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ABSTRACT 
Sheet metal components are typically modelled as freeform 

surface models. Finite element meshes generated automatically 
for such models have poor quality around small detailed 
features. These features need to be simplified in order to obtain 
an acceptable mesh. Simplification involves recognition of the 
feature and modification of its geometry or complete 
suppression of the feature. This paper proposes techniques to 
directly query the CAD data structure to recognise and suppress 
two basic features, viz. holes and fillets in freeform surface 
models. Results of a software implementation for the same are 
discussed with suitable examples. 

 
1  INTRODUCTION 

Finite element analysis is an important step in the 
validation of a design. Generation of the finite element mesh is 
a tedious process. Many a time, certain features are unimportant 
for finite element analysis and can safely be suppressed without 
affecting the accuracy or validity of the results. Recognition of 
such features and their selective suppression or simplification, 
the topic of this paper, greatly reduces the efforts expended in 
the generation of an acceptable quality mesh. 

Geometric models store design information in the form of 
points, curves and surfaces. However, the decision making and 
reasoning processes of most engineering tasks require 
functional entities and attributes, such as "holes", "distance 
between holes", etc. that are not explicitly available. Features 
are geometric or topological patterns of interest in a part model, 
which represent high-level entities with respect to their 
engineering significance [1]. Recognition and extraction of 
features from a geometric model is, therefore, required for 
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various design and manufacturing activities. Features are 
widely used for tasks such as automatic process plan 
generation, classification of part families [2], reconstruction of 
solid models from scanned data [3], etc.  

Sheet metal components, such as automobile body parts, 
are typically modelled as freeform surface models. Finite 
element analysis is used to verify their structural strength and 
deformation characteristics. Automatic mesh generation 
algorithms do not generate meshes of acceptable quality, 
especially near small features in the surface such as holes, 
fillets, beads, bosses, etc. The automatically generated mesh, 
therefore, needs to be corrected manually. This manual process 
is extremely tedious and time consuming, owing to which, 
approximately 75% of the time required for FEA is spent in 
mesh generation. Automatic recognition of such features and 
their selective suppression or simplification can, therefore, 
greatly reduce the efforts of mesh generation. In this paper we 
propose new techniques to detect and suppress two commonly 
occurring features, viz. holes and fillets, using definite rules to 
analyse the geometry of the models. 

The remainder of the paper is organised as follows: In 
section 2, we review existing literature related to features. In 
section 3, we explain the methodology we use to detect features 
in such models. We also present examples of its 
implementation on functional parts to highlight the salient 
points and limitations of the technique. In section 4, we discuss 
the implementation of the algorithms and the overall 
architecture envisaged for the feature recognition system. We 
conclude in section 5 with a summary of the work done and the 
scope for future work on these techniques. 
1 Copyright ©2002 by ASME 
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2 PREVIOUS RELEVANT WORK 

To the best of our knowledge, the topic of feature 
modification or simplification in surface models has not 
received much attention in academic literature. Feature 
simplification requires recognition of the feature as a 
preliminary step. Many methodologies have been proposed for 
the recognition of form features in solid models. Depending 
upon the feature representation scheme adopted, they can be 
divided into two categories, viz. surface and volume feature 
recognition schemes. Surface recognition schemes assume that 
a feature is formed by specific arrangement of faces that satisfy 
certain conditions. Graph-based methods, syntax-based 
methods, rule-based methods, hint-based methods or geometric 
reasoning, etc. are examples of such schemes. Only a few 
systems characterise a feature by its volume. These include 
volume decomposition methods, the convex hull algorithm and 
backward growing.  

Most of the graph based systems use the notion of an 
Attributed Adjacency Graph (AAG) [4]. In these methods the 
topology of the model is represented in the form of a graph. 
The recogniser then scans the object’s graph to find sub-graphs 
that match the description of a feature. Syntactic pattern 
methods [5] use sequences of geometric elements to describe 
features. Such a sequence of geometric elements is represented 
as a string of codes. A parser checks whether any sub-strings 
can be generated by a grammar describing a feature. Rule based 
methods [6] use sets of rules to describe features. The rules 
enumerate the necessary and sufficient conditions for a portion 
of a model to be identified as a feature. The scope of feature 
instances that can be recognised can be very wide. However, 
formulation of rules is tedious and subjective. Scanning the 
model for regions that satisfy the rules can be time consuming, 
especially for complex models. In the convex-hull method [7], 
the difference between the object and its convex hull is 
computed recursively. The object is finally represented as a 
sequence of convex volumes with alternating signs. Volume 
decomposition [8] is based on decomposing a delta volume into 
cells, which are further processed and mapped to standard 
machining features to form the cells. Volumetric representation 
schemes, in general, enable a more complete description of 
feature-feature interactions. 

In addition to these methods, heuristics and techniques 
from artificial intelligence, such as genetic algorithms and 
artificial neural networks (ANN) have also been employed to 
solve the problem of feature recognition. Neural networks have 
used in conjunction with Attributed Adjacency Graphs [9], [10] 
to recognise feature classes, such as pockets, slots, protrusions, 
passages, steps, and holes, in solid models.  Neural networks 
have also been trained to recognise features in 2D components 
[11], [12], though the work has been restricted to flat 2D 
surfaces.  

All the schemes discussed above are, as yet, only able to 
detect features composed of planar and cylindrical surfaces in 
solid models. Most of these generic methods cannot be easily 
extended to include features on freeform surfaces. Formulation 
of description patterns to define features on surface models is a 
subjective process. Neural networks are better suited for this 
task since they can learn from examples, i.e. training patterns. 
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However, neural networks are not suited for complex numerical 
computations. CAD systems store the models as a mathematical 
description of constituent faces and edges. Thus, a pre-
processing step is required to convert the CAD model into a 
form of input suitable for the neural network. Determining the 
representation that will be most useful to recognise features is 
the major hurdle in the use of neural networks in freeform 
surface models. As a preliminary technique, we resort to 
defining rules to describe features on freeform surfaces. 
 
3 DIRECT MANIPULATION OF CAD DATA 
STRUCTURE 

Sheet metal parts have freeform shapes that are obtained 
by processes such as form pressing, drawing, bending, etc. 
These parts have a very small thickness and are generally 
modelled using surfaces to specify the shape of the part. In B-
Rep models, NURBS surfaces are used to represent the 
complex freeform shapes. The surface model is made up of a 
large number of NURBS patches (called faces) that are 
trimmed to specify the outer boundary. Adjoining patches are 
stitched to each other so as to form a single contiguous part. 
Owing to this, different designers may construct the same 
feature in various different ways. e.g. a hole boundary may be 
defined by a single edge or sequence of many edges. 
Consequently, it is almost impossible to define some features 
based on the topological relationships between the faces, as is 
done in “graph based” and “hint based” approaches. Volumetric 
approaches cannot be used, as surface models are non-
manifold, i.e. they are modelled as surfaces having zero 
thickness and consequently have no volume. ANNs and other 
approaches require the feature to be presented in special 
formats in order to be recognised. This involves locating the 
region containing the feature (usually done manually) and then 
presenting it to the ANN in the required representation for 
identification classification and parameterisation. Directly 
querying the data structure of the CAD model ensures that none 
of the information about the geometry of the part is lost through 
any change of representation. It also requires minimum human 
intervention during the feature recognition stage. However, the 
technique has similar shortcomings to any other “rule based” 
feature recognition method. i.e. scanning the entire model by 
the set of rules can be very time consuming, especially if the 
object is complicated with many faces. 

We make the following assumptions about the CAD data 
that we receive as input: 
1) Input is the form of a B-rep model 
2) Trimmed surfaces have been defined 
3) There are no overlapping surfaces 
4) NURBS representation is available for all surface patches 
 
3.1 SIMPLIFICATION OF HOLES 
 
3.1.1  DEFINITIONS AND CONCEPTS: 

In B-Rep models, the surface model is made using a large 
number of trimmed surface patches, which are stitched at the 
coincident edges. Each patch is stored in the data structure as a 
face. Each face has one outer loop and any number of inner 
loops. Loops are sequences of edges, which define the trimming 
2 Copyright ©2002 by ASME 
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Figure 1 - Suppression of holes 
curves for the underlying NURBS surface. Edges in turn point 
to the loop they belong to. We define a hole to be any loop of 
edges that has no surface on the inside. All the edges in a B-
Rep surface model will either be shared by 2 surface patches 
(internal edge) or will have a surface on one side and none on 
the other. Such an edge, with a surface on one side only, is 
called a free edge. In addition, to the assumptions already 
mentioned, we also assume that surface patches are stitched so 
that no gaps exist between them. If they exist, they will be 
treated as intended holes. 
 
3.1.2 RECOGNITION OF HOLES: 

We have already assumed that the geometry is cleaned and 
there are no overlapping surfaces. It can then be observed that 
edges forming the boundary of a hole are characterised by 
having a face only one side, while all other edges will be 
sandwiched between two faces. We have already defined such 
edges as free edges. The algorithm implemented initially finds 
all such free edges in the model. It then forms closed chains of 
.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: h
these edges. Each such closed loop of edges corresponds to a 
hole. The algorithm used to detect holes is enumerated below: 
 
Algorithm: 
 
Input – B-Rep surface model with holes 
Output – B-Rep surface model with patches covering original 
holes 
 
1) Get set F of all free edges in the model  

Get number of edges of model 
For each face get all loops 
For each loop traverse through all the edges of the 
loop 
Keep count of the number of times each edge was 
encountered 
All edges that were encountered just once are free 
edges 

2) Select and edge e ∈ F  
3 Copyright ©2002 by ASME 
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3) Find start and end vertices of e 
4) Find edge starting from end vertex of e and ∈ F 
5) Find chain of edges till end vertex of chain = start vertex 
6) Repeat steps 2 to 5 to define new holes till all edges in F are 
exhausted 
 

The working of the algorithm can be best studied with the 
help of a simple example. Consider the model shown in Figure 
1, containing one hole. The algorithm first tags all edges of the 
model to identify each edge uniquely. The model is made up of 
four trimmed and stitched faces. For each face, the algorithm 
traverses all the loops and keeps a record of the number of 
times an edge is encountered. As can be seen in the figure, 
edges E2, E5, E13 and E7 are encountered twice. All other 
edges are encountered only once, and are thus marked as free 
edges. In order to chain the free edges into holes, it starts with 
an arbitrary edge, say E1, which belongs to the set of free 
edges. It then seeks another free edge from the remaining edges 
that shares the end vertex of E1, which in this case will be edge 
E6. The process continues till the end vertex of the new edge is 
the same as the start vertex of the original edge. The sequence 
of these edges (E1 - E6 - E10 - E14) is stored as the definition 
of a hole. The perimeter of the hole is also calculated as the 
sum of individual edge lengths. If there are any more free edges 
remaining, the process is repeated till all free edges are 
accounted for. The hole with the largest perimeter is designated 
as the outer boundary and not considered for simplification. 
Thus, in Figure 1, the sequence (E3 – E4 – E16 – E15 – E12 – 
E11 – E8 – E9) will initially be detected as a hole, but will 
eventually be removed from further consideration. 

It should be noted that the detection of free edges cannot 
be done by merely querying the edge for number of loops it 
belongs to. It might be possible that an edge is contained in 
only one loop, but is not a free edge. E.g. In the case of a 
cylindrical face, there exists an edge that runs longitudinally 
along the cylindrical surface. This edge has the same face on 
both sides and is obviously contained in only one loop. 
However, it isn’t a free edge.  To detect the free edges we need 
to traverse all the loops and find the number of times each edge 
is encountered during the traversals. All edges that are 
encountered only once will be free edges. It can be seen that the 
longitudinal edge on the cylindrical face will be traversed twice 
in opposite directions in the same loop. Certain checks are also 
required to eliminate degeneracies and special conditions e.g. 
edges with ‘0’ length showing up as holes. 
 
3.1.3  SIMPLIFICATION OF HOLES: 

Simplification of a hole will consist of suppressing the 
hole, i.e. covering the hole by a smooth surface patch. Trying to 
estimate the internal shape of a surface given its surrounding 
surfaces is a difficult problem. However, in certain cases, we 
can use the existing surface patches to predict the surface that 
would cover the hole. If the hole to be suppressed is the internal 
loop in any one face, then the mathematical representation of 
the required interpolation surface already exists and is merely 
suppressed by the corresponding trimming curve. The 
suppression of the hole then entails the removal of this 
trimming curve. Alternately, we can create a new face, having 
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the same underlying surface equation, with edges of the hole as 
the outer trimming curve. If the edges of the hole belong to 
separate patches, we can still try to use their underlying surface 
equations. If the underlying surfaces form a watertight 
intersection, then we can remove the trimming curve 
corresponding to the hole and trim the surfaces at their 
intersection instead. It might further be necessary to stitch and 
blend the faces at the intersection to maintain continuity of 
slope. Alternatively, we can loft a new surface using the edges 
of the holes as an outer loop and adding tangency constraints 
for the adjacent faces. 

In our implementation we create new surface patches for 
all holes, whose perimeter is below a user-defined threshold. 
The threshold value of the perimeter needs to be determined by 
the user and will depend upon the fineness, i.e. the mean 
element size, of the finite element mesh that will be 
constructed. Smaller elements will usually mesh large holes 
adequately and, therefore, only small holes will need to be 
suppressed. Using the definition of the boundary of the holes, it 
tries to loft a surface that would cover the hole. Consequently, 
the limitations of the lofting operation of the native CAD 
software will extend to the creation of surface patches. The 
patches are stored as separate entities that can be stitched to the 
original part by the user. 

We present, here, the results of the algorithm obtained 
when tested on three separate sheet metal models. The 
threshold perimeter for patching holes was kept at 0.1 inches 
for all samples, however the program allows the user to modify 
this threshold value depending upon the size of elements that 
will be used for meshing. As can be seen from Figure 2 (a), the 
sample part has 14 holes of various sizes on different faces. 
Figure 2 (b) shows the patches that have been created to patch 
the holes. All 14 holes were detected by the program. As can be 
seen, patches were not created for two of the holes as their 
perimeter exceeded the threshold value. All holes, except the 
two holes on the side face (indicated in Figure 2 (a)), were 
situated on planar faces, and can be joined to the original part. 
Patches were created for 12 holes including the ones on the 
non-planar surface. Two holes were not suppressed owing to 
their large perimeters.   

Figure 3 (a) shows another specimen part with 26 holes. 
Figure 3 (b) shows the patches created by the program for the 
specimen. Patches have been created for 24 holes, while two 
holes were found to have perimeter greater than the threshold. 
It is important to note that the algorithm has successfully 
created patches for holes of arbitrary shapes as shown in Figure 
3 and is thus not confined to circular holes. 

Figure 4 (a) shows a complex sheet metal model having 30 
holes. Figure 4 (b) shows the result obtained from the program. 
All 30 holes were recognised by the program. Patches were 
created for 21 holes. Two holes, viz. holes labelled ‘A’ and ‘B’ 
in Figure 4, were found to have perimeter exceeding the 
threshold value. The remaining 7 holes could not be patched 
due to limitations of the lofting command, e.g. hole ‘C’ in 
Figure 4. The boundaries of the hole can, however, be used by 
the user to create a new surface. 
4 Copyright ©2002 by ASME 
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Figure 3 - Sample Part #3 - Simplification of holes 

Figure 4 - Sample Part #1 - Simplification of holes 

Figure 2 - Sample Part #2 - Simplification of holes 
5 Copyright ©2002 by ASME 
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Figure 5 - Fillet terminology and constant parameter lines 
 

3.2 SIMPLIFICATION OF FILLETS 
 
3.2.1  DEFINITIONS AND CONCEPTS: 

A fillet or blend can be defined as a curved surface (or a 
chain of curved surfaces) that links surfaces together to form a 
continuous smooth bend (see Figure 5) [13], [14]. The blend 
geometry is computed using an imaginary rolling ball that 
maintains contact with the surfaces to be blended. The side 
faces of the blend (which support the imaginary rolling ball) are 
called support faces. The locus of points traced by the rolling 
ball centre is called the spine curve. The edges of contact 
between the blend face and the support faces are called spring 
edges. The edges that connect adjacent faces in a blend chain 
are called cross edges. The blend surface usually has a circular 
cross section, and the plane of the cross section is always 
perpendicular to both the faces. The blend curvature at a point 
on the blend surface is the curvature along the cross-section of 
the blend surface at that point. The cross-sectional radius may 
be constant throughout the surface, called constant radius 
blends, or may vary at different cross-sections, called variable 
radius blends. Recognition of blends in freeform surface 
models is difficult since topologically a fillet is no different 
from a normal face. Moreover, there might be a surface patch 
where only a portion of the patch forms the fillet. The variation 
of curvature at various points on the face provides the only 
clues to detect the existence of a fillet. Accordingly, we make 
the following assumptions about the fillets that the algorithm 
can detect: 
1. Blend faces are parameterised such that the blend radius is 

along one parametric direction. 
2. The blend face describes only the geometry of the blend. 
 
3.2.2 RECOGNITION OF FILLETS: 

Most of the present day modeling softwares store 
information about the history, i.e. the steps involved in the 
creation of the model, in the form of a chronological tree 
oceedings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use:
structure. If such a history tree is available for the model one 
can search for filleting operations in the tree and suppress them. 
However, this approach has its shortcomings. Firstly, 
operations such as stitching and geometry healing, which are 
common in surface models, result in loss of history and hence 
the history tree may not be reliable to detect all fillets. 
Secondly, in the creation of surface models the fillet faces 
themselves may be used as references to create newer faces. 
Suppression of a filleting operation may, therefore, disallow 
creation of these faces and thus result in an invalid object upon 
reconstruction using the modified history tree. Moreover, the 
history tree for a model is not unique. It depends upon the way 
in which the model was generated by the designer. Many a 
time, a gap between two neighbouring fillets of different radii is 
connected by a lofted face, with variable radius, rather than an 
explicit filleting operation. Such a face should also be 
recognised as a fillet for correct suppression of fillets. 

The blend recognition technique used by us collects 
information about the variation of curvature across a face to 
determine whether it is fillet face. The geometry of each face in 
a B-Rep model is stored as a NURBS surface representation. A 
NURBS surface is parameterised is two directions, usually 
named U and V. For every face the algorithm essentially steps 
in U and V directions and calculates the curvatures of the 
constant U and constant V curves at various points on the 
surface. If the surface is given by X(U,V), where U and V are 
the parametric variables then the curvatures at any point are 
given by 
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If it is found that for every constant U curve, Kv remains 
constant as we step in V direction and is greater than a 
predefined threshold, the face is marked as a potential fillet in 
V direction. The threshold for the curvature is calculated 
depending upon the bounding box for the object so that fillet 
recognition is independent of the scale of the model. If the 
curvatures of all such U curves are the same, then it is a 
uniform radius fillet; otherwise it is marked as a variable radius 
fillet. Likewise similar observations for V curves lead the face 
to be marked as a potential fillet in U direction. For each face 
that is a potential fillet, the program attempts to find spring and 
cross edge. The face is classified as a fillet only if the curves in 
the direction of the fillet subtend an angle between 0 and 180 at 
the spine curve. Additional checks are included to prevent 
detection of parts of cylindrical faces from being detected as 
fillets. E.g. The fillet face in Figure 5 is a constant radius fillet 
in U direction. 

Spring and cross edges are identified by comparing the 
curvatures along the edge and perpendicular to the edge for 
face under consideration and its adjacent face sharing the same 
edge. If the curvature along the edge is equal on both faces and 
corresponds to the radius of the fillet, then the edge is a cross 
edge. If the curvature in a direction normal to the edge is 
greater than the threshold and greater than the curvature of the 
adjacent face in the perpendicular direction, the edge is 
classified as a spring edge. Presently, the program checks the 
curvature properties only at the midpoint of the edge under 
consideration. Once the spring and cross edges are detected, the 
entire information of the blend, i.e. type of blend, radii at each 
cross-section, angle subtended by blend, list of spring and cross 
edge, is written as attributes to the face which further used for 
chaining and simplification. 

Chaining and sequencing of blends is essential to 
determine the sequence in which the blends must be suppressed 
so that a valid object is obtained. As can be observed in blend-
blend interactions, when a blend precedes another, it acts as a 
support face for the new blend. Thus the shared edge is a cross 
edge for original blend face and a spring edge for the new 
blend. This allows us to formulate rules to determine the 
sequence of blends. In order to chain blends, the program 
essentially queries each of the adjoining faces of a fillet face 
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recursively to find out whether it is a blend, and if yes, whether 
it was created in the same filleting operation or whether it 
preceded/followed this fillet. The information about the chain 
to which a face belongs is recorded as another attribute and the 
process is continued till all the blend faces are accounted for. 
The algorithm for detection of blends is charted down below. 
 
Algorithm: 
 
Input – B-Rep surface model with blends 
Output – List of fillet faces and ordered chains of blends and 
file containing only fillet faces 
 
Algorithm to find fillet faces 
1) For each face in the model get its NURBS representation 
2) Evaluate curvatures in U and V parametric directions at 
equal intervals on the surface 
3) If the face satisfies criteria for being a fillet face 
4)  Determine type of fillet 
5)  Determine its spring and cross edges 
6) Create chronologically ordered chains of fillet faces 
 
Rules for creating blend chains 
1) If the edge between adjoining fillet faces is a cross edge for 
both faces, then both faces were created in the same filleting 
operation. 
2) If the edge between adjoining fillet faces is a cross edge for 
one and spring edge for another, then the face for which it is a 
cross edge was formed in an earlier filleting operation 

 
3.2.3 SUPPRESSION OF FILLETS: 

In order to suppress the fillets, we need to calculate the 
intersection edge that existed before the blend was made. For 
any given cross-section of a fillet, it is possible to calculate the 
intersection point knowing the tangential directions and 
extremities of the blend. As can be seen from Figure 6, we can 
calculate the angle (α) subtended at the centre using the 
formula 
Figure 6 - Cross section of a fillet 
7 Copyright ©2002 by ASME 
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…..where X(t) is the curve of the blend cross section. 
 
The distance of the intersection point from the start point or end 
point is given by 
 

αtan×= radiusextension  
 

Using the distances from the Start point and the End point, 
the program determines the point of intersection. The program 
calculates these intersection points for various cross-sections of 
the blend chain. It then passes a spline interpolation curve 
through all these points to estimate the intersection curve. The 
original blend face is then removed from the model. It is 
replaced by new faces that are created by skinning surfaces 
between the spring edge and the spine curve for each spring 
edge. Constraints are added to ensure that the new faces will 
have tangent continuity with the support faces. 

It should be noted here that the intersection curve so 
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calculated, might not be the actual intersection that existed 
before the filleting operation. This is because the effects of 
curvature of the freeform support face in the blended region are 
not accounted for. It may be sometimes possible to find the 
underlying surface geometry of the support face and calculate 
the new face using that geometry and appropriate trimming 
curves. However, as indicated before, all the faces that are 
detected as fillets might not be generated by filleting operation 
and thus the surface representation for the required region may 
not exist. 

Presently only the latest blend chain can be suppressed in 
this way. This is because during suppression a new face may be 
created that would be a part of the preceding blend. This face is 
not included in the list as a part of the preceding blend chain 
since it did not exist then. One way to account for this is to run 
the detection algorithm again to detect these new blend faces. 
However, this results in unnecessary repetition of work. 
Another way to overcome this problem is to make a note of the 
preceding blend on all fillet faces that are formed at the blend 
chain intersections. Using this information, we should be able 
to decide which chain the new face belongs to without having 
to repeat the recognition algorithm. This forms a part of our 
ongoing research. 

The working of the program can be seen with the simple 
Figure 7 - Fillet simplification in a "boss" 

Figure 8 - Fillet recognition in the base of a joystick 
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Figure 9 - Flow chart of overall feature simplification scheme 
 

example of a boss. As can be seen from Figure 7, the program 
is able to detect the blend faces. It accurately calculates the 
intersection curves. The new faces generated to replace the 
fillet faces are shown in Figure 7(c). The blend detection 
algorithm was also verified using more complicated parts. The 
example shown in Figure 8, considers the surface model of the 
base of a joystick. All blend faces were accurately detected as 
can be seen in Figure 8(b). Accurate intersection edges were 
also calculated. 

 
4 IMPLEMENTATION 

The algorithms were coded for the SUN Solaris (UNIX) 
platform. The program is envisaged to act as a module in 
conjunction with a complete geometric modelling system. 
Since it is not meant to act as a stand-alone program, it does not 
have any graphical user interface. The algorithms are coded in 
C++ using ACIS API function libraries. The program records 
the results in ASCII text and .sat files. The same algorithms 
were also coded using C++ and Open-IDEAS to act as a 
module with the SDRC – IDEAS modelling system. In this 
case, the ASCII files are written but the modifications to the 
models are made in the current IDEAS session and need to be 
llection.asme.org on 07/02/2019 Terms of Use: h
saved by the user. The overall working of the module can be 
summarised with the help of the flow chart shown in Figure 9. 

Suppose that the designer wishes to detect and extract the 2 
holes and 2 fillets in the model shown in Figure 10. The 
program first invokes the hole-detection module. The user is 
prompted for the threshold value of perimeter to be used for 
suppression of holes. Accordingly, the 4 holes are detected and 
suppressed. The output of the hole-detection phase is in the 
form of an ASCII file storing the definitions of the hole and 
patches that cover the holes, as shown in Figure 11. 

The program then invokes the fillet-detection module. The 
fillet-detection module stores the fillet face and replacement 
faces in separate .sat files. It also deletes the fillet face from the 
original model and stores it along with the replacement faces. 
The replacement faces need to be manually stitched to the 
model by the user. The model at the end of the fillet-detection 
phase is shown in Figure 12. 
9 Copyright ©2002 by ASME 
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Figure 12 - Sample for feature simplification 

Figure 11 - Output of hole simplification phase 

Figure 10 - Output of blend simplification phase 
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5 CONCLUSIONS AND FUTURE WORK 

In this paper, we have proposed methods for directly 
accessing the CAD model data structure to recognise and 
simplify features in case of freeform surface models using 
predefined sets of rules. The results of an implementation of 
these methods are encouraging. The methods can successfully 
detect hole and fillet features. Methods for suppression or 
simplification of these features have been successful for certain 
classes of parts and have presented certain limitations.  

The research presented in this paper was carried out with 
the aim of simplifying the geometry of a complex freeform 
surface model so as to allow efficient automatic mesh 
generation for Finite Element Analysis. However, most 
advantages of feature recognition in solid models also extend to 
freeform surface models. The ability to detect fillets will be 
helpful in recognition of more complicated form features, such 
as bosses or beads, since such features will generally be 
surrounded by fillets. The ability to detect features on freeform 
surfaces will allow comparison and of completely new families 
of parts. It will also provide measures to determine complexity 
of a given part. Features such as holes need to be further 
classified with regards to their function and shape so as to be 
more useful in part comparison. Such a classification, of 
course, will depend upon the family of parts under 
consideration. When aimed at facilitating finite element mesh 
generation, we also need to calculate the effect of suppression 
of features on the results of finite element analysis and 
formulate rules and conditions for simplification.  
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