of losartan could improve cardiac contraction as well as coronary 
blood flow in the same normotensive rat model for type 1 DM as the one used by Jaroudi et 
al. through the modification of the affinity of ET type 1 receptor subtypes ETAR and ETBR to 
ET-1, a potent vasoconstrictor largely stimulated by Ang II (Karam et al., 2005). In fact, 
Kakoki et al. have demonstrated that the ETBRs are down-regulated by Ang II in the 
endothelial cells of the renal artery of diabetic rats through stimulation of increased ET-1 
production (Kakoki et al., 1999). On the other hand, these effects of Ang II are prevented by 
the ACE inhibitor Imidapril (Kakoki et al., 1999). ACE inhibitors reduced also the plasma 
ET-1 levels in type 1 DM (Schneider et al., 2002). Administration of Losartan to Ang II-
treated rats restored the vasoconstrictive effect of ET-1 and decreased its tissue levels 
(D’Uscio et al., 1997). Mc Ewan et al. showed that the blockade of the AT1Rs by Losartan, in 
the presence of a high plasma Ang II levels, is accompanied by an increase in ET-1 
production by the CM of Ang II-treated rats.  
In addition to this, an increase in the ETBRs mRNA but a decrease in the ETARs mRNA was 
also noted (Mc Ewan et al., 2000). On the other hand, treatment with the selective ETAR 
blocker LU135252 normalized the increased ET-1 level in the aorta, femoral artery and 
kidney, and the ECE activity in isolated aorta and femoral artery of rats treated with Ang II 
(Barton et al., 1997). In cultured heart endothelial cells, Ang II stimulates ppET-1 mRNA and 
ET-1 production via Protein Kinase C (PKC) - dependent pathway. Calphostin, a PKC 
inhibitor, blocks Ang II effects (Chua et al., 1993). Taken together, these results show that the 
ET and the RA systems are related to each other. They also demonstrate the beneficial role of 
ARBs and ACE inhibitors in the amelioration of the blood flow which can be altered in some 
disease states due to the ET-1 and Ang II constrictor effects.  

5. Insulin 

The discovery of insulin in 1921 was one of the most dramatic events in the history of 
diabetes therapy. Insulin is a small globular protein comprising of two polypeptide chains A 
(21 amino acid residues) and B (30 amino acid residues) held together by two disulfide 
bonds (Docherty and Steiner. 2003; Joshi et al. 2007). It is produced in the ǃ-cells of the islets 
of Langerhans in the form of preproinsulin which is rapidly cleaved by the action of 
proteolytic enzymes into proinsulin. Further catalysis of proinsulin results in insulin and a 
31 amino acid connecting peptide, C-peptide, both of which are stored for secretion in 
secretory vesicles in ǃ-cells (Docherty and Steiner. 2003). The biosynthesis and secretion of 
insulin by ǃ-cells primarily occurs in response to increased circulating glucose levels. 
During feeding, elevated glucose concentrations in the blood increase the plasma insulin 
level, which facilitates glucose uptake through GLUT-4 into muscle tissues for utilization as 
a source of energy and into adipose tissues for synthesis of glycerol. Insulin also exerts its 
action on liver cells as well thus promoting glycogen formation. Consequently, glucose 
utilization by these different tissues contribute to the decrease in the concentration of 
glucose in blood. On top of its profound effect in carbohydrate metabolism, insulin has a fat-
sparing effect. Not only does it promote the synthesis of fatty acids in the liver, it also 
inhibits the breakdown of fats in adipose tissue thereby inducing fat accumulation. Hence, 
insulin is the major determinant of carbohydrate and lipid metabolism and has significant 
effects on protein metabolism. Insulin acts by binding to a receptor molecule embedded in 
the plasma membrane of its target tissues (Docherty and Steiner. 2003). 
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5.1 Insulin receptor 
Insulin receptor is a member of the receptor tyrosine kinase family (De Meyts and 
Whittaker, 2002; Kanzaki, 2006; Klarlund et al., 2003; Lawrence et al., 2007; Stern, 1995; Ward 
et al., 2008). It is a large cell-surface multi-domain glycoprotein that consists of two 
extracellular ǂ-subunits (MW~125 kDa) and two transmembrane ǃ-subunits (MW~95 kDa) 
(Kanzaki, 2006; Klarlund et al., 2003; Lawrence et al., 2007; Stern, 1995; Ward et al., 2008) 
linked by disulfide bonds (Kanzaki, 2006; Lawrence et al., 2007) into an ǂ2ǃ2 heterotetrameric 
complex (Kanzaki, 2006). Extracellular ǂ-subunits contain the insulin-binding site (Klarlund 
et al., 2003) while intracellularly transmembrane ǃ-subunits contain the insulin-regulated 
tyrosine kinase catalytic domain (De Meyts and Whittaker, 2002; Klarlund et al., 2003; Ward 
et al., 2008). Two nearly identical isoforms (A and B) of the insulin receptor exist due to 
tissue specific alternative splicing of the receptor m-RNA at exon 11. Isoforms A and B differ 
by the presence or absence of a 12 amino acid sequence at the carboxyl-terminus of the ǂ-
subunit (Anderson et al. 1993; De Meyts and Whittaker. 2002; Klarlund et al., 2003; Lawrence 
et al., 2007). Despite the known biochemical and physiologic differences of these isoforms, 
changes in their expression levels have not been consistently found in patients with DM 
(Klarlund et al., 2003). Once insulin binds to the ǂ-subunit of the insulin receptor, it induces 
a conformational change in the receptor that subsequently leads to the stimulation of the 
intrinsic tyrosine kinase activity in the ǃ-subunits (Kanzaki, 2006; Klarlund et al., 2003; Stern, 
1995). This results in the transfer of phosphate groups from ATP to several tyrosine residues 
on the insulin receptor itself as well as phosphorylation of cellular proteins such as insulin 
receptor substrate-1 (IRS-1) and Shc (Klarlund et al., 2003; Stern, 1995). The stimulation of 
the receptor tyrosine kinase allows transmission of the insulin signal to metabolic pathways 
such as glucose uptake upon translocation of GLUT-4 glucose transporters to the plasma 
membrane, glycogen synthesis, protein synthesis, and lipid metabolism within the cell. The 
various biological responses generated upon insulin receptor activation through insulin 
binding granted insulin a role in DM treatment due to its glucose lowering effects. 
Nevertheless, daily insulin injections continue to be a treatment for diabetic patients since 
1922 despite the increasing worldwide prevalence of this disease (Sparre et al., 2005). 
Furthermore, insulin treatment dramatically prolongs survival, but does not cure diabetes 
(Myers and Zonszein, 2002). Insulin treatment does not seem to be beneficial for many 
patients and is associated with weight gain, hypoglycemia, and failure of their glycemic 
control (Halimi, 2008). Therefore, new treatment modalities are intensively studied mainly 
the incretins, exemplified by GLP-1. 

6. Definition of incretins 

The intravenous infusion of glucose at a constant rate results in a biphasic insulin secretory 
response, in which the first peak rises rapidly followed by a slower second peak. In contrast, 
an oral administration of glucose followed by its gastrointestinal absorption, triggers a 
hormonal pathway that eventually leads to a far greater response of insulin secretion which 
can last as long as glucose is administered. This phenomenon is termed as the ‘Incretin 
Effect’ (Rhoades and Bell, 2008). 
Incretins are hormones that are secreted by the gut upon feeding; their release alerts the 
pancreatic islets that nutrients will come through the gastrointestinal tract and islets start 
priming by vagal stimulation (Boron and Boulpaep, 2009). Glucagon-Like Peptide-1 (GLP-1) 
and Glucose Dependent Insulinotropic Peptide (GIP) are the major incretin hormones 
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produced by the L cells of the ileum and colon, and K cells of the duodenum and jejunum, 
respectively (Inzucchi and McGuire, 2008). 

6.1 Synthesis of glucagon-like peptide-1 
The proglucagon gene, located on chromosome 2 in humans, has the coding sequence of 

GLP-1. Pancreatic ǂ-cells, intestinal L-cells and neural cells in the caudal brainstem and 
hypothalamus, express the proglucagon gene (Baggio and Drucker, 2007) and the mRNAs 

produced in the pancreas and intestine are identical. Its post-translational processing, 
however, differs in the two tissues. The post translational processing of proglucagon in 

pancreatic ǂ- cells results in Glucagon, Glicentin-Related Pancreatic Polypeptide (GRPP), 
Intervening peptide-1 (IP-1) and the major proglucagon fragment (MPGF) (Holst, 2007). The 

latter codes for the production of GLP-1 (1-36 amide) and GLP-1 (1-37) and GLP-2 in the 
pancreas (Hui et al., 2005). Whereas the intestinal L and brain cells produce GLP-1 (7-36 

amide), GLP-1 (7-37), GLP-2, IP-2, and glicentin that if further cleaved produces GRPP and 
oxyntomodulin (Holst, 2007). The enzyme prohormone convertase (PC) 1/3 cleaves 

proglucagon to generate GLP-1 (Shin et al., 2008). GLP-1 is an incretin hormone produced 
primarily by the L-cells in the mucosa of the ileum and the colon (Mannucci and Rotella, 

2008). Small neurons found in the Nucleus Tractus Solitarius (NTS), caudal brainstem, also 
produce GLP-1 that plays the role of a neuromodulator (Berthoud, 2009). The central 

nucleus of the amygdala (CeA) and the paraventricular nucleus of the hypothalamus (PVN) 
are also sites of GLP-1 production (Kinzig et al., 2002).  

Recently, GLP-1 production was shown to exist in taste bud cells (Shin et al., 2008; Berthoud, 

2009) and in particular in ǂ-gustducin and the sweet taste receptor subunit T1R3, that play 

an important role in mediating the glucose dependent secretion of GLP-1 (Shin et al., 2008). 

GLP-1 is usually present in the circulation minutes after meal intake- far before food reaches 

the L-cells in the gut. Hence, its stimulation is believed to be controlled by both endocrine 

and neural signals (Drucker, 2007). The two active forms of GLP-1 are the 30 amino acid 

GLP-1 (7-36) amide and the 31 amino acid glycine extended GLP-1 (7-37) (Ban et al., 2009; 

Mannucci and Rotella, 2008). GLP-1 (7-36) amide is far more abundant than GLP-1 (7-37) in 

the circulation (Manucci and Rotella, 2008), but both have short half-lives (1.5-2 minutes) 

(Hui et al., 2002). They are rapidly degraded into their inactive forms, GLP-1(9-36) amide 

and GLP-1 (9-37), respectively, by the enzyme Dipeptidyl-Peptidase-IV (DPP-IV) (Mannucci 

and Rotella, 2008) and eliminated through renal clearance (Hui et al., 2002).  

6.2 Effects of GLP-1  
GLP-1 has numerous effects on glucose homeostasis. Upon interaction with its receptor on 
ǃ-cells, GLP-1 increases the intracellular levels of cAMP and calcium, thereby releasing 
insulin (Drucker, 2007). Furthermore, sustained GLP-1 receptor (GLP-1R) signaling leads to 
enhanced gene transcription, insulin biosynthesis and ǃ-cell proliferation (Elahi et al., 2008; 
Drucker, 2007). GLP-1 was shown to increase the expression of glucose transporter 2 
(GLUT2) (Elahi et al., 2008), a hepatic glucose transporter that facilitates glucose transport in 
or out of the liver regulated by insulin (Eisenberg et al., 2005) and glucokinase (Elahi et al., 
2008) the enzyme that phosphorylates glucose to glucose-6-phosphate (G6P) (Voet and Voet, 
2004). GLP-1 has also inhibitory effects on Glucagon secretion from the ǂ-cells, gastric 
emptying and food ingestion (Drucker, 2007). The role of GLP-1 in relaxing the proximal 
stomach and increasing gastric capacity has been demonstrated (D’Alessio and Vahl, 2004). 
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GLP-1 also exerts effects on the central nervous system: it promotes satiety and weight loss, 
inhibits food and water intake and improves memory and neuronal survival (Mannucci and 
Rotella, 2008; Drucker, 2007). 

6.3 GLP-1 receptor 
The GLP-1R belongs to the Guanine Nucleotide-Binding Protein (G-protein) coupled 
receptor family (GPCR) (Drucker, 2007). This seven transmembrane receptor protein is 90% 
identical to the rat GLP-1R and shows a 95% homology in amino acid. Its gene is found on 
the long arm of chromosome 6p21 in humans (Doyle and Egan, 2007).  GLP-1 receptor is 
made up of 463 amino acid residues and has a molecular weight of approximately 65 kDa 
(Hui et al., 2005). GLP-1 receptors are expressed in many tissues including, the central and 
peripheral nervous systems, heart, kidney, lungs and the gastrointestinal tract (Drucker and 
Nauk, 2006). 
However, GLP-1 receptor expression in the pancreas is controversial. Studies have 
confirmed the detection of GLP-1 receptors in ǂ, ǃ and δ cells of the islets of Langerhans, 
whereas other studies indicate their expression exclusively in ǃ cells (Doyle and Egan, 2007). 
In the heart, GLP-1 receptor expression was shown to exist in CM, microvascular 

endothelium, coronary smooth muscle cells and the highest in endocardium. In cardiac 

fibroblasts, however, there was no evidence in GLP-1R expression (Ban et al., 2009). Low 

detection of GLP-1 receptor gene expression proves the existence of GLP-1 receptor in liver 

and muscles (MacDonald et al., 2002). Abundant GLP-1R specific transcripts were found in 

lungs and detectable amounts in the heart (Ban et al., 2009). When fragments of the N-

terminus are denatured, GLP-1R loses its affinity for GLP-1. This asserts that GLP-1 

receptor’s N-terminus plays an important role in recognizing and binding of the GLP-1 

(Doyle and Egan. 2007). Upon binding of the GLP-1 to its receptor numerous signaling 

messengers are activated; first, GLP-1 receptor can couple to G proteins, including Gǂs, Gǂq, 
Gǂi or Gǂo (Baggio and Drucker, 2007). Adenylate cyclase uses ATP to form cAMP via the 

stimulatory G protein. Following the increase of cAMP is a chain of events is triggered: 

ATP-sensitive K+ channels shut and L-type voltage gated Ca2+ channels open; together with 

the efflux of Ca2+ molecules from intracellular Ca2+ stores, these ion channel alterations 

result in a subsequent intracellular rise in Ca2+ ions (Gomez et al., 2002) and the ultimate 

exocytosis of granules that contain insulin. A sustained receptor signaling results in the 

activation of Protein Kinase A (PKA), gene transcription, insulin biosynthesis and ǃ-cell 

proliferation (Drucker and Nauk, 2006). Additionally, the binding of GLP-1 to its receptor 

activates protein kinase B, which is linked to glucose transporting in muscles, glycogen 

synthesis and lipolysis in various tissues (Peyot et al., 2009).  

6.4 GLP-1 in diabetes mellitus and the heart 
A recent study showed that GLP-1 receptor expression is downregulated in ǃ-cells exposed 
to high glucose concentrations in vitro and hyperglycemia in vivo (Xu et al., 2007). Diabetic 
individuals’ ǃ-cells exhibit attenuated sensitivity to GLP-1. In both type 1 and type 2 DM, 
there is a marked reduction in the incretin effect (Knop et al., 2007).  On the other hand, a 
study reported that GLP-1 levels are not decreased in type 2 diabetic patients (Lee et al., 
2010). The European GLP-1 Club held a meeting recently and debated this controversial 
issue and came to a conclusion that more data is required to determine the exact effect of 
DM on GLP-1 secretion from L-cells (Burcelin, 2008). GLP-1 has been suggested to 
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ameliorate left ventricular function, because of its antiapoptotic and insulin-like properties 
(Inzucchi and McGuire, 2008). In fact, one study confirmed that GLP-1 enhances the 
regulation of phosphatydil inositol 3 kinase (PI3K), that plays a key role in activating the 
antiapoptotic pathway, thus promoting cardioprotection in the ischemic rat hearts. 
Therefore, a direct effect of GLP-1 against apoptosis in cardiac cells is possible (Bose et al., 
2005). 

6.5 Dipeptidyl-peptidase IV 
DPP-IV grasped a great deal of the interest of the scientific, pharmaceutical, and medical 

community (Lambeir et al., 2003). Every year, an increasing number of publications tend to 

elucidate the diverse compelling questions concerning the various properties of DPP-IV and 

its multiple functions in the different fields of Biology (Lambeir et al., 2003). DPP-IV is a 766 

amino acid serine protease that belongs to the prolyloligopeptidase family. It is a widely 

distributed cell surface peptidase expressed to different degrees in a variety of tissues such 

as the kidney, intestine, liver, placenta, uterus, prostate, skin, and capillary endothelium. 

Another soluble form of DPP-IV (sDPP-IV) also exists in the plasma and other body fluids 

(Drucker, 2007; Idris and Donnelly, 2007; Lambeir et al., 2003). This proteolytic enzyme acts 

by specifically cleaving the N-terminal dipeptide of peptide hormones containing proline or 

alanine in the second position (Drucker, 2007; Idris and Donnelly, 2007; Lambeir et al., 2003). 

Hence, DPP-IV truncates several biologically active peptides of medical importance. 

Furthermore, it has been implicated in glucose homeostasis through proteolytic degradation 

of the incretins (Drucker, 2007). In the case of GLP-1(7-36), proline and alanine are key 

determinants in incretin receptor activation therefore DPP-IV-mediated proteolysis results 

in the biologically inactive truncated molecules GLP-1(9-36) (Drucker, 2007; Idris and 

Donnelly, 2007). DPP-IV is a critical determinant of incretin inactivation (Drucker, 2007). 

Thus chemical inhibition of DPP-IV activity results in increased level of biologically active 

GLP-1 (Drucker, 2007). Therefore, extensive research studies were carried to create highly 

selective DPP-IV inhibitors.  

6.6 DPP-IV inhibitors 
DPP-IV inhibitors can be used as a potential treatment for diabetes due to their capability to 
potentiate the levels of active incretins (Lambeir et al., 2003; Halimi, 2008; Inzucchi and 
McGuire, 2008) by reducing the enzymatic activity of DPP-IV by more than 80% for duration 
up to 24 hours (Inzucchi and McGuire, 2008). Oral inhibitors of DPP-IV reduce glycosylated 
hemoglobin (HbA1C) (Drucker, 2007; Halimi, 2008; Moritoh et al., 2008). Various studies 
reported the multiple metabolic effects of DPP-IV inhibitors including enhancement of 
glucose-dependent stimulation of pancreatic insulin release as well as attenuation of 
glucagon secretion (Drucker, 2007; Halimi, 2008; Lambeir et al., 2003; Moritoh et al., 2008). 
Furthermore, DPP-IV inhibitors demonstrated modestly effective glucose-lowering actions 
without being associated with hypoglycemia (Halimi, 2008; Lambeir et al., 2003; Moritoh et 
al., 2008) due to the fact that they are remarkably able to specifically end the insulin-
secreting effect and glucagon inhibition once glycemic levels are normalized (Halimi, 2008). 
Moreover, loss of DPP-IV activity is associated with improved glucose tolerance, reduced 
glycemic excursion following oral glucose challenge, and increased pancreatic insulin 
content (Drucker, 2007). A cardinal role of DPP-IV inhibitors is their potential to 
significantly augment ǃ-cell mass in streptozotocin (STZ)-injected diabetic rats (Moritoh et 
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al., 2008) and enhance pancreatic islet cell function in animal models of type 2 diabetes and 
in diabetic patients (Lambeir et al., 2003). In contrast to GLP-1 mimetics, there are no data 
indicating inhibition of gastric emptying or appetite or weight reduction due to a treatment 
with DPP-IV inhibitors (Inzucchi and McGuire, 2008). Thus, chronic treatment with orally 
administered DPP-IV inhibitors has neutral effects on body weight and food consumption 
(Halimi, 2008). 

6.7 GLP-1 receptor agonists and GLP-1 analogues  
In April 2005, the FDA approved the subcutaneous injectable exenatide with the brand 
name Byetta® to be launched as a GLP-1 analogue (Inzucchi and McGuire, 2008; Rhoades 
and Bell, 2009) with longer half life to maintain its glycemic control as diabetic medication 
(Behme et al., 2003). Exenatide exhibits a half-life of 60-90 minutes and a single injection of 
exenatide makes its concentration in the blood last for 4-6 hours (Drucker and Nauk, 2006). 
Exenatide exhibits antidiabetic effects similar to those of GLP-1 and is shown to improve ǃ 
cell functioning (Baggio and Drucker, 2007). It also reduces the glycated Hemoglobin-
HbA1c- levels that reflect mean blood glucose levels of the last 6-8 weeks. In addition, 
exenatide affects gastric emptying, appetite and consequently causes weight loss (Inzucchi 
and McGuire, 2008). GLP-1 agonists have exhibited vasodilating and diuretic effects. 
Recently, Laugero et al. showed that Exenatide may display antihypertensive effects 
mediated by pathways independent from glucose control, but possibly by altering steroid 
hormones (Laugero et al., 2009). 

6.7.1 GLP-1 analogue, exendin-4 
The short half-life of GLP-1 limits itself from performing as a good therapeutic agent, as it is 

rapidly degraded by the serine protease DPP-IV (Hirata et al., 2009). The search for 

biologically active peptides in lizard venom, led to the discovery of Exendin-4, a naturally 

occurring GLP-1 analogue (Drucker and Nauk, 2006). Exendin-4 is a peptide naturally found 

in the saliva of heloderma suspectum - the Gila monster (Laugero et al., 2009; Zhou et al., 

2008). Exendin-4 is a peptide made up of 39 amino acid residues that shares a 53% structural 

homology to GLP-1 (Zhou et al., 2008).This long acting GLP-1 receptor agonist has an N-

terminus almost identical to that of the GLP-1, except that the second amino acid residue is 

glycine in exendin-4 while alanine in GLP-1 (Hui et al., 2005).  This one amino acid 

difference makes it resistant to degradation by the enzyme DPP-IV, hence explaining its 

long half-life in vivo (Lovshin and Drucker, 2009). Studies have shown that GLP-1 receptor 

agonists like exendin-4, exhibit cardioprotective effects such as modifications in 

contractility, cardiac output and blood pressure (Ban et al., 2009). 

6.7.2 Mode of action of exendin-4 
Endogenous GLP-1 action is inhibited upon degradation by DPP-IV (De Koning et al., 2008; 
Mann et al., 2007), an enzyme expressed in many organs mainly kidney, small intestine, 
liver, and lung (Inzucchi and McGuire, 2008). More apt, exendin-4 is synthetic, thus not 
recognized by DPP-IV enzyme, thereby not degraded (Rhoades and Bell, 2009). This 
resistance allows it to stay in the circulation longer mimicking GLP-1 role in bolstering 
insulin secretion but with 5 to 10 times more powerful insulinotrpic effect (Hantouche et al., 
2010; Xu et al., 1999). Moreover, it binds to GLP-1R with high affinity even after truncation of 
the first 8 amino acids at the N-terminal of the peptide unlike the endogenous GLP-1 (Mann 
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et al., 2007). GLP-1R is a G-coupled transmembrane receptor (GPCR) that is found in many 
organs, most importantly the pancreatic ǃ-cells and ducts, heart, lung, kidneys (Ban et al., 
2008), brain and stomach (Hantouche et al., 2010). Conceptual understanding of this receptor 
delineates its advantages in cardiac management (Ban et al., 2008). On the initiation of 
treatment, slight adverse effects might arise as nausea and vomiting (Inzucchi and McGuire, 
2008), which are dose-dependent and will vanish with time (Mcphee et al., 2008).  It can be 
used efficiently in type 1 DM (Behme et al., 2003) in conjunction with insulin irrespective of 
hypoglycemic effects attributed to its glucose-dependent action; in spite of insulin low 
efficiency with type 2 DM (Inzucchi and McGuire, 2008).  

6.8 Exendin-4 in the treatment of diabetes mellitus correlated with cardiovascular risk 
In conjunction to insulinotropic action of GLP-1 role, exendin-4 also mimics the action of 
insulin itself, through reinforcing the heart to uptake glucose irrespective of insulin level in 
both diabetic and non-diabetic cases (Hantouche et al., 2010) STZ-induced diabetic rats 
acquire cardiomyopathic damage on day 1 starting with apoptosis and ending with 
hypertrophied hearts (Al Jaroudi et al., 2005), particularly myocardial atrophy (Poornima et 
al., 2006).  Thereby, associated with its glucose lowering effect, certain data emphasized a 
potential benefit of exendin-4 in recovery of heart failure and function of left ventricle 
(Inzucchi and McGuire, 2008). Just similar to that of GLP-1 in improving ventricular 
contractions (Hantouche et al., 2010) upon activation of pancreatic GLP-1R to boost insulin 
synthesis and secretion (De Koning et al., 2008). Treatment with exendin-4 was concomitant 
with no cardiovascular complications, inexorable renal progression, or escalating plasma 
lipid (De Fronzo et al., 2005). In type 2 DM exendin-4 has completed a novel fruition in the 
arena of organ rejuvenation especially at the level of both  and ǃ cells mass, implementing 
a new born anti-hyperglycemic drug for solving the diabetes conundrum (Xu et al., 1999).  
This increase in pancreatic mass happens as a post hoc to ǃ-cells neogenesis from either 
existing duct cells and/or replication of the already present ǃ-cells (hyperplasia) and not 
from hypertrophy (escalating cell size) (De Koning et al., 2008). Pooled together, this 
regimen was found to be concomitant with cardioprotection, judicious vascular and cardiac 
actions based on the fact that endogenous GLP-1 has the same sequence in humans, rats and 
mice (Ban et al., 2008).  Recently, it was found that exendin-4 ameliorates the sensitivity of 
insulin receptors towards insulin at both the CM and coronary endothelium (CE) level 
(Hantouche et al., 2010). This effect is achieved by either enhancing the sensitivity of insulin 
towards insulin or augmenting ǃ-cells to release more of the hypoglycemic hormone (De 
Koning et al., 2008). Valuable efficacy of treatment with both exendin-4 and insulin alleviates 
cardiomypathic regressions associated in type 1 DM at the level of receptor affinity 
enhancement and insulin secretion bolstering (Hantouche et al., 2010) (Fig. 1 and 2). 
Insulin affinity (τ) to its receptor was shown to be decreased in the diabetic state at the level 
of the CE as compared to normal.  Exendin-4 treatment increases insulin receptor affinity at 
the CE in both diabetic and normal rat groups; whereas insulin tends to normalize the 
affinity irrespective of exendin-4 absence or presence (Table 1). Exendin-4 treatment 
probably augments insulin receptor affinity both in normal and diabetic state through 
exerting its insulinotropic actions (Nikolaidis et al., 2005) and/or by improving insulin 
sensitivity (Ebinger et al., 2000). The dramatic increase in the affinity of insulin to its receptor 
in the normal group treated with exendin-4 might be attributed to both of the previously 
mentioned causes. Yet the rise in insulin receptor affinity in exendin-4-treated diabetic 
group is not as remarkable as in NE which may be due to the lack of ǃ-cells in diabetic type 
1 state thus abolishing the insulinotropic effect of exendin-4. 
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Rat Group τ (min) ± SEM 

Normal (N) 0.279 ± 0.004 a’ 

Normal + Exendin-4 (NE) 0.370 ± 0.007 b’ 

Normal + DPP-IV inhibitor (N-Dp) 0.311 ± 0.005 c’ 

Diabetic (D) 0.252 ± 0.003 d’ 

Diabetic  + Insulin (DI) 0.292 ± 0.004 e’ 

Diabetic + Exendin-4 (DE) 0.327 ± 0.005 f’ 

Diabetic + Insulin + Exendin-4 (DIE) 0.295 ± 0.004 g’ 

Diabetic + DPP-IV inhibitor (D-Dp) 0.255 ± 0.003 h’ 

Diabetic + Insulin + DPP-IV inhibitor (DI-Dp) 0.321 ± 0.005 i’ 

Table 1. The calculated affinity constant (τ) of  insulin to its receptor at  CE (CHAPS-
untreated) in normal and diabetic rats 

 

Rat Group τ (min) ± SEM 

Normal (N) 0.337 ± 0.006 a’ 

Normal + Exendin-4 (NE) 0.424 ± 0.009 b’ 

Normal + DPP-IV inhibitor (N-Dp) 0.234 ± 0.003 c’ 

Diabetic (D) 0.368 ± 0.007 d’ 

Diabetic  + Insulin (DI) 0.331± 0.006 e’ 

Diabetic + Exendin-4 (DE) 0.328 ± 0.005 f’ 

Diabetic + Insulin + Exendin-4 (DIE) 0.331 ± 0.006 g’ 

Diabetic + DPP-IV inhibitor (D-Dp) 0.376 ± 0.007 h’ 

Diabetic + Insulin + DPP-IV inhibitor (DI-Dp) 0.382 ± 0.007 i’ 

Table 2. The calculated affinity constant (τ) of  insulin to its receptor at CM (CHAPS-treated) 
in normal and diabetic rats. 

Therefore, in diabetes type 1, exendin-4 increases the insulin receptor affinity only by 
improving insulin sensitivity. As a conclusion, exendin-4 seems to have supplementary 
effects which might explain the increase in τ value at the level of the CE. First, it augments 
insulin release from pancreatic ǃ-cells when present in the normal state. This is its 
insulinotropic effect. Second, it improves insulin sensitivity possibly by inducing a 
conformational change in the insulin receptor (Ebinger et al., 2000). On the other hand, DPP-
IV inhibitor (KR-62436, Sigma Chemical Company) treatment solely does not seem to be 
implicated in modulating insulin receptor affinity at the endothelial site in diabetic rats 
treated with DPP-IV inhibitor as compared to diabetics. Yet the effect of DPP-IV inhibitor at 
the CE becomes obvious in the presence of insulin, as seen in the diabetic group co-treated 
with insulin and DPP-IV inhibitor (DI-Dp) compared to diabetics (D) and in the normal 
group treated with DPP-IV inhibitor (N-Dp) with respect to normal. This could be due to 
some kind of a cross-talk between insulin and DPP-IV inhibitor which results in an increase 
of τ value in both N-Dp and DI-Dp. Moreover, insulin receptor affinity is not altered at the 
level of the CM in diabetics treated with DPP-IV inhibitor (D-Dp) and/or insulin (DI-Dp) 
when compared to diabetic rats (D) (Table 2). The major difference between the CE and CM 
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upon DPP-IV inhibitor treatment could be attributed to the fact that the already limited 
increase of GLP-1 by DPP-IV inhibitor is primarily imposed on endothelial cells which are 
the first site of encounter with systemic GLP-1. The difference in affinities observed between 
DPP-IV inhibitor and exendin-4 treatment might be due to the fact that DPP-IV inhibitor 
increases the systemically available GLP-1 levels; whereas exendin-4, besides its quantitative 
systemic effect, has a higher physiologic quality in term of  being 5- to 10- fold more potent 
than GLP-1 (Saraceni and Broderick, 2007).  
 

 

Fig. 2. Insulin receptor ǂ-subunit (MW~125 kDa) density in the heart of the different rat 
groups. 

Western blotting was performed on protein extracts from rat heart homogenates in order to 
assess the variation in the insulin receptor subunits density among the different treated and 
untreated normal and diabetic rat groups. Both insulin receptor ǂ-subunit (IR-ǂ) (Fig. 2) and 
insulin receptor ǃ-subunit (IR-ǃ) (Fig. 3) levels are augmented in diabetic state indicating 
that there is an increase in the level of cardiac insulin receptor protein in diabetics (D) 
compared with normal controls (N). These results indicate that cardiac insulin receptors are 
up-regulated in the heart of diabetic rats as a feedback mechanism probably due to the lack 
of insulin. This is consistent with the results demonstrated by Al Jaroudi et al. 2005 in the 
study done on insulin receptor regulation in the diabetic heart. Our results indicate that 
insulin administration to diabetic rats reduces the number of IR-ǂ and IR-ǃ to near normal 
values. Interestingly, exendin-4 treatment normalizes insulin receptor subunits density in 
diabetic rat hearts (Fig. 2 and 3). The regression in insulin receptor density with exendin-4 
treatment is suggested to be attributable to the insulinomimetic effects of exendin-4 (Sokos 
et al., 2006) which result in a cross-talk between GLP-1 and insulin signaling pathways 
(Ebinger et al., 2000). 
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Fig. 3. Insulin receptor ǃ-subunit (MW~95 kDa) density in the heart of the different rat 
groups.  

There is no further attenuation in the level of insulin receptor upon insulin administration 

in combination with exendin-4 in diabetic rat groups. Thus, it is conceivable that GLP-1 is 

a key player in insulin receptor regulation in the diabetic state. GLP-1 also induces its 

insulinomimetic effects in the normal state thereby resulting in a slight decrease of insulin 

receptor density in NE. DPP-IV inhibitor induces similar effects as exendin-4 on IR-ǂ and 

IR-ǃ levels and this could be attributed as well to the insulinomimetic effects of GLP-1 

(Fig. 2 and 3). There is a similar attenuation in receptor density in non-diabetic DPP-IV 

inhibitor treated rats (N-Dp). This reflects the actions of DPP-IV inhibitor treatment on the 

modulation of insulin receptor density not only in the diabetic but also in the normal 

state.  

7. Conclusion  

In conclusion, insulin, Losartan, exendin-4 and DPP-IV inhibitor have demonstrated their 
ability as promising candidates for treating type 1 diabetic patients. Moreover, exendin-4 
and DPP-IV inhibitor appear to be promising in their efficacy and prolonged antidiabetic 
properties. Their actions on cardiovascular function, in both the preclinical and clinical 
realms, warrant future investigation.  
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