UNITED STATES DEPARTMENT OF THE INTERIOR

GEOLOGICAL SURVEY

BOREHOLE-GRAVITY SURVEYS IN BASIN-FILL DEPOSITS OF CENTRAL AND SOUTHERN ARIZONA

by

١

Patrick Tucci, James W. Schmoker, and Stephen L. Robbins

Open-File Report 82-473

1982

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS.

INTRODUCTION

The borehole-gravity surveys described here were undertaken as part of the Southwest Alluvial Basins Study, which is one of a number of U.S. Geological Survey planned or ongoing regional aquifer studies. The objective of the borehole-gravity surveys was to investigate general relations between density and depth in the basin-fill deposits of central and southern Arizona. Such deposits form the major aquifers of the region and store large volumes of ground water.

Basin-fill deposits penetrated by six wells in Butler Valley, Vekol Valley, Avra Valley, and the Tucson basin (fig. 1), in central and southern Arizona, were logged in January, 1980, with the U.S. Geological Survey-LaCoste and Romberg borehole gravity meter. These cased wells were originally drilled for water supplies or for aquifer tests.

Subsurface depths in this report are given in feet, in conformance with common usage and understanding of well data. The multiplying factor to convert feet to meters in 0.3048.

GEOLOGIC SETTING

The borehole-gravity data described here are from intermontane basins (grabens) in or adjacent to the Sonoran Desert section of the Basin and Range physiographic province (Fenneman, 1931). Mountains (horsts) bounding the basins consist of igneous, metamorphic, and sedimentary rocks ranging from Precambrian through Cenozoic in age (Wilson and others, 1969).

EXPLANATION

BOUNDARY OF SOUTHWEST ALLUVIAL BASINS STUDY

• BUT-1 WELL—BUT-1 is well designation

Figure 1.--Locations of wells logged in this study.

The basin-fill deposits, described by Scarborough and Peirce (1978, p. 253) as "the sedimentary group that was deposited in basins created by the Basin and Range disturbance", are up to about 9,000 ft thick (Eberly and Stanley, 1978, p. 938). They consist of gravel, sand, silt, and clay, and locally include interbedded volcanic rocks and evaporites (Scarborough and Peirce, 1978). In general, the clastic sediments grade from coarse grained at basin margins to fine grained in the centers. Basin-fill deposits in the study area have not been formally named except in the Tucson basin, where Davidson (1973) subdivided them into the Tinaja beds of Miocene and Pliocene age and the Fort Lowell Formation of Pleistocene age.

BOREHOLE-GRAVITY MEASUREMENTS

The U.S. Geological Survey-LaCoste and Romberg borehole gravity meter (described by McCulloh, LaCoste, and others, 1967; McCulloh, Schoellhamer, and others, 1967) was used to carry out borehole-gravity surveys in the six wells located in Figure 1. The borehole gravity meter has a radius of investigation of tens of feet. Density values derived from borehole-gravity measurements are not significantly influenced by casing, borehole rugosity, or formation damage caused by drilling.

Fundamentals of borehole-gravity logging and data interpretation, considerations of the effective radius of investigation, and applications to geologic problems have been discussed by many authors, including Smith (1950), Goodell and Fay (1964), Howell, Heintz, and Barry (1966), McCulloh (1966), Healey (1970), Beyer (1971), Jageler (1976), Hearst and McKague (1976), and Schmoker (1977a, b, 1978, 1979).

Subsurface gravity stations were located where wire-line or drillers' logs indicated variations in formation properties. Additional stations were located between formation breaks to establish details of density variations. Densities determined from borehole-gravity measurements become more accurate as vertical station separation increases, so that station selection involves a tradeoff between stratigraphic detail and density accuracy (Schmoker, 1978).

Drift control for the borehole-gravity surveys was established by station reoccupations; tidal corrections and terrain corrections were applied to the borehole-gravity data. Principal facts for the borehole-gravity measurements of this study are tabulated in Tables 1-6.

In the absence of complicating structural factors, the relation between formation density and measurements of gravity in a borehole is given by (McCulloh, 1966):

$$f = 39.124(F - \Delta g / \Delta z) \tag{1}$$

where 3 is the average formation density between two vertically separated points in the borehole (g/cm^3) , F is the free-air vertical gradient of gravity (mgals/ft), Δg is the measured difference in gravity between the vertically separated points (mgals), and Δz is the vertical separation (ft).

Table 1.--Well WKF, Avra Valley Logged January 19, 1980

•

-

•

		· · · · · · · · · · · · · · · · · · ·				
Station	Depth (feet)	Greenwich mean time	Uncorrected gravity (milligals)	Tide correction (milligals)	Terrain correction (milligals)	Corrected gravity (milligals)
1	19.9	18:43	2,651.161	-0.014	+0.030	2,651.177
2	50.0	19:00	2,652.568	004	+.033	2,652.597
3	75.1	19:14	2,653.562	+.004	+.036	2,653.602
4	100.1	19:26	2,654.611	+.010	+.040	2,654.661
5	144.0	19:37	2,656.493	+.015	+.047	2,656.555
6	194.0	19:49	2,658.548	+.020	+.054	2,658.622
7	245.0	20:01	2,660.696	+.025	+'.061	2,660.782
8	286.0	20:15	2,662.389	+.029	+.067	2,662.485
9	326.0	20:29	2,664.030	+.032	+.073	2,664.135
10	365.0	20:47	2,665.474	+.034	+.078	2,665.586
11	406.0	21:00	2,666.960	+.035	+.083	2,667.078
12	420.0	21:13	2,667.465	+.034	+.085	2,667.584
13	462.0	21:26	2,669.049	+.032	+.090	2,669.171
14	505.0	21:39	2,670.614	+.030	+.095	2,670.739
15	548.0	21:50	2,672.231	+.027	+.100	2,672.358
16	610.0	22:02	2,674.578	+.023	+.108	2,674.709
17	674.0	22:14	2,676.996	+.018	+.115	2,677.129
18	746.0	22:20	2,679.486	+.016	+.123	2,679.625
19	815.1	22:32	2,681.879	+.010	+.131	2,682.020
20	860.1	22:41	2,683.432	+.006	+.136	2,683.574
21	910.1	22:50	2,685.152	+.001	+.142	2,685.295
22	970.0	22:56	2,687.224	003	+.149	2,687.370
23	1,030.0	23:08	2,689.345	009	+.155	2,689.491
24	1,088.0	23:18	2,691.369	015	+.162	2,691.516
25	1,145.0	23:29	2,693.383	022	+.168	2,693.529
26	1,224.1	23:38	2,696.151	028	+.177	2,696.300
27	1,285.0	23:48	2,698.288	034	+.183	2,698.437
28	970.0	24:07	2,687.278	046	+.149	2,687.381
29	746.0	24:23	2,679.555	055	+.123	2,679.623
30	462.0	24:42	2,669.157	066	+.090	2,669.181
31	245.0	25:01	2,660.827	075	+.061	2,660.813
32	19.9	25:21	2,651.287	083	+.030	2,651.234

.

Table 2.--Well MW-2, A∨ra Valley Logged January 21, 1980

Station	Depth (feet)	Greenwich mean time	Uncorrected gravity (milligals)	Tide correction (milligals)	Terrain correction (milligals)	Corrected gravity (milligals)
1	99.4	15:54	2,636.673	-0.084	+0.070	2,636.659
2	140.0	16:19	2,638.389	090	+.081	2,638.380
3	180.0	16:28	2,640.162	091	+.092	2,640.163
4	220.0	16:38	2,641.823	091	+.102	2,641.834
5	260.0	16:48	2,643.477	091	+.113	2,643.499
6	300.0	16:59	2,645.147	091	+.123	2,645.179
7	333.0	17:13	2,646.506	089	+'.132	2,646.549
8	365.0	17:26	2,647.902	086	+.140	2,647.957
9	408.0	17:42	2,649.536	082	+.151	2,649.605
10	460.0	17:57	2,651.469	076	+.164	2,651.557
11	510.0	18:08	2,653.363	072	+.177	2,653.468
12	560.0	18:23	2,655.200	065	+.189	2,655.324
13	600.1	18:32	2,656.726	060	+.199	2,656.865
14	650.0	18:44	2,658.541	054	+.210	2,658.697
15	700.0	18:53	2,660.336	049	+.222	2,660.509
16	750.1	19:01	2,662.090	044	+.234	2,662.280
17	800.0	19:12	2,663.858	037	+.245	2,664.066
18	850.0	19:20	2,665.583	032	+.257	2,665.808
19	900.0	19:29	2,667.270	027	+.268	2,667.511
20	950.1	19:38	2,668.951	021	+.279	2,669.209
21	1,000.0	19:48	2,670.613	014	+.290	2,670.889
22	750.1	20:04	2,662.059	005	+.234	2,662.288
23	510.0	20:21	2,653.320	+.006	+.177	2,653.503
24	300.0	20:34	2,645.096	+.013	+.123	2,645.232
25	99.4	20:46	2,636.583	+.020	+.070	2,636.673
26	49.7	20:54	2,634.408	+.024	+.057	2,634.489
27	19.9	21:03	2,633.037	+.028	+.049	2,633.114
28	99.4	21:20	2,636.570	+.036	+.070	2,636.676

Table 3.--Well IP-1, Tucson basin Logged January 23, 1980

Station	Depth (feet)	Greenwich mean time	Uncorrected gravity (milligals)	Tide correction (milligals)	, Terrain correction (milligals)	Corrected gravity (milligals)
1	99.9	15:55	2,542.724	-0.040	+0.122	2,542.806
2	150.0	16:09	2,544.794	046	+.138	2,544.886
3	195.0	16:20	2,546.671	051	+.148	2,546.768
4	235.0	16:29	2,548.302	054	, +.154	2,548.402
5	275.0	16:42	2,549.844	059	+.158	2,549.943
6	314.0	16:57	2,551.404	064	+, 161	2,551.501
7	333.0	17:06	2,552.165	066	+. 163	2,552.262
8	365.0	17:24	2,553.388	070	+. 164	2,553.482
9	400.1	17:36	2,554.645	072	+. 165	2,554.738
10	445.0	17:52	2,556.357	074	+. 166	2,556.449
11 12 13 14 15	489.0 518.0 560.0 603.0 650.0	18:08 18:33 18:53 19:07 19:20	2,558.073 2,559.162 2,560.691 2,562.246 2,564.078	074 073 070 067 063	+.167 +.167 +.167 +.167 +.167 +.166	2,558.166 2,559.256 2,560.788 2,562.346 2,564.181
16	702.0	19:30	2,565.985	060	+.165	2,566.090
17	760.0	19:44	2,568.032	055	+.164	2,568.141
18	800.0	19:59	2,569.526	049	+.163	2,569.640
19	850.0	20:09	2,571.287	045	+.162	2,571.404
20	890.1	20:18	2,572.692	040	+.161	2,572.813
21	930.0	20:25	2,574.151	037	+.161	2,574.275
22	980.1	20:35	2,575.887	032	+.160	2,576.015
23	760.0	20:58	2,567.976	020	+.164	2,568.120
24	518.0	21:16	2,559.082	010	+.167	2,559.239
25	333.0	21:31	2,552.206	001	+.163	2,552.368
26	99.9	21:50	2,542.746	+.010	+.122	2,542.878
27	50.0	22:01	2,540.644	+.016	+.099	2,540.759
28	20.0	22:16	2,539.524	+.024	+.080	2,539.628
29	99.9	22:26	2,542.744	+.030	+.122	2,542.896

.

.

Table 4.--Well BUT-1, Butler Valley Logged January 25, 1980

۰,

-

•

Station	Depth (feet)	Greenwich mean time	Uncorrected gravity (milligals)	Tide correction (milligals)	Terrain correction (milligals)	Corrected gravity (milligals)
1	213.9	15:52	2,867.073	-0.011	+0.231	2,867.293
2	245.0	16:05	2,868.376	014	+.251	2,868.613
3	290.0	16:17	2,870.220	017	+.279	2,870.482
4	335.0	16:29	2,872.044	020	+.307	2,872.331
5	384.0	16:41	2,874.003	023	+.338	2,874.318
6	426.0	16:52	2,875.675	026	+.364	2,876.013
7	468.0	17:08	2,877.306	030	+:389	2,877.665
8	532.0	17:20	2,879.500	034	+.427	2,879.893
9	566.0	17:33	2,880.807	037	+.447	2,881.217
10	604.0	17:50	2,882.237	042	+.469	2,882.664
11	651.0	18:01	2,883.862	045	+.495	2,884.212
12	690.0	18:12	2,885.047	048	+.517	2,885.513
13	740.0	18:20	2,886.837	051	+.545	2,887.331
14	796.0	18:30	2,888.686	053	+.575	2,889.208
15	847.0	18:40	2,890.308	056	+.602	2,890.854
16	914.0	18:49	2,892.458	057	+.637	2,893.038
17	965.0	18:58	2,894.067	059	+.664	2,894.672
18	1,020.0	19:07	2,895.797	061	+.692	2,896.428
19	1,069.0	19:15	2,897.358	063	+.716	2,898.011
20	1,118.0	19:23	2,899.010	064	+.740	2,899.686
21	1,165.0	19:31	2,900.732	065	+.763	2,901.430
22	914.0	19:43	2,892.459	066	+.637	2,893.030
23	690.0	19:58	2,885.063	067	+.517	2,885.513
24	651.0	20:06	2,883.784	067	+.495	2,884.212
25	426.0	20:24	2,875.700	067	+.364	2,875.997
26	213.9	20:41	2,867.060	066	+.231	2,867.225
27	172.0	20:59	2,865.310	064	+.204	2,865.450
28	137.0	21:13	2,863.902	061	+.182	2,864.023
29	92.0	21:26	2,861.925	058	+.155	2,862.022
30	50.0	21:40	2,860.308	055	+.132	2,860.385
31	20.0	21:52	2,858.999	051	+.117	2,859.065
32	213.9	22:05	2,867.024	046	+.231	2,867.209

.

Table 5.--Well VEK-5, Vekol Valley Logged January 28, 1980

Station	Depth (feet)	Greenwich mean time	Uncorrected gravity (milligals)	Tide correction (milligals)	Terrain correction (milligals)	Corrected gravity (milligals)
1	425.0	22:00	2,749.361	-0.072	+0.162	2,749.451
2	475.0	22:15	2,751.042	075	+.174	2,751.141
3	530.0	22:27	2,752.858	077	+.189	2,752.970
4	590.0	22:36	2,754.791	079	+.204	2,754.916
5	655.0	22:47	2,756.916	080	*, +.221	2,757.057
6	720.0	22:55	2,759.045	080	+.237	2,759.202
7	760.0	23:06	2,760.341	080	+.248	2,760.509
8	830.0	23:17	2,762.624	080	+.265	2,762.809
9	900.1	23:26	2,764.913	079	+.283	2,765.117
10	956.0	23:35	2,766.748	077	+.297	2,766.968
11	1,020.0	23:47	2,768.827	075	+.313	2,769.065
12	1,090.0	23:54	2,771.078	073	+.330	2,771.335
13	1,146.1	24:03	2,772.805	070	+.344	2,773.079
14	1,206.0	24:12	2,774.655	067	+.359	2,774.947
15	1,248.0	25:21	2,776.105	063	+.369	2,776.411
16	1,314.0	24:33	2,778.383	057	+.385	2,778.711
17	1,360.0	24:43	2,779.892	052	+.395	2,780.235
18	1,443.1	24:51	2,782.481	048	+.415	2,782.848
19	1,524.0	25:00	2,784.914	042	+.434	2,785.306
20	1,573.0	25:11	2,786.532	035	+.445	2,786.942
21	1,248.0	25:38	2,776.118	015	+.369	2,776.472
22	956.0	26:09	2,766.707	+.010	+.297	2,767.014
23	720.0	26:28	2,758.985	+.027	+.237	2,759.222
24	425.0	26:56	2,749.285	+.052	+.162	2,749.499
		Ove	ernight—Janua	ry 29, 1980		
25	425.0	16:06	2,749.436	029	+.162	2,749.569
26	355.0	16:22	2,747.103	022	+.144	2,747.225
27	300.0	16:39	2,745.085	015	+.130	2,745.200
28	250.0	17:04	2,743.228	006	+.117	2,743.339
29	195.0	17:15	2,741.086	002	+.104	2,741.188
30	150.0	17:27	2,739.231	+.001	+.094	2,739.326
31	100.0	17:36	2,737.204	+.003	+.083	2,737.290
32	50.0	17:47	2,735.201	+.005	+.073	2,735.279
33	20.0	17:59	2,734.142	+.007	+.067	2,734.216
34	195.0	18:14	2,741.073	+.008	+.104	2,741.185
35	425.0	18:28	2,749.391	+.009	+.162	2,749.562

Table 6.--Well VEK-2, Vekol Valley Logged January 30, 1980

-

•

Station	Depth (feet)	Greenwich mean time	Uncorrected gravity (milligals)	Tide correction (milligals)	Terrain correction (milligals)	Corrected gravity (milligals)
1	475.0	19:38	2,690.046	+0.015	+0.143	2,690.204
2	520.0	19:53	2,691.738	+.011	+.151	2,691.900
3	560.0	20:00	2,693.287	+.010	+.158	2,693.455
4	625.0	20:13	2,695.766	+.006	+.170	2,695.942
5	690.0	20:20	2,698.196	+.004	+.181	2,698.381
6	760.0	20:31	2,700.787	001	+.193	2,700.979
7	850.0	20:39	2,704.227	004	+'.208	2,704.431
8	928.0	20:49	2,707.190	008	+.220	2,707.402
9	1,012.0	20:56	2,710.343	011	+.234	2,710.566
10	1,100.0	21:05	2,713.729	015	+.247	2,713.961
11	1,154.0	21:14	2,715.839	020	+.256	2,716.075
12	1,210.0	21:22	2,718.029	024	+.264	2,718.269
13	1,270.0	21:31	2,720.296	028	+.273	2,720.541
14	1,325.0	21:40	2,722.382	033	+.281	2,722.630
15	1,400.0	21:49	2,725.346	038	+.293	2,725.601
16	1,475.0	21:58	2,728.207	042	+.303	2,728.468
17	1,550.0	22:08	2,731.124	048	+.314	2,731.390
18	1,620.0	22:17	2,733.822	052	+.324	2,734.094
19	1,695.0	22:24	2,736.710	056	+.335	2,736.989
20	1,765.0	22:30	2,739.368	059	+.345	2,739.654
21	1,840.0	22:39	2,742.363	063	+.356	2,742.656
22	1,900.0	22:46	2,744.698	066	+.364	2,744.996
23	1,960.0	22:54	2,747.074	069	+.372	2,747.377
24	1,550.0	23:16	2,731.173	078	+.314	2,731.409
25	1,210.0	23:32	2,718.082	083	+.264	2,718.263
26	850.0	23:51	2,704.315	087	+.208	2,704.436
27	475.0	24:06	2,690.091	089	+.143	2,690.195
28	430.5	24:18	2,688.337	090	+.134	2,688.381
29	365.0	24:29	2,685.577	090	+.121	2,685.608
30	296.0	24:38	2,682.556	089	+.107	2,682.574
31	226.0	24:46	2,679.364	088	+.092	2,679.368
32	160.0	24:55	2,676.247	087	+.077	2,676.237
33	110.0	25:05	2,673.831	085	+.065	2,673.811
34	62.0	25:16	2,671.627	081	+.052	2,671.598
35	20.0	25:24	2,669.578	078	+.041	2,669.541
36	226.0	25:36	2,679.360	073	+.092	2,679.379
37	475.0	25:53	2,690.116	064	+.143	2,690.195

In the study area, the free-air gradient of gravity is slightly distorted by regional mass anomalies associated with horst (high density) and graben (low density) structure. In each well surveyed, the theoretical free-air gradient of 0.09406 mgals/ft was corrected for such structure by modeling the gravity effect of a two-dimensional polygon representing the estimated regional configuration of the graben in which the well was located. The magnitude of this correction varied with estimated graben structure, location of the well within the graben, and well depth, but was generally small. The correction lowered the theoretical free-air gradient by 0.00015 to 0.00079 mgals/ft, resulting in a lowering of calculated densities (equation 1) of 0.006 to 0.031 g/cm³.

DENSITIES OF BASIN-FILL DEPOSITS

Densities of the basin-fill deposits logged in this study, calculated from borehole-gravity data, are listed in Table 7 and plotted in Figure 2. Densities above the water table range from 1.73 to 2.26 g/cm³, and densities below the water table range from 2.01 to 2.46 g/cm³. The depth-density plots (fig. 2) show density layers, reflecting individual depositional sequences. In general, densities of the basin fill increase with depth from the surface to about 800 ft and then remain constant or even decrease with additional depth, as shown by the plot of average density versus depth (fig. 3) and the plots of individual wells (fig. 2).

Table 7.--Densities of basin fill calculated from borehole-gravity data.

į

-

weil IP-1 weil depth, 1,000 Depth to water, 31	0 feet 16 feet	Well Well dept	l WKF n, 1,302 feet Iter, 365 feet	Well Well depth Depth to wa Well obs at 1,10	MW-2 1, unknown ter, 364 feet tructed 0 feet	well well depth Depth to wa	VEK-2 1, 2,045 feet ter, 440 feet	Well V Well depth, Depth to wal Well obsi at 1,577	/EK-5 /EK-5 1,995 feet er, 345 feet ructed 3 feet	well depth, Well depth, Depth to wal well obst at 1,16	JT-1 1,520 feet er, 215 feet ructed feet
Depth De interval (grai c(feet) centi	ensity ms per ubic imeter)	Depth Interval (feet)	Density (grams per cubic centimeter)	Depth interval (feet)	Density (grams per cubic centimeter)	Depth interval (feet)	Density (grams per cubic centimeter)	Depth interval (feet)	Density (grams per cubic centimeter)	Depth interval (feet)	Density (grams per cubic centimeter)
20- 50 2.	.174	20- 50	1.828	20- 50	1.858	20- 62	1.734	20- 50	2.264	20- 50	1.944
50- 100 1.	.988	50- 75	2.108	50- 99	1.944	62- 110	1.846	50- 100	2.076	50- 92	2.141
150- 195 2	.013 013	100- 144	1.986	140- 180	1 919	160- 226	767.1	150- 195	2.031	137- 172	2.071
195-235 2.	.051	144- 194	2.057	180- 220	2.029	226- 296	1.858	195- 250	2.120	172-214	2.008
235- 275 2.	.142	194- 245	2.017	220- 260	2.035	296- 365	1.930	250- 300	2.194	214- 245	2.005
275- 314 2.	.086	245- 286	2.049	260- 300	2.020	365- 430	1.994 7.055	300- 355	2.209	245- 290	2.041
333- 365 2	157	326- 365	2,219	333- 365	1.943	430- 4/5	2.175	475 475	2.325	335- 384	2.079
365- 400 2.	249	365- 406	2.250	365- 408	2.163	520- 560	2.129	475- 530	2.349	384- 426	2.087
400- 445 2.	.158	406- 420	2.260	408- 460	2.195	560- 625	2.153	530- 590	2.381	426- 468	2.127
445- 489 2.	.122	420- 462	2.196	460- 510	2.168	625- 690	2.182	590- 655	2.361	468- 532	2.304
489- 518 2.	.179	462- 505	2.247	510- 560	2.211	690- 760	2.198	655- 720	2.359	532- 566	2.142
518- 560 2.	222.	505- 548 548- 510	102.2	560- 550	2.160	028 - 028 020 - 028	2.149	760- B20	2.3/1	506- 504 604- 661	2.1/0 2 277
603- 650 2.	122	610- 674	2.195	650- 700	2.245	928-1.012	2.176	830- 900	2.362	651- 690	2.361
650-702 2.	.213	674- 746	2.318	700- 750	2.280	1,012-1,100	2.140	900- 956	2.354	690- 740	2.243
702-760 2.	266	746- 815	2.318	750- 800	2.263	1,100-1,154	2.118	956-1,020	2.368	740- 796	2.355
760- 800 2.	.183	815- 860	2.323	800- 850	2.300	1,154-1,210	2.117	1,020-1,090	2.381	796- 847	2.403
800-850 2.	269	860- 910	2.327	850- 900	2.331	1,210-1,270	2.168	1,090-1,146	2.434	84/- 914	2.391
	216	910- 910	2 201	900- 900 050-1 000	27275	1 275-1 400	2 100	1 206-1 240	2000 0	020 - 1 020	2 412
080 -066	062	1.030-1.088	2 308		0	1.400-1.475	2 154	1 248-1 314	2 286	1.020-1.069	2.402
		1,088-1,145	2.292			1.475-1.550	2.126	1,314-1,360	2.354	1,069-1,118	2.328
		1,145-1,224	2.304			1,550-1,620	2.139	1,360-1,443	2.420	1,118-1,165	2.214
		1,224-1,285	2.301			1,620-1,695	2.140	1,443-1,524	2.461		
				•		1,695-1,765	2.160	1,524-1,573	2.344	•••••	
						1,765-1,840	2.084				
						1,840-1,900	2.124				
	-						2				

DENSITY, IN GRAMS PER CUBIC CENTIMETER

Figure 2.--Densities of basin fill calculated from borehole-gravity data.

Figure 2.--Continued.

.

MEAN DENSITY—Numeral, 7, is number of data points used to calculate the mean density. Half the length of the line is the standard error of the sample mean

Figure 3.--Mean density of the upper 1,200 feet of basin-fill deposits.

Figure 4 compares basin-fill densities measured in this study with depth-density curves given by other investigators. Curve A is from borehole-gravity measurements reported by Healey (1970) for the upper 2,000 ft of basin fill in Hot Creek Valley, Nevada. Curve B, modified from Eaton and others (1972), is based on conventional density-log data from central Arizona. Curve C is based on well-sample data reported by Mattick and others (1973) for Cenozoic deposits in the Colorado River delta. Curves A, B, and C are within the range of densities measured in this study.

Lateral and vertical changes in grain density, porosity, and water saturation, which produce changes in the density of basin fill, are a function of the local geologic history of an area and do not necessarily correlate from basin to basin or even within a basin (i.e., Avra Valley, fig. 2). Lacking knowledge of subsurface density in a given basin in the region, however, curve D of Figure 4 could be used as a first approximation of the depth-density relation.

Figure 4.--Comparison of the density of basin-fill deposits in parts of Arizona and Nevada. Data for curve A from Healey (1970). Curve B modified from Eaton and others (1972, fig. 11). Data for curve C from Mattick and others (1973, fig. 4). Data for curve D from Figure 3 of this study.

POROSITIES OF BASIN-FILL DEPOSITS

Porosity, ϕ , was computed for intervals below the water table from the borehole-gravity density, β , using the equation:

$$\phi = 100(\beta_{\rm G} - \beta)/(\beta_{\rm G} - \beta_{\rm F})$$
(2)

where $\beta_{\rm G}$ is the estimated average grain density and $\beta_{\rm F}$ is the pore-fluid density (g/cm³). Pores were assumed to be filled with water of density 1.00 g/cm³; grain densities of 2.50, 2.65, and 2.80 g/cm³ were used. The porosity calculation is quite sensitive to grain density and error in this parameter is a major source of porosity uncertainty. A grain density of 2.65 g/cm³ probably best represents the basin fill. Grain densities of 2.50 and 2.80 g/cm³ are thought to represent upper and lower limits.

Table 8 lists average porosities, calculated from the borehole-gravity data, of the water-saturated density layers shown in Figure 2. Such data can be used to estimate volumes of ground water in place.

In some instances, porosity also shows a positive correlation with hydraulic conductivity and so is related to potential aquifer production. In Avra Valley (well WKF), for example, preliminary results of a three-dimensional mathematical model of the ground-water system indicate that the density layer between 326 and 674 ft, with a mean porosity of about 26 percent, is from two to four times more permeable than the underlying density layer (674-1,285 ft) with a mean porosity of about 21 percent (D. R. Pool, U.S. Geological Survey, oral commun., 1980).

			Average porosity, percent			
	Depth		Grain density	Grain density	Grain density	
Well	ft	g/cm ³	2.50 g/cm ³	2.65 g/cm ³	2.80 g/cm ³	
IP-1	333–518	2.17	22	29	35	
	518–980	2.23	18	25	32	
MW-2	365-600	2.18	21	28	34	
	600-1,000	2.29	14	22	28	
WKF	326-674	2.22	19	26	32	
	674-1,285	2.31	13	21	27	
VEK-2	475-1,960	2.14	24	31	37	
VEK-5	355-1,206	2.37	9	17	24	
	1,206-1,573	2.36	9	18	24	
BUT-1	214-604	2.11	26	. 33	38	
	604-1,069	2.37	9	17	24	
	1,069-1,165	2.27	15	23	29	

Table 8.--Porosities of basin-fill deposits calculated from borehole-gravity data.

.

.

Vekol Valley is divided into two parts by a buried ridge of consolidated rock (Wilson, 1979, p. 8). The mean porosity of the saturated basin fill is about 18 percent in the northern part (VEK-5) and about 31 percent in the southern part (VEK-2). Aquifer tests and results of a preliminary model of the ground-water system indicate that basin-fill deposits in the southern part are two to four times more permeable than those in the northern part (R. P. Wilson, U.S. Geological Survey, oral commun., 1980).

It must be strongly emphasized that there can be many exceptions to the positive correlation between porosity and hydraulic conductivity. Hydraulic conductivity depends on factors such as grain size and grain-size distribution, pore-throat geometry, fracture density, etc. It is only when such factors remain approximately constant that increasing porosity correlates with increasing capacity of the rock to transmit fluid.

REFERENCES

- Beyer, L. A., 1971, The vertical gradient of gravity in vertical and nearvertical boreholes: Palo Alto, Stanford Univ., Ph.D. thesis, 217 p.
- Davidson, E. S., 1973, Geohydrology and water resources of the Tucson basin, Arizona: U.S. Geological Survey Water-Supply Paper 1939-E, 81 p.
- Eaton, G. P., Peterson, D. L., and Schumann, H. H., 1972, Geophysical, geohydrological, and geochemical reconnaissance of the Luke salt body, central Arizona: U.S. Geological Survey Professional Paper 753, 28 p.
- Eberly, L. D., and Stanley, T. B., Jr., 1978, Cenozoic stratigraphy and geologic history of southwestern Arizona: Geological Society of America Bulletin, v. 89, p. 921-940.
- Fenneman, N. M., 1931, Physiography of Western United States: New York, McGraw-Hill, 534 p.
- Goodell, R. R., and Fay, C. H., 1964, Borehole gravity meter and its application: Geophysics, v. 29, no. 5, p. 774-782.
- Healey, D. L., 1970, Calculated in situ bulk densities from subsurface gravity observations and density logs, Nevada Test Site and Hot Creek Valley, Nye County, Nevada, <u>in</u> Geological Survey research 1970: U.S. Geological Survey Professional Paper 700-B, p. B52-B62.
- Hearst, J. R., and McKague, H. L., 1976, Structure elucidation with borehole gravimetry: Geophysics, v. 41, no. 3, p. 491-505.
- Howell, L. G., Heintz, K. O., and Barry, A., 1966, The development and use of a high-precision downhole gravity meter: Geophysics, v. 31, no. 4, p. 764-772.

- Jageler, A. H., 1976, Improved hydrocarbon reservoir evaluation through use of borehole gravimeter data: Journal Petroleum Technology, v. 28, no. 6, p. 709-718.
- Mattick, R. E., Olmsted, F. H., and Zohdy, A. A. R., 1973, Geophysical studies in the Yuma area, Arizona and California: U.S. Geological Survey Professional Paper 726-D, 36 p.
- McCulloh, T. H., 1966, The promise of precise borehole gravimetery in petroleum exploration and exploitation: U.S. Geological Survey Circular 531, 12 p.
- McCulloh, T. H., LaCoste, L. J. B., Schoellhamer, J. E., and Pampeyan, E. H., 1967, The U.S. Geological Survey-LaCoste and Romberg precise borehole gravimeter system--Instrumentation and support equipment, <u>in</u> Geological Survey research 1967: U.S. Geological Survey Professional Paper 575-D, p. D92-D100.
- McCulloh, T. H., Schoellhamer, J. E., Pampeyan, E. H., and Parks, H. B., 1967, The U.S. Geological Survey-LaCoste and Romberg precise borehole gravimeter system--Test results, <u>in</u> Geological Survey research 1967: U.S. Geological Survey Professional Paper 575-D, p. D101-D112.
- Scarborough, R. B., and Peirce, H. W., 1978, Late Cenozoic basins of Arizona, <u>in</u> New Mexico Geological Society 29th Field Conference, 1978, Guidebook of Land of Cochise, southeastern Arizona: p. 253-259.
- Schmoker, J. W., 1977a, Density variations in a quartz diorite determined from borehole gravity measurements, San Benito County, California: The Log Analyst, v. 18, no. 2, p. 32-38.
- _____ 1977b, A borehole gravity survey to determine density variations in the Devonian shale sequence of Lincoln County, West Virginia: U.S. Dept. of Energy, Morgantown Energy Res. Center MERC/CR-77/7, 15 p.

- _____ 1978, Accuracy of borehole gravity data: Geophysics, v. 43, no. 3, p. 538-542.
- _____ 1979, Interpretation of borehole gravity surveys in a native-sulfur deposit, Culberson County, Texas: Economic Geology, v. 74, p. 1462-1470.
- Smith, N. J., 1950, The case for gravity data from boreholes: Geophysics, v. 15, no. 4, p. 605-636.
- Wilson, E. D., Moore, R. T., and Cooper, J. R., 1969, Geologic map of Arizona: Arizona Bureau of Mines map, scale 1:500,000.
- Wilson, R. P., 1979, Availability of ground water on Federal land near the Ak-Chin Indian Reservation, Arizona--a reconnaissance study: U.S. Geological Survey Open-File Report 79-1165, 36 p.