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Abstract

Packet filters are security devices that connect mul-
tiple packet-based networks and provide access con-
trol between them. The security policy of a packet filter
is specified according to a set of rules which describes
what packet types should be allowed from one network
to another. However, the improved network security
that packet filters provide comes with a cost. The rules
of a packet filter are commonly evaluated sequentially,
and so long rule sets result in significantly increased
look-up latency. Also long rule sets typically occur at
high-bandwidth network interfaces such as on border
routers, where fast packet processing is essential.

This paper presents a novel technique for repre-
senting the rule sets of packet filters, founded on the
concept that a rule set can be expressed as a single
Boolean function. When these functions are repre-
sented as decision diagrams, this rule set representa-
tion provides a constant upper bound on packet filter-
ing latency, independent of the rule set length. Fur-
thermore, by increasing the degree of the decision di-
agram, faster look-up times can be achieved, at the
expense of memory. Empirical research examines this
space-time trade-off to provide a packet filtering tech-
nique that is both fast and reasonable in memory us-
age.

1 Introduction

Packet filtering is a common and popular approach
to enhancing network security due to its simplicity and
efficiency [7]. Packet filters are typically deployed be-
tween multiple IP networks and provide network secu-
rity by inspecting the network packets passing through
them and deciding whether they should be discarded
or allowed to continue to their destination.

These decisions are made according to a set of
rules, where each rule specifies a selection criterion
and an action. The selection criterion describes the
condition under which a packet matches the rule (com-
mon criterion fields include the packet’s protocol type,
source and destination addresses, as well as source
and destination ports if applicable). The action deter-

mines whether a matching packet should be accepted
or dropped. The complete set of rules is known as an
access list (or access control list). The first rule match-
ing a packet determines the action to be taken.

1.1 Traditional Packet Filtering

Due to the semantics of access lists described
above, traditional packet filters perform look-up by
evaluating the rules in an access list sequentially un-
til a matching rule is found. In general, no context
is kept, so this look-up process must be repeated for
every packet [7]. Thus the latency incurred by this se-
quential look-up is proportional to the length of the ac-
cess list. While this is not a problem for short access
lists, long access lists – lists with several hundred rules
are common in border routers – can cause significant
system degradation. Also, since the order that the rules
appear in the list is significant, a network administra-
tor cannot necessarily place all commonly-occurring
rules at the top of the list.

1.2 Alternative Approaches

Most of the related work on packet filtering has
been concerned with packet classification, which is the
problem of finding the least cost rule that matches a
packet. Packet filtering is a specific case of classifi-
cation where the cost of the rule is its position in the
access list.

Several suggested techniques take advantage of
the structure typically found in access lists to nar-
row the search space, thereby improving performance.
RFC [3], cross-producting [9] and the tuple space
search [8] are examples of this. The problem with
such approaches in general is that they cannot guar-
antee good worst case performance, either in terms of
look-up time or in terms of memory.

Control flow graphs (CFGs) [6] are acyclic graphs
whose nodes represent Boolean predicates (such as
proto = ICMP) and edges represent control transfers.
CFGs have been used successfully in packet classifi-
cation applications but no theoretical results have been
published in terms of their time or space complexity.



success due to the inherent speed that hardware pro-
vides, but more importantly due to bit-parallelism that
allows considerable amounts of computation to be exe-
cuted in parallel. The approach presented in this paper
is software-based, although some work has been done
on FPGA implementations.

In general, packet classification algorithms trade off
space against time. Traditional sequential look-up has
linear time complexity with respect to the number of
rules, but is extremely efficient in space requirements.
On the other extreme, by precomputing the matching
rule for all 2S possible inputs in a table, constant look-
up times are possible, but the memory usage is expo-
nential. Thus the real challenge lies in finding a solu-
tion that offers a good space-time trade-off.

1.3 Research Contribution

This paper presents an alternative approach to ac-
cess list representation that provides fast look-up with
reasonable memory requirements. Some features of
this approach include:

� Look-up times independent of the access list
length.

� A fixed upper bound on look-up times for a given
access list, and access list format.

� The ability to reduce average and worst case
look-up times at the expense of memory. (This
provides the ability to optimise for speed depend-
ing on available memory on a per-system basis.)

The key insight of our data structure is that an ac-
cess list is essentially a Boolean condition, which de-
scribes whether packets should be accepted or not. A
representation of the access list as a Boolean expres-
sion is independent of the original ordering of rules
and comes with convenient ways of representing and
manipulating access lists. In particular, standard data
structures for representing Boolean expressions pro-
vide compact and computationally efficient means of
manipulating the access list. We propose a data struc-
ture called an N-ary decision diagram (NDD), a gener-
alisation of the well-known binary decision diagram.
An NDD is a directed, acyclic graph; the nodes rep-
resent the variables in the expression (the bits in the
header we are using for filtering) and the edges the
decisions. By varying the degree of the nodes in
the structure, different space-time trade-offs can be
achieved. In general, this approach offers a good trade-
off and is capable of fast look-up with modest space
requirements.

1.4 Structure of the Paper

The remainder of the paper proceeds as follows.
Section 2 introduces NDDs, after which Section 3 ex-
plains how they can be used to represent access lists

is then empirically compared to traditional sequential
filtering in Section 4, and this is followed by a discus-
sion of the results in Section 5. Finally, conclusions
and some ideas for future work are presented in Sec-
tion 6.

2 N-ary Decision Diagrams

N-ary decision diagrams (as used in this research)
are directed, acyclic graphs with a unique root and two
terminal nodes. Each non-terminal node represents
N = log2B Boolean variables, and is of degree B
(each edge is labelled by the B possible values the N
variables can take). The terminal nodes of the graph
are the Boolean constants 0 and 1. In this research N
is also termed the squashing factor (since the greater
the value of N , the more ‘squashed’ the paths from the
root to a terminal).

In the special case where B = 2 (and N =
1), NDDs are reduced to binary decision diagrams
(BDDs) – well-known for their ability to represent
Boolean functions compactly and efficiently [2].

This research adds the requirements that the NDDs
must be reduced – contain no redundancy in the form
of duplicate nodes and redundant tests – and ordered
– have the variables appear in the same order on any
path from root to leaf. Thus the variables of an NDD
obey a partial ordering. To illustrate, Figure 1 gives
two NDDs for the Boolean function (u_v)^(w_x)^
(y _ z): The first depicts the graph for N = 1 with the
ordering u � v � w � x � y � z and the second has
N = 2 with the ordering fu; vg � fw; xg � fy; zg:
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Figure 1. Two NDDs for the same function with
N = 1 and N = 2.

An NDD node has a branching factor of B = 2N ,
meaning that NDD nodes grow exponentially in size
with the number of variables at the nodes. This is
somewhat compensated for by the fact that as N in-
creases, the number of nodes decreases, but never-



Therefore, for this technique to be usable, it is impor-
tant that the original BDD created is fairly compact.
In general, a BDD can be quite sensitive to its variable
ordering and this can mean the difference between a
BDD that is quadratic and one that is exponential in
size for a given Boolean function [2]. This is not a
problem in our application, as initial experimentation
determined a number of simple variable orderings that
display good, robust behaviour over a range of syn-
thetic and real access lists. It is one of the contributions
of this research that both the BDD and NDD represen-
tations of real access lists are well-behaved.

3 NDD-Based Packet Filtering

The strength of NDD-based packet filtering is due
to its flexible and compact access list representation.
The Boolean expression representation of an access
list is very compact, and has efficient algorithms for
manipulation.

The approach we propose begins by converting the
access list into its corresponding Boolean expression.
It then converts the expression into an NDD, and fi-
nally uses the NDD to perform the look-up for packet
filtering. These steps are discussed in turn in the fol-
lowing sections, after which theoretical bounds on the
look-up time are presented.

3.1 Converting an Access List into a Boolean
Expression

A Boolean expression representation of an access
list is a Boolean expression that describes what pack-
ets that are accepted by the access list look like. This
expression preserves the ordering semantics of the ac-
cess list. Each bit in the packet header that is rele-
vant for filtering is represented by one variable in the
Boolean expression, and the two filtering actions re-
ject and accept correspond to the Boolean constants 0
and 1 respectively. Thus, packets are accepted by the
access list if and only if they satisfy the Boolean ex-
pression. The algorithm used to convert an access list
into a Boolean expression was proposed by Hazelhurst
et. al. [4] in the context of analysing access lists. In
this paper we generalise by using a more sophisticated
data structure, applying the technique to fast look-up.
Due to space constraints, the algorithms for perform-
ing the conversion have been omitted.

3.2 Conversion into an NDD

Given a Boolean expression, an NDD for the ex-
pression can by built by first constructing a BDD us-
ing a standard BDD package, and then ‘squashing’ the
BDD to the desired factor. We have also explored con-
structing the NDD directly, but there seems little ad-

ages.

An NDD is constructed from a BDD as follows.
First a root node is created representing the first N
variables in the original BDD’s variable ordering. For
each possible assignment of values to the N variables,
B NDD children nodes are created corresponding to
the BDD nodes reached by following the appropriate
edges in the BDD given by the values of the variables.
Of course, some of these children nodes may be the
same. This process is repeated until all paths in the
original BDD have been processed.

An Example

This example serves to illustrate what information ac-
cess lists typically contain, as well as what NDD rep-
resentations of access lists look like. Figure 2 depicts
an example access list using the Cisco access list for-
mat. (Although the syntax for access list specification
differs between packet filtering implementations, their
semantics and functionality tend to remain similar.)
This access list shows some sample rules that could
be applied to inbound traffic at the external interface of
the 146.141.0.0/16 network. It allows all inbound mail
connections and all ICMP traffic that does not claim to
originate from the internal network (the first rule is a
simple check for spoofed packets). An NDD corre-
sponding to the Boolean representation of the access
list is shown in Figure 3.

deny ip 146.141.0.0/16 146.141.0.0/16
permit tcp any gt 1023 146.141.0.0/16 eq 25
permit icmp any 146.141.0.0/16
deny ip any any

Figure 2. A simple access list.

3.3 Performing Look-Up on an NDD

Assume that the squashing factor of the NDD is N ,
and hence the branching factor is B = 2N . Once an
NDD representing an access list has been constructed,
performing look-up for a given packet is a simple mat-
ter of testing whether the interpretation of the vari-
ables given by that packet satisfies the NDD, as fol-
lows. Starting at the root of the NDD, the algorithm
checks the values of the variables corresponding to that
node by inspecting the values of the bits in the given
packet. These N values gives a number j in the range
0 : : : B�1. The j-th edge is followed to the next node.
This process is repeated until one of the terminal nodes
is reached, at which point a decision can be made –
accept if the terminal node reached is labelled 1, and
reject if it is labelled 0.
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Figure 3. An NDD for the access list in Figure 2 with N = 2.

3.4 Theoretical Bounds on Look-Up Perfor-
mance

The key parameter of NDD-based filtering is the
squashing factor, N . Increasing the number of vari-
ables at each node results in faster look-up times with
an increase in memory usage. This is due to the fol-
lowing factors:

� A variable is inspected at most once during look-
up. This is due to the fact that the variables in
the NDD are ordered, and so cannot appear more
than once on any path from root to terminal node.

� Retrieving the value of a single bit in memory re-
quires the same amount of time as retrieving the
value of multiple bits in the same word in mem-
ory. Retrieving the value of a single bit in mem-
ory is an expensive task requiring masking and
bitwise operations. Retrieving the values of mul-
tiple bits can be performed using the same steps
with a different mask.

� The number of variables (T ) in the NDD is fixed
for a given access list. Since each variable in
the Boolean expression (and hence NDD) corre-
sponds to a bit of filtering interest in the packet
header, the number of variables cannot exceed the
number of bits in the packet header used for filter-
ing. Furthermore, T is independent of the access
list length.

� If the squashing factor is N and there are T bits
being used for filtering, then the longest path in
the graph is (T=N ).

To perform look-up for each incoming packet, the
NDD is traversed from the root to one of the terminal

nodes. Assuming that each iteration of the look-up
algorithm takes a constant amount of time irrespective
of the squashing factor, the time taken to perform look-
up is proportional to the length of the path traversed by
the look-up algorithm.

3.4.1 Worst Case Look-Up Performance

The worst case occurs when the look-up algorithm
is forced down the longest path in the NDD. Thus,
for a given access list, the worst case look-up time
is bounded above by a constant value proportional to
(T=N) and is independent of the access list length.
Also, the worst case look-up time is halved each time
the squashing factor is doubled.

3.4.2 Average Case Look-Up Performance

The average case look-up is important in that it gives
a more accurate measure of expected performance.
Unfortunately, average case analysis of NDD-based
packet filtering is difficult to perform accurately be-
cause, in practice, it depends on many external factors,
some of which may be impossible to measure. There-
fore, the analysis presented in this paper is performed
empirically with respect to the actual traffic flow that
the corresponding access lists have encountered.

4 Experimental Results

This section presents an empirical evaluation of
NDD-based filtering. Memory usage is dealt with first
in Section 4.1, after which Section 4.2 evaluates look-
up performance by comparing NDD-based look-up to
sequential look-up. An NDD-based packet filter has



to deal with network packet handling. All experiments
were conducted on a 1 GHz processor with 512 MB of
memory.

4.1 Memory Usage

Memory usage was evaluated in two ways. Firstly,
worst case behaviour was elicited by generating “ran-
dom” access lists. Reducing the structure in the ac-
cess list makes it less likely that common subexpres-
sions can be shared in the NDD and increases the node
count. Secondly, NDDs were also created from real
access lists obtained from university departments and
an Internet service provider, in order to determine what
memory requirements to expect in practice. Since ac-
cess lists are generally well-structured one can expect
the memory requirements of real access lists to be sig-
nificantly less than those of random lists.

Access lists were generated randomly by generat-
ing random, valid values for the fields source address,
destination address, protocol, source port, destination
port and filtering action, in increasing lengths of 10
rules.

Figure 4 shows the NDD sizes in KBytes, for
squashing factors 1, 2, 4 and 8. While the number
of nodes actually decreases as the squashing factor in-
creases, the size of an NDD node in the current im-
plementation is 8 + (4B) = 8 + 2N+2 bytes and the
overall memory requirements increase. The exception
is a squashing factor of 2 where the overall memory
usage decreases relative to a factor of 1. (Factor 16
NDDs were also created for lists up to 160 rules. An
NDD for a random list of 160 rules took approximately
a minute to generate, so the process was discontinued.)
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Figure 4. Actual sizes of NDD representations
of random access lists of increasing lengths.

Plotting the logarithm of each dataset in Figure 4
produces logarithmic graphs which establishes the
growth as polynomial for all squashing factors, rather
than exponential. Thus the size of NDD representa-
tions of access lists grows polynomially in the worst

Table 1 shows the sizes of NDDs created from real
access lists in relation to the list lengths. The last
row of the table gives the NDD sizes corresponding to
the random access lists of length 160, for comparison.
The reduction in memory usage due to the structure in
real access lists is evident. Nevertheless, this approach
handles unstructured access lists extremely well – a
characteristic that many alternative approaches lack.

Length Factor 1 Factor 2 Factor 4 Factor 8 Factor 16
15 2112 1584 2304 14448 2360400
21 6416 4800 7056 45408 5506224
24 5424 4032 5616 35088 5506224
28 9472 7128 10656 73272 9176352
50 7232 5472 8136 55728 6292680
81 17664 13296 19440 132096 17303064

139 23744 17712 26064 179568 23070408
160 38848 29112 42696 275544 37750920
160 170175 152398 246473 1787465 72306250

Table 1. Actual sizes in bytes of NDD represen-
tations of access lists of various lengths.

4.2 Look-Up Performance

To give a comparison of real performance, the
longest real access list (of 160 rules) was used to cre-
ate NDDs with squashing factors 1, 2, 4, 8, and 16.
Then, using packet traces collected from the access
list’s original inbound network (totalling 30000 pack-
ets), the time taken to perform look-up on each packet
was recorded. These were compared to the times
taken to perform look-up sequentially, on a packet fil-
ter specifically implemented for this purpose, also us-
ing the iptables framework.

The cumulative frequency distributions of look-up
times for all the NDDs and the sequential look-up are
presented in Figure 5. Furthermore, summary infor-
mation including the average look-up time, 75th and
95th percentiles, and average number of loop iterations
for each filter is given in Table 2.

The reduction in look-up times with increasing
squashing factor is clearly visible. The averages in Ta-
ble 2 indicate improvement factors of approximately
1.5 when the squashing factor is doubled. This is con-
sistent with the theory which states that the longest
path length in an NDD is halved when the squashing
factor is doubled. This has the effect of reducing the
worst case look-up time by a factor of two, and reduc-
ing the average look-up time by somewhat less than
that since more bits may be inspected than necessary.

The discrepancy in the improvement factor between
the factor 8 NDD and the factor 16 NDD is most likely
due to caching behaviour. NDDs with squashing fac-
tors less than or equal to 8 are reasonably sized and it is
extremely likely that a large percentage of these struc-
tures remain in the cache for future look-up. When
squashed by a factor of 16, the resulting NDD is much
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Figure 5. Cumulative frequency distribution of
look-up times on packets generated from traces.

Filter Mean (ns) 75th % 95th % Iters
Sequential 4132.42 4869 6583 N/A
Factor 1 4011.98 3723 8283 55.93
Factor 2 2622.44 2751 5237 28.77
Factor 4 1754.90 1852 3149 14.86
Factor 8 1251.25 1298 2099 8.04
Factor 16 1173.03 1273 1881 5.29

Table 2. Summary information of look-up times
on packets generated from traces.

larger and this reduces the ability of the majority of the
graph to remain cached for subsequent use.

5 Discussion

In the worst case, look-up latency on an NDD is
proportional to the number of bits filtered on, scaled
appropriately by the squashing factor. The worst case
look-up has time complexity O(T=N), where T is the
number of bits being filtered on. This places an upper
bound on all look-up times and also results in fairly
constant look-up times on average, independent of the
access list length.

The space complexity of NDDs is polynomial in the
list length in the worst case, but tends to perform much
better on real access lists since the common subexpres-
sions in the rules result in the sharing of nodes in the
NDD. Overall, results suggest that NDD representa-
tions of access lists are completely viable for NDDs
with squashing factor N � 8 for typical access list
lengths.

6 Conclusions and Future Work

This paper has examined the use of NDDs for
the representation of access lists for the purposes of
fast look-up, and has presented some empirical and
theoretical results. NDD-based packet filtering has

approaches including constant look-up bounds for a
given access list, no dependence on rule ordering and
very little dependence on rule structure.

The independence of rule ordering allows access
lists to be optimised for correctness rather than speed,
without sacrificing performance – a current problem
with traditional packet filters. Furthermore, NDD-
based packet filtering offers a good space-time trade-
off even when the access lists are poorly structured.

Many alternative approaches can offer good perfor-
mance, but most cannot offer performance guarantees.
NDD-based filtering behaves well in the worst case,
and in the average case offers fast look-up with very
reasonable memory requirements.

There are some interesting directions for future
work. Perhaps the most interesting is to extend NDDs
to support packet classification more generally, rather
than just filtering. This involves mapping packets to a
finite set of values instead of just two. Multi-terminal
binary decision diagrams (MTBDDs), extensions of
BDDs that support multiple terminal nodes, could per-
haps be used as a starting point for creating multi-
terminal N-ary decision diagrams (MTNDDs). The
time and space complexity of this would need to be
examined.
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