

Downloaded

brought to you by COREView metadata, citation and similar papers at core.ac.uk

eerX
Proceedings of DETC’02:
ASME 2002 Design Engineering Technical Conferences and Computers and Information in Engineering

Conference
Montreal, Canada, September 29-October 2, 2002

DETC2002/CIE-34494

FEATURE SIMPLIFICATION IN SURFACE MODELS FOR EFFICIENT FINITE ELEMENT MESH
GENERATION

Nikhil Joshi Debasish Dutta

Department of Mechanical Engineering
University of Michigan

Email: njoshi@umich.edu

Department of Mechanical Engineering

University of Michigan
Email: dutta@umich.edu

Proceedings of DETC�02
ASME 2002 Design Engineering Technical Conferences

and Computer and Information in Engineering Conference
Montreal, Canada, September 29-October 2, 2002

 DETC2002/CIE-34494

provided by CiteS

ABSTRACT
Sheet metal components are typically modelled as freeform

surface models. Finite element meshes generated automatically
for such models have poor quality around small detailed
features. These features need to be simplified in order to obtain
an acceptable mesh. Simplification involves recognition of the
feature and modification of its geometry or complete
suppression of the feature. This paper proposes techniques to
directly query the CAD data structure to recognise and suppress
two basic features, viz. holes and fillets in freeform surface
models. Results of a software implementation for the same are
discussed with suitable examples.

1 INTRODUCTION

Finite element analysis is an important step in the
validation of a design. Generation of the finite element mesh is
a tedious process. Many a time, certain features are unimportant
for finite element analysis and can safely be suppressed without
affecting the accuracy or validity of the results. Recognition of
such features and their selective suppression or simplification,
the topic of this paper, greatly reduces the efforts expended in
the generation of an acceptable quality mesh.

Geometric models store design information in the form of
points, curves and surfaces. However, the decision making and
reasoning processes of most engineering tasks require
functional entities and attributes, such as "holes", "distance
between holes", etc. that are not explicitly available. Features
are geometric or topological patterns of interest in a part model,
which represent high-level entities with respect to their
engineering significance [1]. Recognition and extraction of
features from a geometric model is, therefore, required for
 From: https://proceedings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: h
various design and manufacturing activities. Features are
widely used for tasks such as automatic process plan
generation, classification of part families [2], reconstruction of
solid models from scanned data [3], etc.

Sheet metal components, such as automobile body parts,
are typically modelled as freeform surface models. Finite
element analysis is used to verify their structural strength and
deformation characteristics. Automatic mesh generation
algorithms do not generate meshes of acceptable quality,
especially near small features in the surface such as holes,
fillets, beads, bosses, etc. The automatically generated mesh,
therefore, needs to be corrected manually. This manual process
is extremely tedious and time consuming, owing to which,
approximately 75% of the time required for FEA is spent in
mesh generation. Automatic recognition of such features and
their selective suppression or simplification can, therefore,
greatly reduce the efforts of mesh generation. In this paper we
propose new techniques to detect and suppress two commonly
occurring features, viz. holes and fillets, using definite rules to
analyse the geometry of the models.

The remainder of the paper is organised as follows: In
section 2, we review existing literature related to features. In
section 3, we explain the methodology we use to detect features
in such models. We also present examples of its
implementation on functional parts to highlight the salient
points and limitations of the technique. In section 4, we discuss
the implementation of the algorithms and the overall
architecture envisaged for the feature recognition system. We
conclude in section 5 with a summary of the work done and the
scope for future work on these techniques.
1 Copyright ©2002 by ASME

ttp://www.asme.org/about-asme/terms-of-use

https://core.ac.uk/display/357352610?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Download

2 PREVIOUS RELEVANT WORK

To the best of our knowledge, the topic of feature
modification or simplification in surface models has not
received much attention in academic literature. Feature
simplification requires recognition of the feature as a
preliminary step. Many methodologies have been proposed for
the recognition of form features in solid models. Depending
upon the feature representation scheme adopted, they can be
divided into two categories, viz. surface and volume feature
recognition schemes. Surface recognition schemes assume that
a feature is formed by specific arrangement of faces that satisfy
certain conditions. Graph-based methods, syntax-based
methods, rule-based methods, hint-based methods or geometric
reasoning, etc. are examples of such schemes. Only a few
systems characterise a feature by its volume. These include
volume decomposition methods, the convex hull algorithm and
backward growing.

Most of the graph based systems use the notion of an
Attributed Adjacency Graph (AAG) [4]. In these methods the
topology of the model is represented in the form of a graph.
The recogniser then scans the object’s graph to find sub-graphs
that match the description of a feature. Syntactic pattern
methods [5] use sequences of geometric elements to describe
features. Such a sequence of geometric elements is represented
as a string of codes. A parser checks whether any sub-strings
can be generated by a grammar describing a feature. Rule based
methods [6] use sets of rules to describe features. The rules
enumerate the necessary and sufficient conditions for a portion
of a model to be identified as a feature. The scope of feature
instances that can be recognised can be very wide. However,
formulation of rules is tedious and subjective. Scanning the
model for regions that satisfy the rules can be time consuming,
especially for complex models. In the convex-hull method [7],
the difference between the object and its convex hull is
computed recursively. The object is finally represented as a
sequence of convex volumes with alternating signs. Volume
decomposition [8] is based on decomposing a delta volume into
cells, which are further processed and mapped to standard
machining features to form the cells. Volumetric representation
schemes, in general, enable a more complete description of
feature-feature interactions.

In addition to these methods, heuristics and techniques
from artificial intelligence, such as genetic algorithms and
artificial neural networks (ANN) have also been employed to
solve the problem of feature recognition. Neural networks have
used in conjunction with Attributed Adjacency Graphs [9], [10]
to recognise feature classes, such as pockets, slots, protrusions,
passages, steps, and holes, in solid models. Neural networks
have also been trained to recognise features in 2D components
[11], [12], though the work has been restricted to flat 2D
surfaces.

All the schemes discussed above are, as yet, only able to
detect features composed of planar and cylindrical surfaces in
solid models. Most of these generic methods cannot be easily
extended to include features on freeform surfaces. Formulation
of description patterns to define features on surface models is a
subjective process. Neural networks are better suited for this
task since they can learn from examples, i.e. training patterns.

ed From: https://proceedings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use:
However, neural networks are not suited for complex numerical
computations. CAD systems store the models as a mathematical
description of constituent faces and edges. Thus, a pre-
processing step is required to convert the CAD model into a
form of input suitable for the neural network. Determining the
representation that will be most useful to recognise features is
the major hurdle in the use of neural networks in freeform
surface models. As a preliminary technique, we resort to
defining rules to describe features on freeform surfaces.

3 DIRECT MANIPULATION OF CAD DATA
STRUCTURE

Sheet metal parts have freeform shapes that are obtained
by processes such as form pressing, drawing, bending, etc.
These parts have a very small thickness and are generally
modelled using surfaces to specify the shape of the part. In B-
Rep models, NURBS surfaces are used to represent the
complex freeform shapes. The surface model is made up of a
large number of NURBS patches (called faces) that are
trimmed to specify the outer boundary. Adjoining patches are
stitched to each other so as to form a single contiguous part.
Owing to this, different designers may construct the same
feature in various different ways. e.g. a hole boundary may be
defined by a single edge or sequence of many edges.
Consequently, it is almost impossible to define some features
based on the topological relationships between the faces, as is
done in “graph based” and “hint based” approaches. Volumetric
approaches cannot be used, as surface models are non-
manifold, i.e. they are modelled as surfaces having zero
thickness and consequently have no volume. ANNs and other
approaches require the feature to be presented in special
formats in order to be recognised. This involves locating the
region containing the feature (usually done manually) and then
presenting it to the ANN in the required representation for
identification classification and parameterisation. Directly
querying the data structure of the CAD model ensures that none
of the information about the geometry of the part is lost through
any change of representation. It also requires minimum human
intervention during the feature recognition stage. However, the
technique has similar shortcomings to any other “rule based”
feature recognition method. i.e. scanning the entire model by
the set of rules can be very time consuming, especially if the
object is complicated with many faces.

We make the following assumptions about the CAD data
that we receive as input:
1) Input is the form of a B-rep model
2) Trimmed surfaces have been defined
3) There are no overlapping surfaces
4) NURBS representation is available for all surface patches

3.1 SIMPLIFICATION OF HOLES

3.1.1 DEFINITIONS AND CONCEPTS:

In B-Rep models, the surface model is made using a large
number of trimmed surface patches, which are stitched at the
coincident edges. Each patch is stored in the data structure as a
face. Each face has one outer loop and any number of inner
loops. Loops are sequences of edges, which define the trimming
2 Copyright ©2002 by ASME

http://www.asme.org/about-asme/terms-of-use

Downloaded From: https://proceedings
Figure 1 - Suppression of holes
curves for the underlying NURBS surface. Edges in turn point
to the loop they belong to. We define a hole to be any loop of
edges that has no surface on the inside. All the edges in a B-
Rep surface model will either be shared by 2 surface patches
(internal edge) or will have a surface on one side and none on
the other. Such an edge, with a surface on one side only, is
called a free edge. In addition, to the assumptions already
mentioned, we also assume that surface patches are stitched so
that no gaps exist between them. If they exist, they will be
treated as intended holes.

3.1.2 RECOGNITION OF HOLES:

We have already assumed that the geometry is cleaned and
there are no overlapping surfaces. It can then be observed that
edges forming the boundary of a hole are characterised by
having a face only one side, while all other edges will be
sandwiched between two faces. We have already defined such
edges as free edges. The algorithm implemented initially finds
all such free edges in the model. It then forms closed chains of
.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: h
these edges. Each such closed loop of edges corresponds to a
hole. The algorithm used to detect holes is enumerated below:

Algorithm:

Input – B-Rep surface model with holes
Output – B-Rep surface model with patches covering original
holes

1) Get set F of all free edges in the model

Get number of edges of model
For each face get all loops
For each loop traverse through all the edges of the
loop
Keep count of the number of times each edge was
encountered
All edges that were encountered just once are free
edges

2) Select and edge e ∈ F
3 Copyright ©2002 by ASME

ttp://www.asme.org/about-asme/terms-of-use

Download

3) Find start and end vertices of e
4) Find edge starting from end vertex of e and ∈ F
5) Find chain of edges till end vertex of chain = start vertex
6) Repeat steps 2 to 5 to define new holes till all edges in F are
exhausted

The working of the algorithm can be best studied with the
help of a simple example. Consider the model shown in Figure
1, containing one hole. The algorithm first tags all edges of the
model to identify each edge uniquely. The model is made up of
four trimmed and stitched faces. For each face, the algorithm
traverses all the loops and keeps a record of the number of
times an edge is encountered. As can be seen in the figure,
edges E2, E5, E13 and E7 are encountered twice. All other
edges are encountered only once, and are thus marked as free
edges. In order to chain the free edges into holes, it starts with
an arbitrary edge, say E1, which belongs to the set of free
edges. It then seeks another free edge from the remaining edges
that shares the end vertex of E1, which in this case will be edge
E6. The process continues till the end vertex of the new edge is
the same as the start vertex of the original edge. The sequence
of these edges (E1 - E6 - E10 - E14) is stored as the definition
of a hole. The perimeter of the hole is also calculated as the
sum of individual edge lengths. If there are any more free edges
remaining, the process is repeated till all free edges are
accounted for. The hole with the largest perimeter is designated
as the outer boundary and not considered for simplification.
Thus, in Figure 1, the sequence (E3 – E4 – E16 – E15 – E12 –
E11 – E8 – E9) will initially be detected as a hole, but will
eventually be removed from further consideration.

It should be noted that the detection of free edges cannot
be done by merely querying the edge for number of loops it
belongs to. It might be possible that an edge is contained in
only one loop, but is not a free edge. E.g. In the case of a
cylindrical face, there exists an edge that runs longitudinally
along the cylindrical surface. This edge has the same face on
both sides and is obviously contained in only one loop.
However, it isn’t a free edge. To detect the free edges we need
to traverse all the loops and find the number of times each edge
is encountered during the traversals. All edges that are
encountered only once will be free edges. It can be seen that the
longitudinal edge on the cylindrical face will be traversed twice
in opposite directions in the same loop. Certain checks are also
required to eliminate degeneracies and special conditions e.g.
edges with ‘0’ length showing up as holes.

3.1.3 SIMPLIFICATION OF HOLES:

Simplification of a hole will consist of suppressing the
hole, i.e. covering the hole by a smooth surface patch. Trying to
estimate the internal shape of a surface given its surrounding
surfaces is a difficult problem. However, in certain cases, we
can use the existing surface patches to predict the surface that
would cover the hole. If the hole to be suppressed is the internal
loop in any one face, then the mathematical representation of
the required interpolation surface already exists and is merely
suppressed by the corresponding trimming curve. The
suppression of the hole then entails the removal of this
trimming curve. Alternately, we can create a new face, having

ed From: https://proceedings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use:
the same underlying surface equation, with edges of the hole as
the outer trimming curve. If the edges of the hole belong to
separate patches, we can still try to use their underlying surface
equations. If the underlying surfaces form a watertight
intersection, then we can remove the trimming curve
corresponding to the hole and trim the surfaces at their
intersection instead. It might further be necessary to stitch and
blend the faces at the intersection to maintain continuity of
slope. Alternatively, we can loft a new surface using the edges
of the holes as an outer loop and adding tangency constraints
for the adjacent faces.

In our implementation we create new surface patches for
all holes, whose perimeter is below a user-defined threshold.
The threshold value of the perimeter needs to be determined by
the user and will depend upon the fineness, i.e. the mean
element size, of the finite element mesh that will be
constructed. Smaller elements will usually mesh large holes
adequately and, therefore, only small holes will need to be
suppressed. Using the definition of the boundary of the holes, it
tries to loft a surface that would cover the hole. Consequently,
the limitations of the lofting operation of the native CAD
software will extend to the creation of surface patches. The
patches are stored as separate entities that can be stitched to the
original part by the user.

We present, here, the results of the algorithm obtained
when tested on three separate sheet metal models. The
threshold perimeter for patching holes was kept at 0.1 inches
for all samples, however the program allows the user to modify
this threshold value depending upon the size of elements that
will be used for meshing. As can be seen from Figure 2 (a), the
sample part has 14 holes of various sizes on different faces.
Figure 2 (b) shows the patches that have been created to patch
the holes. All 14 holes were detected by the program. As can be
seen, patches were not created for two of the holes as their
perimeter exceeded the threshold value. All holes, except the
two holes on the side face (indicated in Figure 2 (a)), were
situated on planar faces, and can be joined to the original part.
Patches were created for 12 holes including the ones on the
non-planar surface. Two holes were not suppressed owing to
their large perimeters.

Figure 3 (a) shows another specimen part with 26 holes.
Figure 3 (b) shows the patches created by the program for the
specimen. Patches have been created for 24 holes, while two
holes were found to have perimeter greater than the threshold.
It is important to note that the algorithm has successfully
created patches for holes of arbitrary shapes as shown in Figure
3 and is thus not confined to circular holes.

Figure 4 (a) shows a complex sheet metal model having 30
holes. Figure 4 (b) shows the result obtained from the program.
All 30 holes were recognised by the program. Patches were
created for 21 holes. Two holes, viz. holes labelled ‘A’ and ‘B’
in Figure 4, were found to have perimeter exceeding the
threshold value. The remaining 7 holes could not be patched
due to limitations of the lofting command, e.g. hole ‘C’ in
Figure 4. The boundaries of the hole can, however, be used by
the user to create a new surface.
4 Copyright ©2002 by ASME

 http://www.asme.org/about-asme/terms-of-use

Downloaded From: https://proceedings.asm
Figure 3 - Sample Part #3 - Simplification of holes

Figure 4 - Sample Part #1 - Simplification of holes

Figure 2 - Sample Part #2 - Simplification of holes
5 Copyright ©2002 by ASME

edigitalcollection.asme.org on 07/02/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Downloaded From: https://pr
Figure 5 - Fillet terminology and constant parameter lines

3.2 SIMPLIFICATION OF FILLETS

3.2.1 DEFINITIONS AND CONCEPTS:

A fillet or blend can be defined as a curved surface (or a
chain of curved surfaces) that links surfaces together to form a
continuous smooth bend (see Figure 5) [13], [14]. The blend
geometry is computed using an imaginary rolling ball that
maintains contact with the surfaces to be blended. The side
faces of the blend (which support the imaginary rolling ball) are
called support faces. The locus of points traced by the rolling
ball centre is called the spine curve. The edges of contact
between the blend face and the support faces are called spring
edges. The edges that connect adjacent faces in a blend chain
are called cross edges. The blend surface usually has a circular
cross section, and the plane of the cross section is always
perpendicular to both the faces. The blend curvature at a point
on the blend surface is the curvature along the cross-section of
the blend surface at that point. The cross-sectional radius may
be constant throughout the surface, called constant radius
blends, or may vary at different cross-sections, called variable
radius blends. Recognition of blends in freeform surface
models is difficult since topologically a fillet is no different
from a normal face. Moreover, there might be a surface patch
where only a portion of the patch forms the fillet. The variation
of curvature at various points on the face provides the only
clues to detect the existence of a fillet. Accordingly, we make
the following assumptions about the fillets that the algorithm
can detect:
1. Blend faces are parameterised such that the blend radius is

along one parametric direction.
2. The blend face describes only the geometry of the blend.

3.2.2 RECOGNITION OF FILLETS:

Most of the present day modeling softwares store
information about the history, i.e. the steps involved in the
creation of the model, in the form of a chronological tree
oceedings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use:
structure. If such a history tree is available for the model one
can search for filleting operations in the tree and suppress them.
However, this approach has its shortcomings. Firstly,
operations such as stitching and geometry healing, which are
common in surface models, result in loss of history and hence
the history tree may not be reliable to detect all fillets.
Secondly, in the creation of surface models the fillet faces
themselves may be used as references to create newer faces.
Suppression of a filleting operation may, therefore, disallow
creation of these faces and thus result in an invalid object upon
reconstruction using the modified history tree. Moreover, the
history tree for a model is not unique. It depends upon the way
in which the model was generated by the designer. Many a
time, a gap between two neighbouring fillets of different radii is
connected by a lofted face, with variable radius, rather than an
explicit filleting operation. Such a face should also be
recognised as a fillet for correct suppression of fillets.

The blend recognition technique used by us collects
information about the variation of curvature across a face to
determine whether it is fillet face. The geometry of each face in
a B-Rep model is stored as a NURBS surface representation. A
NURBS surface is parameterised is two directions, usually
named U and V. For every face the algorithm essentially steps
in U and V directions and calculates the curvatures of the
constant U and constant V curves at various points on the
surface. If the surface is given by X(U,V), where U and V are
the parametric variables then the curvatures at any point are
given by

3

2

2

U

X

U

X

U

X

U

∂
∂

∂
∂×

∂
∂

=Κ &
3

2

2

V

X

V

X

V

X

V

∂
∂

∂
∂×

∂
∂

=Κ
6 Copyright ©2002 by ASME

 http://www.asme.org/about-asme/terms-of-use

Downloa
If it is found that for every constant U curve, Kv remains
constant as we step in V direction and is greater than a
predefined threshold, the face is marked as a potential fillet in
V direction. The threshold for the curvature is calculated
depending upon the bounding box for the object so that fillet
recognition is independent of the scale of the model. If the
curvatures of all such U curves are the same, then it is a
uniform radius fillet; otherwise it is marked as a variable radius
fillet. Likewise similar observations for V curves lead the face
to be marked as a potential fillet in U direction. For each face
that is a potential fillet, the program attempts to find spring and
cross edge. The face is classified as a fillet only if the curves in
the direction of the fillet subtend an angle between 0 and 180 at
the spine curve. Additional checks are included to prevent
detection of parts of cylindrical faces from being detected as
fillets. E.g. The fillet face in Figure 5 is a constant radius fillet
in U direction.

Spring and cross edges are identified by comparing the
curvatures along the edge and perpendicular to the edge for
face under consideration and its adjacent face sharing the same
edge. If the curvature along the edge is equal on both faces and
corresponds to the radius of the fillet, then the edge is a cross
edge. If the curvature in a direction normal to the edge is
greater than the threshold and greater than the curvature of the
adjacent face in the perpendicular direction, the edge is
classified as a spring edge. Presently, the program checks the
curvature properties only at the midpoint of the edge under
consideration. Once the spring and cross edges are detected, the
entire information of the blend, i.e. type of blend, radii at each
cross-section, angle subtended by blend, list of spring and cross
edge, is written as attributes to the face which further used for
chaining and simplification.

Chaining and sequencing of blends is essential to
determine the sequence in which the blends must be suppressed
so that a valid object is obtained. As can be observed in blend-
blend interactions, when a blend precedes another, it acts as a
support face for the new blend. Thus the shared edge is a cross
edge for original blend face and a spring edge for the new
blend. This allows us to formulate rules to determine the
sequence of blends. In order to chain blends, the program
essentially queries each of the adjoining faces of a fillet face

ded From: https://proceedings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use:
recursively to find out whether it is a blend, and if yes, whether
it was created in the same filleting operation or whether it
preceded/followed this fillet. The information about the chain
to which a face belongs is recorded as another attribute and the
process is continued till all the blend faces are accounted for.
The algorithm for detection of blends is charted down below.

Algorithm:

Input – B-Rep surface model with blends
Output – List of fillet faces and ordered chains of blends and
file containing only fillet faces

Algorithm to find fillet faces
1) For each face in the model get its NURBS representation
2) Evaluate curvatures in U and V parametric directions at
equal intervals on the surface
3) If the face satisfies criteria for being a fillet face
4) Determine type of fillet
5) Determine its spring and cross edges
6) Create chronologically ordered chains of fillet faces

Rules for creating blend chains
1) If the edge between adjoining fillet faces is a cross edge for
both faces, then both faces were created in the same filleting
operation.
2) If the edge between adjoining fillet faces is a cross edge for
one and spring edge for another, then the face for which it is a
cross edge was formed in an earlier filleting operation

3.2.3 SUPPRESSION OF FILLETS:

In order to suppress the fillets, we need to calculate the
intersection edge that existed before the blend was made. For
any given cross-section of a fillet, it is possible to calculate the
intersection point knowing the tangential directions and
extremities of the blend. As can be seen from Figure 6, we can
calculate the angle (α) subtended at the centre using the
formula
Figure 6 - Cross section of a fillet
7 Copyright ©2002 by ASME

http://www.asme.org/about-asme/terms-of-use

Download

EndptStartpt

EndptStartpt

dt

dX

dt

dX

dt

dX

dt

dX



















•







=αcos

…..where X(t) is the curve of the blend cross section.

The distance of the intersection point from the start point or end
point is given by

αtan×= radiusextension

Using the distances from the Start point and the End point,
the program determines the point of intersection. The program
calculates these intersection points for various cross-sections of
the blend chain. It then passes a spline interpolation curve
through all these points to estimate the intersection curve. The
original blend face is then removed from the model. It is
replaced by new faces that are created by skinning surfaces
between the spring edge and the spine curve for each spring
edge. Constraints are added to ensure that the new faces will
have tangent continuity with the support faces.

It should be noted here that the intersection curve so

ed From: https://proceedings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: h
calculated, might not be the actual intersection that existed
before the filleting operation. This is because the effects of
curvature of the freeform support face in the blended region are
not accounted for. It may be sometimes possible to find the
underlying surface geometry of the support face and calculate
the new face using that geometry and appropriate trimming
curves. However, as indicated before, all the faces that are
detected as fillets might not be generated by filleting operation
and thus the surface representation for the required region may
not exist.

Presently only the latest blend chain can be suppressed in
this way. This is because during suppression a new face may be
created that would be a part of the preceding blend. This face is
not included in the list as a part of the preceding blend chain
since it did not exist then. One way to account for this is to run
the detection algorithm again to detect these new blend faces.
However, this results in unnecessary repetition of work.
Another way to overcome this problem is to make a note of the
preceding blend on all fillet faces that are formed at the blend
chain intersections. Using this information, we should be able
to decide which chain the new face belongs to without having
to repeat the recognition algorithm. This forms a part of our
ongoing research.

The working of the program can be seen with the simple
Figure 7 - Fillet simplification in a "boss"

Figure 8 - Fillet recognition in the base of a joystick
8 Copyright ©2002 by ASME

ttp://www.asme.org/about-asme/terms-of-use

Downloaded From: https://proceedings.asmedigitalco
Figure 9 - Flow chart of overall feature simplification scheme

example of a boss. As can be seen from Figure 7, the program
is able to detect the blend faces. It accurately calculates the
intersection curves. The new faces generated to replace the
fillet faces are shown in Figure 7(c). The blend detection
algorithm was also verified using more complicated parts. The
example shown in Figure 8, considers the surface model of the
base of a joystick. All blend faces were accurately detected as
can be seen in Figure 8(b). Accurate intersection edges were
also calculated.

4 IMPLEMENTATION

The algorithms were coded for the SUN Solaris (UNIX)
platform. The program is envisaged to act as a module in
conjunction with a complete geometric modelling system.
Since it is not meant to act as a stand-alone program, it does not
have any graphical user interface. The algorithms are coded in
C++ using ACIS API function libraries. The program records
the results in ASCII text and .sat files. The same algorithms
were also coded using C++ and Open-IDEAS to act as a
module with the SDRC – IDEAS modelling system. In this
case, the ASCII files are written but the modifications to the
models are made in the current IDEAS session and need to be
llection.asme.org on 07/02/2019 Terms of Use: h
saved by the user. The overall working of the module can be
summarised with the help of the flow chart shown in Figure 9.

Suppose that the designer wishes to detect and extract the 2
holes and 2 fillets in the model shown in Figure 10. The
program first invokes the hole-detection module. The user is
prompted for the threshold value of perimeter to be used for
suppression of holes. Accordingly, the 4 holes are detected and
suppressed. The output of the hole-detection phase is in the
form of an ASCII file storing the definitions of the hole and
patches that cover the holes, as shown in Figure 11.

The program then invokes the fillet-detection module. The
fillet-detection module stores the fillet face and replacement
faces in separate .sat files. It also deletes the fillet face from the
original model and stores it along with the replacement faces.
The replacement faces need to be manually stitched to the
model by the user. The model at the end of the fillet-detection
phase is shown in Figure 12.
9 Copyright ©2002 by ASME

ttp://www.asme.org/about-asme/terms-of-use

Downloaded From: https://procee

Figure 12 - Sample for feature simplification

Figure 11 - Output of hole simplification phase

Figure 10 - Output of blend simplification phase
10 Copyright ©2002 by ASME

dings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

Downloa

5 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed methods for directly
accessing the CAD model data structure to recognise and
simplify features in case of freeform surface models using
predefined sets of rules. The results of an implementation of
these methods are encouraging. The methods can successfully
detect hole and fillet features. Methods for suppression or
simplification of these features have been successful for certain
classes of parts and have presented certain limitations.

The research presented in this paper was carried out with
the aim of simplifying the geometry of a complex freeform
surface model so as to allow efficient automatic mesh
generation for Finite Element Analysis. However, most
advantages of feature recognition in solid models also extend to
freeform surface models. The ability to detect fillets will be
helpful in recognition of more complicated form features, such
as bosses or beads, since such features will generally be
surrounded by fillets. The ability to detect features on freeform
surfaces will allow comparison and of completely new families
of parts. It will also provide measures to determine complexity
of a given part. Features such as holes need to be further
classified with regards to their function and shape so as to be
more useful in part comparison. Such a classification, of
course, will depend upon the family of parts under
consideration. When aimed at facilitating finite element mesh
generation, we also need to calculate the effect of suppression
of features on the results of finite element analysis and
formulate rules and conditions for simplification.

ACKNOWLEDGMENTS
We are grateful to the Ford Motor Company for their

technical input during this project.

REFERENCES
[1] Shah, J. and Mäntylä, M., 1995, “Parametric and Feature-

Based CAD/CAM”, John Wiley and Sons, Inc.
[2] Kakazu, Y and Okino, N., 1984, “Pattern Recognition

Approaches to GT Code Generation on CSG”,
Proceedings of 16th CIRP International Seminar on
Manufacturing Systems, Tokyo.

[3] Vergeest, J. S. M. & Horvath, I., 2000, “Fitting freeform
shape patterns to scanned 3D objects”, Proceedings of
ASME2000 DETC, Baltimore.

[4] Joshi, S. and Chang, T. C., 1988, “Graph-based heuristics
for recognition of machined features from 3D solid
model”, Computer-Aided Design, Vol. 20, No. 2, pp. 58-
86.

[5] Stanley, S. M., Henderson, M. R. and Anderson, D. C.,
“Using Syntactic Pattern Recognition to extract Feature
Information from a solid geometric database, 1983,

ded From: https://proceedings.asmedigitalcollection.asme.org on 07/02/2019 Terms of Use: h
Computers in Mechanical Engineering, Vol. 2, No. 2, pp.
61-66.

[6] Vosniakos, G. C., and Davies, B. J., 1993, “A Shape
Feature Recognition framework and its application to
holes in prismatic parts, International Journal of
Advanced Manufacturing Technology, Vol. 8, No. 5, pp.
345-351.

[7] Ferreira, J. C. E. and Hinduja, S., 1990, “Convex-Hull-
based Feature Recognition Method for 2.5D
components”, Computer-Aided Design, Vol. 22, No. 1,
41-49.

[8] Kim, Y. S., 1994, “Volumetric Features Recognition
using Convex Decomposition”, Advances in Feature
Based Manufacturing, Ed: Shah, J. J., Mäntylä, M., and
Nau, D. S., Elsevier.

[9] Prabhakar, S. and Henderson, M. R., 1992, “Automatic
Form-Feature Recognition using Neural-Network-based
techniques on Boundary Representations of Solid
Models”, Computer-Aided Design, Vol. 24, No. 7,
pp.381-393.

[10] Nezis, K. & Vosniakos, G., 1997, “Recognizing 2��� D
shape features using a neural network and heuristics”,
Computer-Aided Design, Vol. 29, No. 7, pp. 523-539.

[11] Wu, M. C., Chen, J. R. and Jen, S. R., 1994, “Global
Shape Information Modelling and Classification of 2D
workpieces”, International Journal of Computer
Integrated Manufacturing, Vol. 7, No. 5, pp. 261-275.

[12] Greska, W., Franke, V. & Geiger, M., 1996,
“Classification problems in manufacturing of sheet metal
parts”, Computers in Industry, 33, pp. 17-30.

[13] Rossignac, J. R. and Requicha, A. A. G., 1984, “Constant
Radius Blending in Solid Modeling”, Computers in
Mechanical Engineering.

[14] Venkatraman, S and Sohoni, M., 2001, “Blend
Recognition Algorithm and Applications”, Sixth ACM
Symposium on Solid Modeling and Applications,
Conference Proceedings, pp. 99-108

[15] Xu, X & Hinduja, S., 1998, “Recognition of rough
machining features in 2��� D components”, Computer-
Aided Design, Vol. 30, No. 7, pp. 503-516.

[16] Cohen, S., Elber, G. & Bar-Yehuda, R., 1997, “Matching
of freeform curves”, Computer-Aided Design, Vol. 29,
No. 5, pp. 369-378.

[17] Lentz, D. H. and Sowerby, R, 1994, “Hole Extraction for
Sheet Metal Components”, Computer-Aided Design

[18] DoCarmo, M. P., 1976, “Differential Geometry of
Curves and Surfaces”, Prentice-Hall, Inc.
11 Copyright ©2002 by ASME

ttp://www.asme.org/about-asme/terms-of-use

