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a b s t r a c t

In this paper, the problem of exponential passivity analysis for uncertain neural networks
with time-varying delays is considered. By constructing new augmented Lyapunov–
Krasovskii’s functionals and some novel analysis techniques, improved delay-dependent
criteria for checking the exponential passivity of the neural networks are established.
The proposed criteria are represented in terms of linear matrix inequalities (LMIs) which
can be easily solved by various convex optimization algorithms. A numerical example is
included to show the superiority of our results.

� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Recently, neural networks have been successfully applied to various fields such as signal processing, pattern recognition,
fixed-point computations, control and other scientific areas. In the implementation of neural networks, time-delays fre-
quently occur in many practical applications due to the finite switching speed of amplifies and the inherent communication
of neurons [1–3]. It is well known that the existence of time-delay often causes poor performance or instability of the de-
signed networks. Since the applications of delayed neural networks are heavily dependent on the dynamic behavior of
the equilibrium points, there have been many results for asymptotic or exponential stability of neural networks during
the last decade. For examples, see the papers [4–10] and references therein.

On the other hand, in numerous scientific and engineering problems, stability issues are often linked to the theory of dis-
sipative systems with postulates that the energy dissipated inside a dynamic system is less than the energy supplied from
external source [11]. In [12], the concept of dissipativeness was firstly introduced in the field of nonlinear control with the
form of inequality including supply rate and the storage function. Passivity analysis is one of major tools for analyzing sta-
bility of nonlinear system. The majority of passivity theory is that the passive properties of a system can keep the system
internal stability by only using input–output characteristics. In this regard, considerable efforts have been made to delay-
dependent passivity analysis of delayed neural networks [11,13,14] because delay-dependent criteria are generally less con-
servative than delay-independent ones especially when the sizes of time delays are small. Very recently, inspired by the
works of [15–17], exponential passivity analysis was studied for uncertain neural networks with time-varying delays
[18]. It should be noted that if a system satisfies exponential passivity condition, then passivity can be guaranteed to the
system, but the converse do not necessarily hold [15–17]. The exponential passivity condition proposed in [18] was indepen-
dent of the parameter q which provides convergence information about an upper bound of storage function. This may lead to
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conservative results because the parameter q can be determined after obtaining LMI solution variables which satisfy expo-
nential passivity criterion. Therefore, there is still a room for further improvement in this research.

In this paper, the problem of exponential passivity analysis for uncertain neural networks with time-varying delays is
investigated. By use of augmented Lyapunov–Krasovskii’s functionals, delay-dependent sufficient conditions such that the
considered neural networks are exponentially passive are derived in terms of LMIs. Unlike the method of [18], the proposed
conditions are dependent on the convergence information parameter q, which may provide larger feasible region of expo-
nential passivity conditions. Another difference between the work [18] and ours is that our proposed methods do not include
any free weighting matrices which increase computational burden. Instead, by taking more past history information about
activation functions, new augmented Lyapunov–Krasovskii’s functionals are proposed. Through one numerical example, it
will be shown that the proposed criteria with fewer decision variables provides much larger feasible regions of exponential
passivity conditions.

Notation. Rn is the n-dimensional Euclidean space, Rm�n denotes the set of m� n real matrix. k � k refers to the Euclidean
vector norm and the induced matrix norm. For symmetric matrices X and Y , the notation X > Y (respectively, X P Y) means
that the matrix X � Y is positive definite, (respectively, nonnegative). diagf� � �g denotes the block diagonal matrix. I

represents the elements below the main diagonal of a symmetric matrix. X½f ðtÞ� 2 Rm�n means that the elements of matrix
X½f ðtÞ� include the scalar value of f ðtÞ.

2. Problem statements

Consider the following uncertain neural networks with time-varying delays:

_xðtÞ ¼ �ðAþ DAðtÞÞxðtÞ þ ðW0 þ DW0ðtÞÞf ðxðtÞÞ þ ðW1 þ DW1ðtÞÞf ðxðt � hðtÞÞÞ þ uðtÞ;
yðtÞ ¼ f ðxðtÞÞ þ f ðxðt � hðtÞÞÞ þ uðtÞ;

ð1Þ

where xðtÞ ¼ ½x1ðtÞ; . . . ; xnðtÞ�T 2 Rn is the neuron state vector, yðtÞ 2 Rn is the output vector of neuron networks, n denotes
the number of neurons in a neural network, f ðxðtÞÞ ¼ ½f1ðx1ðtÞÞ; . . . ; fnðxnðtÞÞ�T 2 Rn means the neuron activation function,

f ðxðt � hðtÞÞÞ ¼ ½f1ðx1ðt � hðtÞÞÞ; . . . ; fnðxnðt � hðtÞÞÞ�T 2 Rn;uðtÞ 2 Rn is an external input vector to neurons,

A ¼ diagfaig 2 Rn�n is a positive diagonal matrix, W0 ¼ ðw0
ijÞn�n 2 Rn�n and W1 ¼ w1

ij

� �
n�n
2 Rn�n are the interconnection

matrices representing the weight coefficients of the neurons, and DAðtÞ;DW0ðtÞ, and DW1ðtÞ are the uncertainties of system
matrices of the form

½DAðtÞ DW0ðtÞ DW1ðtÞ � ¼ DFðtÞ½E1 E2 E3 �; ð2Þ

where the time-varying nonlinear function FðtÞ satisfies

FTðtÞFðtÞ 6 I; 8 t P 0: ð3Þ

The delay, hðtÞ, is a time-varying continuous function that satisfies

0 6 hðtÞ 6 hU ;
_hðtÞ 6 hD; ð4Þ

where hU is a positive scalar and hD is any constant one.
The activation functions, fiðxiðtÞÞ; i ¼ 1; . . . ;n, are assumed to be nondecreasing, bounded and globally Lipschitz; that is,

k�i 6
fiðniÞ � fjðnjÞ

ni � nj
6 kþi ; ni; nj 2 R; ni – nj; i; j ¼ 1; . . . ;n; ð5Þ

where kþi and k�i are constant values.
From Eq. (5), fjð�Þ satisfies the following condition:

k�j 6
fjðnjÞ
nj
6 kþj ; 8 nj – 0; j ¼ 1; . . . ;n; ð6Þ

which is equivalent to

fjðnjÞ � k�j nj

h i
fjðnjÞ � kþj nj

h i
6 0; f jð0Þ ¼ 0; j ¼ 1; . . . ;n: ð7Þ

System (1) can be written as:

_xðtÞ ¼ �AxðtÞ þW0f ðxðtÞÞ þW1f ðxðt � hðtÞÞÞ þ DpðtÞ þ uðtÞ;

pðtÞ ¼ FðtÞqðtÞ;

qðtÞ ¼ �E1xðtÞ þ E2f ðxðtÞÞ þ E3f ðxðt � hðtÞÞÞ;
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yðtÞ ¼ f ðxðtÞÞ þ f ðxðt � hðtÞÞÞ þ uðtÞ: ð8Þ

The objective of this paper is to investigate delay-dependent exponential passivity conditions for system (8) which will be
conducted in 3.

Before deriving our main results, the following definition, and lemmas will be stated.

Definition 1 [18]. The neural networks are said to be exponentially passive from input uðtÞ to yðtÞ, if there exists an
exponential Lyapunov function (or, called the exponential storage function) V, and a constant q > 0 such that for all uðtÞ, all
initial conditions xðt0Þ, all t P t0, the following inequality holds:

_VðxðtÞÞ þ qVðxðtÞÞ 6 2yTðtÞuðtÞ; t P t0; ð9Þ

where _VðxðtÞÞ denotes the total derivative of VðxðtÞÞ along the state trajectories of xðtÞ of system (1).

Remark 1. As mentioned in [18], the reason called as exponential Lyapunov function in 1 is that if inequality (9), then the
following inequality can be obtained

eqtVðxðtÞÞ 6 eqt0 Vðxðt0ÞÞ þ 2
Z t

t0

eqsyTðsÞuðsÞds: ð10Þ

The parameter q provides an exponential convergence information about an upper bound of exponential Lyapunov function.
If q increases, then tighter bound about Lyapunov function than the results in case of q ¼ 0 can be provided.

Lemma 1 [19]. For a positive matrix M, the following inequality holds:

�ða� bÞ
Z a

b

_xTðsÞM _xðsÞds 6
xðaÞ
xðbÞ

� �T �M M
H �M

� �
xðaÞ
xðbÞ

� �
: ð11Þ

Lemma 2 [20]. Let f 2 Rn;U ¼ UT 2 Rn�n, and B 2 Rm�n such that rankðBÞ < n. Then, the following statements are equivalent:

(1) fTUf < 0;Bf ¼ 0; f – 0,
(2) ðB?ÞTUB? < 0, where B? is a right orthogonal complement of B.

3. Main results

In this section, new exponential passivity criteria for neural networks with time-varying delays (8) will be proposed. For
simplicity of matrix representation, eiði ¼ 1; . . . ;14Þ 2 R14n�n are defined as block entry matrices with an identity matrix in
ith block and zero matrices in elsewhere. For example, eT

3 ¼ ½0 0 I 0 0 0 0 0 0 0 0 0 0 0�. The notations for some matrices
are defined as:

fTðtÞ ¼ xTðtÞ xTðt � hðtÞÞ xT t � hUð Þ _xTðtÞ _xTðt � hUÞ
Z t

t�hðtÞ
xðsÞds

Z t�hðtÞ

t�hU

xðsÞds f TðxðtÞÞ f Tðxðt � hðtÞÞÞ f Tðxðt � hUÞÞ
"
Z t

t�hðtÞ
f TðxðsÞÞds

Z t�hðtÞ

t�hU

f TðxðsÞÞds uTðtÞ pTðtÞ
#
;

gTðtÞ ¼ ½ xTðtÞ _xTðtÞ f TðxðtÞÞ �;

C ¼ ½�A 0 0 �I 0 0 0 W0 W1 0 0 0 I D �;

P1 ¼ ½ e1 e3 e6 þ e7 e11 þ e12 �; P2 ¼ ½ e4 e5 e1 � e3 e8 � e10 �;

P3 ¼ ½ e1 e4 e8 �; P4 ¼ ½ e3 e5 e10 �;

X½hðtÞ� ¼ �2þ h�1
U hðtÞ

� �
e6G11eT

6 þ 2e6G12eT
1 � 2e6G12eT

2 þ e1G22eT
1 � 2e1G22eT

2 þ e2G22eT
2 þ 2e6G13eT

11 þ 2e1G23eT
11

�
�2e2G23eT

11 þ e11G33eT
11

�
þ �1� h�1

U hðtÞ
� �

e7G11eT
7 þ 2e7G12eT

2 � 2e7G12eT
3 þ e2G22eT

2 � 2e2G22eT
3 þ e3G22eT

3

�
þ2e7G13eT

12 þ 2e2G23eT
12 � 2e3G23eT

12 þ e12G33eT
12

�
:

W ¼ e1G11eT
1 þ 2e1G12eT

4 þ e4G22eT
4 þ 2e1G13eT

8 þ 2e4G23eT
8 þ e8G33e8;
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U ¼ �2e1KmH1KpeT
1 þ e1ðKm þ KpÞH1eT

8 þ e8H1ðKm þ KpÞeT
1 � 2e8H1eT

8 � 2e2KmH2KpeT
2 þ e2ðKm þ KpÞH2eT

9

þ e9H2ðKm þ KpÞeT
2 � 2e9H2eT

9 � 2e3KmH3KpeT
3 þ e3ðKm þ KpÞH3eT

10 þ e10H3ðKm þ KpÞeT
3 � 2e10H3eT

10;

N ¼ �2e8eT
13 � 2e9eT

13 � e13eT
13 þ ee1ET

1E1eT
1 � 2ee1ET

1E2eT
8;�2ee1ET

1E3eT
9 þ ee8ET

2E2eT
8 þ 2ee8ET

2E3eT
9

þ ee9ET
3E3eT

9 � ee14eT
14;

R ¼ P1RPT
2 þP2R

TPT
1 þ qP1RPT

1 þP3NPT
3 �P4 e�qhUN

� 	
PT

4 þ h2
UWþUþ N: ð12Þ

Firstly, when hD is unknown, the following theorem is considered.

Theorem 1. For given scalars hU > 0 and q > 0 , diagonal matrices Kp ¼ diag kþ1 ; . . . ; kþn

 �

and Km ¼ diag k�1 ; . . . ; k�n

 �

, the
system (1) is exponentially passive for 0 6 hðtÞ 6 hU if there exist positive scalar e, positive diagonal matrices
Hj ¼ diagfhj1; . . . ;hjngðj ¼ 1;2;3Þ, positive definite matrices R ¼ ½Rij�4�4 2 R4n�4n;N ¼ ½Nij�3�3 2 R3n�3n;G ¼ ½Gij�3�3 2 R3n�3n,
satisfying the following LMIs:

ðC?ÞTfRþ e�qhU X½hðtÞ¼0�gC? < 0; ð13Þ
ðC?ÞTfRþ e�qhU X½hðtÞ¼hU �gC

? < 0; ð14Þ

where X½hðtÞ�;R;C are defined in (12), and C? is the right orthogonal complement of C.

Proof. For positive definite matrices R;N , and G, let us take the Lyapunov–Krasovskii’s functional candidate:

V ¼
X3

i¼1

Vi; ð15Þ

where

V1 ¼

xðtÞ
xðt � hUÞR t
t�hU

xðsÞdsR t
t�hU

f ðxðsÞÞds

2666664

3777775

T

R

xðtÞ
xðt � hUÞR t
t�hU

xðsÞdsR t
t�hU

f ðxðsÞÞds

2666664

3777775;

V2 ¼
Z t

t�hU

eqðs�tÞgTðsÞNgðsÞds;

V3 ¼ hU

Z t

t�hU

Z t

s
eqðu�tÞgTðuÞGgðuÞduds: ð16Þ

Calculation of the time-derivative of _V1 yields

_V1 ¼ 2

xðtÞ

xðt � hUÞR t
t�hðtÞ xðsÞdsþ

R t�hðtÞ
t�hU

xðsÞdsR t
t�hðtÞ f ðxðsÞÞdsþ

R t�hðtÞ
t�hU

f ðxðsÞÞds

26666664

37777775

T

R

_xðtÞ
_xðt � hUÞ

xðtÞ � xðt � hUÞ

f ðxðtÞÞ � f ðxðt � hUÞÞ

2666664

3777775 ¼ 2fTðtÞP1RPT
2fðtÞ: ð17Þ

The time-derivative of V2 can now be obtained as

_V2 ¼
d
dt

Z t

t�hU

eqðs�tÞgTðsÞNgðsÞds
� 

¼ �qe�qt
Z t

t�hU

eqsgTðsÞNgðsÞdsþ e�qtfgTðtÞðeqtN ÞgðtÞ � gTðt � hUÞTðeqðt�hU ÞN Þgðt � hUÞg

¼ �qV2 þ gTðtÞNgðtÞ � gTðt � hUÞðe�qhUN ÞgTðt � hUÞ ¼ �qV2 þ fTðtÞ P3NPT
3 �P4ðe�qhUN ÞPT

4

� �
fðtÞ: ð18Þ
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Calculation of _V3 leads to

_V3 ¼
d
dt

hUe�qt
Z t

t�hU

Z t

s
equgTðuÞGgðuÞduds

� 
¼ �qV3 þ e�qt d

dt
hU

Z t

t�hU

Z t

s
equgTðuÞGgðuÞduds

� 
¼ �qV3 þ e�qt h2

Ueqt
� �

gTðtÞGgðtÞ � hU

Z t

t�hU

eqsgTðsÞGgðsÞds
� 

6 �qV3 þ h2
Ug

TðtÞGgðtÞ � e�qhU hU

Z t

t�hU

gTðsÞGgðsÞds
� �

; ð19Þ

where �eqðs�tÞ
6 �e�qhU was used in Eq. (19).

Here, by the use of Lemma 1 ant the method of [21], the integral term �hU
R t

t�hU
gTðsÞGgðsÞds in (19) can be estimated as

�hU

Z t

t�hU

gTðsÞGgðsÞds ¼ �hU

Z t

t�hðtÞ
gTðsÞGgðsÞds� hU

Z t�hðtÞ

t�hU

gTðsÞGgðsÞds

¼ �ðhU � hðtÞÞ
Z t

t�hðtÞ
gTðsÞGgðsÞds� hðtÞ

Z t

t�hðtÞ
gTðsÞGgðsÞds� ðhU � hðtÞÞ

Z t�hðtÞ

t�hU

gTðsÞGgðsÞds

� hðtÞ
Z t�hðtÞ

t�hU

gTðsÞGgðsÞds 6 �h�1
U ðhU � hðtÞÞhðtÞ

Z t

t�hðtÞ
gTðsÞGgðsÞds� hðtÞ

Z t

t�hðtÞ
gTðsÞGgðsÞds

� ðhU � hðtÞÞ
Z t�hðtÞ

t�hU

gTðsÞGgðsÞds� h�1
U hðtÞðhU � hðtÞÞ

Z t�hðtÞ

t�hU

gTðsÞGgðsÞds

6 ð�2þ h�1
U hðtÞÞ

Z t

t�hðtÞ
gðsÞds

 !T

G

Z t

t�hðtÞ
gðsÞds

 !

þ �1� h�1
U hðtÞ

� � Z t�hðtÞ

t�hU

gðsÞds

 !T

G

Z t�hðtÞ

t�hU

gðsÞds

 !

¼ �2þ h�1
U hðtÞ

� � R t
t�hðtÞ xðsÞds

xðtÞ � xðt � hðtÞÞR t
t�hðtÞ f ðxðsÞÞds

2664
3775

T

G

R t
t�hðtÞ xðsÞds

xðtÞ � xðt � hðtÞÞR t
t�hðtÞ f ðxðsÞÞds

2664
3775þ �1� h�1

U hðtÞ
� �

R t�hðtÞ
t�hU

xðsÞds

xðt � hðtÞÞ � xðt � hUÞR t�hðtÞ
t�hU

f ðxðsÞÞds

2664
3775

T

G

R t�hðtÞ
t�hU

xðsÞds

xðt � hðtÞÞ � xðt � hUÞR t�hðtÞ
t�hU

f ðxðsÞÞds

2664
3775 ¼ fTðtÞX½hðtÞ�fðtÞ; ð20Þ

where X½hðtÞ� was defined in (12).
From Eq. (20), an upper bound of _V3 can be

_V3 6 �qV3 þ fTðtÞ h2
UWþ e�qhU X½hðtÞ�

h i
fðtÞ: ð21Þ

Here it should be noted that Eq. (6) means

fjðxjðtÞÞ � k�j xjðtÞ
h i

fjðxjðtÞÞ � kþj xjðtÞ
h i

6 0 ðj ¼ 1; . . . ;nÞ; ð22Þ

fjðxjðt � hðtÞÞÞ � k�j xjðt � hðtÞÞ
h i

fjðxjðt � hðtÞÞÞ � kþj xjðt � hðtÞÞ
h i

6 0 ðj ¼ 1; . . . ;nÞ; ð23Þ

fjðxjðt � hUÞÞ � k�j xjðt � hUÞ
h i

fjðxjðt � hUÞÞ � kþj xjðt � hUÞ
h i

6 0 ðj ¼ 1; . . . ;nÞ: ð24Þ

From three inequalities Eqs. (22)–(24) for any positive diagonal matrices H1 ¼ diagfh1i; . . . ;h1ng;H2 ¼ diagfh2i; . . . ;h2ng, and
H3 ¼ diagfh3i; . . . ;h3ng, the following inequality holds

0 6 �2
Xn

j¼1

h1j fjðxjðtÞÞ � k�j xjðtÞ
h i

fjðxjðtÞÞ � kþj xjðtÞ
h i

� 2
Xn

j¼1

h2j fjðxjðt � hðtÞÞÞ � k�j xjðt � hðtÞÞ
h i

fjðxjðt � hðtÞÞÞ � kþj xjðt � hðtÞÞ
h i

� 2
Xn

j¼1

h3j fjðxjðt � hUÞÞ � k�j xjðt � hUÞ
h i

fjðxjðt � hUÞÞ � kþj xjðt � hUÞ
h i

¼ fTðtÞUfðtÞ; ð25Þ

where U½hðtÞ� was defined in Eq. (12).
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From Eqs. (2) and (8), the inequality pTðtÞpðtÞ 6 qTðtÞqðtÞ can be obtained. Then, there exists a positive scalar e satisfying
the following inequality

e½qTðtÞqðtÞ � pTðtÞpðtÞ�P 0: ð26Þ

From Eqs. (16)–(26) and by application of S-procedure [22], an upper bound of _V þ qV � 2yTðtÞuðtÞ can be

_V þ qV � 2yTðtÞuðtÞ 6 fTðtÞfRþ e�qhU X½hðtÞ�gfðtÞ; ð27Þ

where R and X½hðtÞ� are defined in (12).
It should be noted that the elements of X½hðtÞ� are affinely dependent on hðtÞ. By Lemma 2, fTðtÞfRþX½hðtÞ�gfðtÞ < 0 with

0 ¼ CfðtÞ is equivalent to ðC?ÞTfRþX½hðtÞ�gC? < 0. Therefore, if LMIs Eqs. (13) and (14) hold, then ðC?ÞTfRþX½hðtÞ�gC? < 0
satisfies for 0 6 hðtÞ 6 hU , which means

_V þ qV < 2yTðtÞuðtÞ: ð28Þ

This implies that the neural networks (1) is exponentially passive in the sense of Definition 1. This completes our proof. �

Theorem 1 does not have any constraints on time-derivative of hðtÞ in Eq. (1). However, in case that the constraint
_hðtÞ 6 hD is considered, then the following theorem is obtained.

Theorem 2. For given scalars hU > 0;q > 0 and hD, diagonal matrices Kp ¼ diag kþ1 ; . . . ; kþn

 �

and Km ¼ diag k�1 ; . . . ; k�n

 �

, the
system (1) is exponentially passive for 0 6 hðtÞ 6 hU and _hðtÞ 6 hD if there exist positive scalar e, positive diagonal matrices
Hj ¼ diagfhj1; . . . ;hjngðj ¼ 1;2;3Þ, positive definite matrices R ¼ Rij

� �
4�4 2 R4n�4n;N ¼ ½Nij�3�3 2 R3n�3n;G ¼ ½Gij�3�3 2 R3n�3n;

Q ¼ ½Q ij�2�2 2 R2n�2n satisfying the following LMIs:

ðC?ÞTfRþ e�qhU X½hðtÞ¼0� þ !½hðtÞ¼0�gC? < 0; ð29Þ

ðC?ÞTfRþ e�qhU X½hðtÞ¼hU � þ !½hðtÞ¼hU �gC
? < 0; ð30Þ

G11 � qeqhU h�1
U Q 11 G12 G13 � qeqhU h�1

U Q 12

H G22 G23

H H G33 � qeqhU h�1
U Q 22

264
375 > 0; ð31Þ

where X½hðtÞ�;R, and C are defined in (12), C? is the right orthogonal complement of C, and

!½hðtÞ� ¼ ð�2þ h�1
U hðtÞ e6 qh�1

U Q 11

� �
eT

6 þ 2e6 qh�1
U Q 12

� �
eT

11 þ e11 qh�1
U Q 22

� �
eT

11

h i
þ e1Q 11e1 þ 2e1Q 12eT

8 þ e8Q 22eT
8

� ð1� hDÞ e2Q 11e2 þ 2e2Q 12eT
9 þ e9Q 22eT

9

� �
:

Proof. For R;N ;G, and Q, the following Lyapunov–Krasovskii’s functional candidate is considered:

V ¼
X4

i¼1

Vi; ð32Þ

where

V4 ¼
Z t

t�hðtÞ

xðsÞ
f ðxðsÞÞ

� �T

Q
xðsÞ

f ðxðsÞÞ

� �
ds ð33Þ

and Viði ¼ 1;2;3Þ are the same one as in Eq. (12).
Calculation of _V4 leads to

_V4 6
xðtÞ

f ðxðtÞÞ

� �T

Q
xðtÞ

f ðxðtÞÞ

� �
� ð1� hDÞ

xðt � hðtÞÞ
f ðxðt � hðtÞÞÞ

� �T

Q
xðt � hðtÞÞ

f ðxðt � hðtÞÞÞ

� �
: ð34Þ

From Eq. (19), the term qV4 can be incorporated in upper bound of _V3 as follows

_V3 þ qV4 6 �qV3 þ h2
Ug

TðtÞGgðtÞ � e�qhU hU

Z t

t�hU

gTðsÞGgðsÞds
� �

þ qV4

¼ �qV3 þ h2
Ug

TðtÞGgðtÞ � e�qhU hU

Z t

t�hðtÞ
gTðsÞeGgðsÞdsþ hU

Z t�hðtÞ

t�hU

gTðsÞGgðsÞds

 !
; ð35Þ

where
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eG ¼ G11 � qeqhU h�1
U Q 11 G12 G13 � qeqhU h�1

U Q 12

H G22 G23

H H G33 � qeqhU h�1
U Q 22

264
375: ð36Þ

Therefore, if the inequality (31) holds, then by similar method in the proof of Theorem 1, it can be concluded that the con-
dition _V þ qV � 2yTðtÞuðtÞ < 0 holds under the inequality Eqs. (29) and (30). This completes our proof. �

Remark 2. Unlike the method of [18], the proposed method in Theorem 1 and 2 does not have any free variables. Instead of
no using free variables, the augmented vector fðtÞ has integrating terms of activation function f ðxðtÞÞ which areR t

t�hðtÞ f ðxðsÞÞds and
R t�hðtÞ

t�hU
f ðxðsÞÞds. By these terms, more past history of f ðxðtÞÞ can be utilized in Theorem 1 and 2. Further-

more, the total decision variables of Theorem 1 and 2 are 17n2 þ 8nþ 1 and 19n2 þ 9nþ 1, respectively. However, the deci-
sion variables of Theorem 2 in [18] was 24n2 þ 7nþ 3. In next section, it will be shown that our proposed criteria with fewer
decision variables provide larger feasible regions than that of [18] by comparison of the parameter q.

Remark 3. Another remarkable difference between the method developed in [18] and ours is that our proposed criteria in
Theorem 1 and 2 are dependent on q, which may provide larger feasible regions of exponential passivity condition. The fea-
sibility of parameter q in [18] is determined by utilizing the calculated LMI variables as shown in Eq. (17) of [18]. However,
the results presented in this paper can check the exponential passivity condition of system (1) for a given q.

4. Numerical example

Consider the uncertain neural networks (1) with the parameters [18]:

A ¼ diagf4;7g; W0 ¼
0 �0:5

0:5 0

� �
; W1 ¼

�1 �1
�1 �2

� �
;

Kp ¼ diagf1;1g; Km ¼ 0; hU ¼ 0:16; hD ¼ 1:1: ð37Þ

The following uncertainties is considered as in [18]:

DAðtÞ ¼
0:02 sinðtÞ 0:04 sinðtÞ
0:03 sinðtÞ 0:06 sinðtÞ

� �
;

DW0ðtÞ ¼
0:02 sinðtÞ 0:04 sinðtÞ
0:02 sinðtÞ 0:04 sinðtÞ

� �
;

DW1ðtÞ ¼
0:03 sinðtÞ 0:06 sinðtÞ
0:02 sinðtÞ 0:04 sinðtÞ

� �
: ð38Þ

From (38), it can be chosen as

D ¼ I; E1 ¼
0:02 0:04
0:03 0:06

� �
; E2 ¼

0:02 0:04
0:02 0:04

� �
; E3 ¼

0:03 0:06
0:02 0:04

� �
: ð39Þ

It is shown in [18] that the system (1) with above parameters is exponential passive. q ¼ 0:003 was presented by use of LMI
solutions in [18]. However, by application of Theorem 2 to system (1), it can be concluded that the system with the param-
eters (37) is exponential passive for q ¼ 5:2864. Also, it should be noted that the decision variables of Theorem 2 for this
example is 95, whilst the number of variable in [18] was 113. Hence, Theorem 2 provides larger feasible region of exponen-
tial passive condition with fewer decision variables than the method of [18].

For various values of hD when hU ¼ 0:16, the obtained maximum values of q are shown in Table 1.

5. Conclusion

In this paper, two exponential passivity criteria for uncertain neural networks with time-varying delays have been pro-
posed in the form of delay-dependent LMIs. In Theorem 1, when the information of time-varying delays is unknown, the

Table 1
Maximum value of q with different hD and hU ¼ 0:16 (Example 1).

hD 0.1 0.5 0.9 unknown

Theorem 1 - - - 5.2864
Theorem 2 5.4753 5.3518 5.2864 -
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exponential passivity criterion without any free-weighting matrices has been proposed by use of Lemma 2 and the proposed
augmented Lyapunov–Krasovskii’ functional. When the information of time-varying delays is available, the exponential
passivity criterion was also proposed in Theorem 2 by introduction of augmented Lyapunov–Krasovskii functional V4. The
proposed two criteria are dependent on convergence parameter, q. Through one numerical example, the improvement of
the proposed passivity criteria has been successfully verified.
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