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It is usually very hard, both for designers and users, to reason reliably about user interfaces. This
article shows that ‘push button’ and ‘point and click’ user interfaces are algebraic structures. Users
effectively do algebra when they interact, and therefore we can be precise about some important
design issues and issues of usability. Matrix algebra, in particular, is useful for explicit calculation
and for proof of various user interface properties.

With matrix algebra, we are able to undertake with ease unusally thorough reviews of real user
interfaces: this article examines a mobile phone, a handheld calculator and a digital multimeter
as case studies, and draws general conclusions about the approach and its relevance to design.

Categories and Subject Descriptors: B.8.2 [Performance and Reliability]: Performance Analysis
and Design Aids; D.2.2 [Software Engineering]: Design Tools and Techniques—User interfaces;
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“It is no paradox to say that in our most theoretical moods we may be
nearest to our most practical applications.” A. N. Whitehead

1. INTRODUCTION

User interface design is difficult, and in particular it is very hard to reason
through the meanings of all the things a user can do, in all their many combi-
nations. Typically, real designs are not completely worked out and, as a result,
very often user interfaces have quirky features that interact in awkward ways.
Detailed and precise critiques of user interfaces are rare, and very little knowl-
edge in design generalizes beyond specific case studies. This article addresses
these problems by showing how matrix algebra can be applied to user interface
design. The article explains the theory in detail and shows it applied to three
real case studies.
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Push button devices are ubiquitous: mobile phones, many walk-up-and-
use devices (such as ticket machines and chocolate vending machines),
photocopiers, cameras, and so on are all examples. Many safety critical sys-
tems rely on push button user interfaces, and they can be found in aircraft
flight decks, medical care units, cars, and nuclear power stations, to name but
a few. Large parts of desktop graphical interfaces are effectively push button
devices: menus, buttons and dialog boxes all behave as simple push button de-
vices, though buttons are pressed via a mouse rather than directly by a finger.
Touch screens turn displays into literal push button devices, and are used, for
example, in many public walk-up-and-use systems. The World Wide Web is the
largest example by far of any push button interface. Interaction with all these
systems can be represented using matrix algebra.

Matrices have three very important properties. Matrices are standard math-
ematical objects, with a history going back to the nineteenth century.1 This ar-
ticle is not presenting and developing yet another notation and approach, but
it shows how an established and well-defined technique can be applied fruit-
fully to serious user interface design issues. Second, matrices are very easy
to calculate with, so designers can work out user interface issues very easily,
and practical design tools can be built. Finally, matrix algebra has structure
and properties: designers and HCI specialists can use matrix algebra to reason
about what is possible and not possible in very general ways. This article gives
many examples.

There is a significant mathematical theory behind matrices, and it is drawing
on this established and standard theory that is one of the major advantages of
the approach.

Matrices are not necessarily device-based: there is no intrinsic ‘system’ or
‘cognitive’ bias. Matrix operations model actions that occur when user and sys-
tem synchronize in what they are doing. Thus a matrix represents as much the
system responding to a button push as the user pressing the button. Matrices
can represent a system doing electronics to make things happen, or they can
represent the user thinking about how things happen. The algebra does not
‘look’ towards the system nor towards the user. As used in this article, it simply
says what is possible given the definitions; it says how humans and devices
interact.

Readers who want a review of matrices should refer to the many text-
books available on matrix algebra (linear algebra); Broyden’s [1975] Basic
Matrices is one that emphasises partitions, a technique that is used ex-
tensively later in this article; Liebler’s [2003] more modern textbook, Ba-
sic Matrix Algebra with Algorithms and Applications, is very accessible and
covers a much wider range of matrix algebra. Readers who want a brief
but mathematically formal background should refer to the Appendix of this
article.

1The Chinese solved equations using matrices as far back as 200 BC, but the recognition of matrices
as abstract mathematical structures came much later.
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2. CONTRIBUTIONS TO HCI

There are many theories in HCI that predict user performance. Fitt’s Law can
be used to estimate mouse movement times; Hick’s Law can be used to estimate
decision times. Recent theories extend and develop these basic ideas into sys-
tems, such as ACT/R [Anderson and Lebiere 1998], that are psychologically so-
phisticated models. When suitably set up, these models can make predictions
about user performance and behavior. Models can either be used in design,
on the assumption that the models produce valid results, or they can be used
in research, to improve the validity of the assumptions. ACT/R is only one of
many approaches; it happens to be rather flexible and complex—many simpler
approaches, both complementary and indeed rival have been suggested, includ-
ing CCT [Kieras and Polson 1985]; UAN [Hartson et al. 1990]; GOMS [Card et
al. 1983]; PUM [Young et al. 1989]; IL [Blandford and Young 1996] and so on
(see Ivory and Hearst [2001] for a broad survey of evaluation tools). All these
approaches have in common that they are psychologically plausible, and to that
extent they can be used to calculate how users interact, for instance to estimate
times to complete tasks or to calculate likely behavior. Some HCI theories, such
as information foraging [Pirolli and Card 1998], have a weaker base in psychol-
ogy, but their aim, too, is to make predictions of user behavior. Of course, for the
models to provide useful insights, they must not only be psychologically valid
but also based on accurate and reasonable models of the interactive system
itself.

Unlike psychologically-based approaches, whose use requires considerable
expertise, the only idea behind this article is the application of standard math-
ematics. The ideas can be implemented by anyone, either by hand, writing
programs or, most conveniently, by using any of the widely available mathe-
matical tools, such as Matlab, Axiom or Mathematica (see Section 9.3). Matrix
algebra is well documented and can easily be implemented in any interactive
programming environment or prototyping system. User interfaces can be built
out of matrix algebra straight forwardly, and they can be run, for prototyping,
production purposes, or for evaluation purposes.

An important contribution this article makes is that it shows how interac-
tion with real systems can be analyzed and modelled rigorously, and theorems
proved. One may uncover problems in a user interface design that other meth-
ods, particularly ones driven from psychological realism, would miss.

The method is simple. However, I emphasise that throughout this article
we will see ‘inside’ matrices. This gives a misleading impression of complexity,
and of the work required to use matrices effectively. The contents of a matrix
and how one calculates with it can be handed over to programs; the inside
details are irrelvant to designers—and, of course, inside a typical interactive
program the matrices will be implemented as ‘black boxes’ in program code,
rather than as an explicit arrays of numbers as used for clarity throughout this
article. For this article, however, it is important to see that the approach works
and that the calculations are valid. The danger is that this gives a misleading
impression of complexity (because the calculations are explicit), whereas it is
intended to give an accurate impression how the approach works, and how from
a mathematical point of view it is standard and routine. Conversely, because we
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have presented relatively small examples, emphasising manageable exposition
despite the explicit calculations, there is an opposite danger that the approach
seems only able to handle trivial examples!

2.1 Methodological Issues

This article makes a theoretical contribution to HCI. One might consider that
there are two broad areas of theoretical contributions in HCI, which aspire,
respectively, to psychological or computational validity. This article makes com-
putational contributions, and its validity does not depend on doing empirical
experiments but rather on its theoretical foundations. The foundations are stan-
dard mathematics and computer science, plus a theorem (see the Appendix).
The theorem, once stated, seems very obvious but it appears to be a new insight,
certainly for its applications to HCI and to user interface design.

The issue, then, for matrix algebra is not its psychological validity but
whether the theoretical structure provides new insight into HCI. I claim it
does, because it provides an unusual and revealing degree of precision when
handling real interactive devices and their user interfaces.

For example, one might do ordinary empirical studies of calculator use and
see how users perform. But, as I will show, there are some reasonable tasks
that cannot be achieved in any sensible way—and this result is provable.

It may be established empirically whether and to what extent such impos-
sible tasks are an issue for users under certain circumstances, but for safety
critical devices, say electronic diving aids for divers, or instrumentation in air-
craft flight decks, the ability or inability to perform tasks is a safety issue,
regardless of whether users in empiricial experiments encounter the problems.
Thus the theoretical framework raises empirical questions or raises risk issues,
both of which can be addressed because the theory provides a framework where
the issues can be discovered, defined and explored.

This article provides a whole variety of nontrivial design insights, both gen-
eral approaches and those related to specific interactive products: almost all of
the results are new, and some are surprising. The real contribution, though, is
the simple and general method by which these results are obtained.

In proposing a new theory, we have the problem of showing its ability to scale
to interesting levels of complexity. The narrative of this article necessarily cov-
ers simple examples, but I wish to imply that bigger issues can be addressed.
My approach has been to start with three real devices. Being real devices, any
reader of this article can go and check that I have understood them,2 repre-
sented them faithfully in the theory, and obtained non-trivial insights. The
three examples are very different, and I have handled them in different ways
to illustrate the flexibility and generality of the approach. Also, I do every-
thing with standard textbook mathematics; I have not introduced parameters
or fudge factors; and I have not shied away from examining the real features
and properties of the example systems.

A danger of this approach is that its accuracy relies on the accuracy of reverse
engineering; the manufacturers of these devices did not provide their formal

2Device definitions and other material is available at http://www.uclic.ucl.ac.uk/harold.
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specifications—I had to reconstruct them. While this is a weakness, any reader
can check my results against a real device, its user manual (if adequate), or
by entering into correspondence with the manufacturer. Of course, different
manufacturers make different products, and in a sense it is less interesting to
have a faithful model of a specific proprietary device than to have a model of
a generic device of the right level of complexity; by reverse engineering, even
allowing for errors, I have certainly achieved the latter goal.

An alternative might have been to build one or more new systems, and exhibit
the theory used constructively. Here, there would be no doubt that the systems
were accurately specified—though the article would have to devote some space
to providing the specifications of these new devices (which the reader cannot
obtain as physical devices). But the worse danger would be that I might not
have implemented certain awkward features at all: I would then be inaccurately
claiming the theory handled, say, ‘mobile phones’ when in fact it only handled
the certain sort of mobile phone that I was able to implement. It would then
be very hard to tell the difference between what I had done and what I should
have done.

For this article, I have chosen relatively cheap handheld devices. Handheld
devices are typically used for specific tasks. Again, this makes both repli-
cation of this work and its exposition easier. However, further work might
wish to consider similar sorts of user interface in different contexts, for ex-
ample, in cars—to radios, audio systems, navigation, air conditioning, secu-
rity systems, cruise control and so on. Such user interfaces are ubiquitous,
and typically over-complex and under-specified. Computer-controlled instru-
ments contribute increasingly to driver satisfaction and comfort. The drivers
have a primary task which is not using the interface (and from which they
should not be distracted), so user interface complexities are more of an is-
sue. Cars are high-value items with long lifetimes, and remain on the mar-
ket much longer than handheld devices. They are more similar, and used by
many more people. Even small contributions to user interface design in this
domain would have a significant impact on safety and satisfaction for many
people.

2.2 The Theory Proposed

The theory is that users do algebra, in particular (for the large class of systems
considered), linear algebra. Linear algebra happens to be very easy to calcu-
late with, so this is valuable for design and research. However, it is obviously
contentious to say that users do algebra! We are not claiming that when people
interact with systems that they engage in cognitive processes equivalent to cer-
tain specific sorts of calculation (such as matrix multiplication), but that they
and the system they interact with obey the relevant laws of algebra. Indeed,
if users were involved in requirements specification, they may have expressed
views that are equivalent to algebraic axioms.

Users do algebra in much the same way as a user putting an apple onto a
pile of apples “adds one” even if they do not do any sums in their heads. Users
of apple piles will be familiar with all sorts of properties (e.g., putting an apple
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in, then removing an apple leaves the same quantity; or, you cannot remove
more apples from a pile than are in it; and so on) regardless of whether anyone
does the calculations. Likewise, users will be (or could well be) familiar with
the results of matrix algebra even if they do not do the calculations. Only a
philosophical nominalist could disagree [Brown 1999] with this position.

The brain is a symbolic, neural, molecular, quantum computer of some sort
and there is no evidence that users think about their actions in anything re-
motely like calculating in a linear algebra. Yet we can still make tentative
cognitive claims. There is no known easy way to invert a matrix. Therefore if
a user interface effectively involves reasoning about inverses, it is practically
certain that users will find it difficult to use reliably. Or: A user’s task can be
expressed as a matrix; thus performing a task/action mapping (going from the
task description to how it is to be achieved) is equivalent to factoring the matrix
with the specific matrices available at the user interface. Factorization is not
easy however it is done (although there are special cases)—we can conclude that
whatever users do psychologically, if it is equivalent to factorization, it cannot
be easy (even if they have tricks and short cuts). Indeed, we know that users
keep track of very little in their heads [Payne 1991], so users are likely to find
these operations harder, not easier than the ‘raw’ algebra suggests.

What we do know about psychological processes suggests that the sort of
algebraic theory discussed in this article is never going to predict preferences,
motivation, pleasure, learning or human errors—these are the concerns of psy-
chological theories. On the other hand, we can say that some things will be
impossible and some things will be difficult; moreover, with algebra it is rou-
tine to find such issues and very easy to do so at a very early stage in design. We
can also determine that some things are possible, and if some of those are dan-
gerous or costly the designer may wish to draw on psychological theory to make
them less likely to occur given probable user behavior. We can make approx-
imate predictions on timings; button matrices typically correspond one-to-one
with user actions, so fewer matrices means there are quicker solutions, and
more matrices mean user actions must take longer: we expect a correlation,
which could of course be improved by using a keystroke level or other timing
model.

2.3 From Finite State Machines to Matrix Algebra

Finite state machines (FSMs) are a basic formalism for interactive systems.
Finite state machines have had a long history in user interface design, starting
with Newman [1969] and Parnas [1964] in the 1960s, and reaching a height
of interest in user interface management systems (UIMS) work [Wasserman
1985]; see Dix et al. [1998] for a textbook introduction with applications of FSMs
in HCI. FSMs can handle parallelism, non-determinism, and so forth (many
parallel reactive programming languages compile into FSM implementations
[Magee and Kramer 1999]).

Now the concerns of HCI have moved on [Myers 2002], beyond any explicit
concern with FSMs (indeed, many elementary references in HCI dismiss FSMs,
e.g., Dix et al. [1998])—a continual, technology-driven pressure, but one that
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Fig. 1. Transition diagrams for alternative designs of a simple two-state system. Note that the
right hand diagram does not specify what repeated user actions do: illustrating how easy it is to
draw diagrams that look sensible, but which have conceptual errors. If the right hand diagram
was used as a specification for programmers, the system implemented from it might do unexpected
and undesirable things (e.g., the diagram does not specify what doing ‘off ’ does when the system is
already off).

tends to leave open unfinished theoretical business. However, FSMs are for-
mally isomorphic to matrix algebra, and they can be used as a familiar intro-
duction to the matrix algebra approach this article takes. (The Appendix to
this article formalizes the isomorphism and discusses non-deterministic FSMs,
which, however, are not used in the body of this article. The formal basis is not
required to follow the article.)

FSMs are often drawn as transition diagrams. A transition diagram consists
of circles and arrows connecting the circles; the circles represent states, and the
arrows represent transitions between states. Typically both the circles and the
arrows are labelled with names. A finite state machine is in one state at a time,
represented by being ‘in’ one circle. When an action occurs, the corresponding
arrow from that state is followed, taking the machine to its next state. Figure 1
illustrates two very simple transition diagrams, showing alternative designs of
a simple system.

A FSM labels transitions from a finite set. Labels might be button names,
ON , OFF , REWIND , say, corresponding to button names in the user interface.
In our matrix representation, each transition label denotes a matrix, B1, B2,
B3 . . . , or in general Bi. Buttons and matrices are not the same thing: one is a
physical feature of a device, or possibly the user’s conception of the effect of the
action; the other is a mathematical object. Nevertheless, except where confusion
might arise in this article, it is convenient to use button names for matrices
interchangeably. In particular this saves us inventing mathematical names for
symbolic buttons, such as ∨ . (See the Appendix for a formal perspective on this
convenience.)

The state of the FSM can be represented by a vector, s. When a transition
occurs, the FSM goes into a new state. If the transition is represented by the
matrix Bi, the new state is s times Bi, written sBi. Thus finding the next state
amounts to a matrix multiplication.

If we consider states to be labelled 1 to N , then a convenient representation
of states is by unit vectors, es, a vector of 0s of length N , with a 1 at the position
corresponding to the state number s; under this representation, the matrices
B will be N × N matrices of 0s and 1s (and with certain further interesting
properties we do not need to explore here). Now the matrix multiplication es Bi =
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et means “doing action i in state s puts the system in state t,” and several
multiplications such as es Bi Bj = et means “doing action i then action j starting
from state s puts the system in state t.”

Instead of having to draw diagrams to reason about FSMs, we now do matrix
algebra. However big a FSM is, the formulas representing it are the same size:
“sB1 B2” could equally represent the state after two transitions on a small 4 state
FSM or on a large 10 000 state FSM. The size of the FSM and its details are
completely hidden by the algebra. Moreover, since any matrix multiplication
such as B1 B2 gives us another matrix, a single matrix, say M = B1 B2, can
represent any number of user actions: “sM ” might represent the state after
two button presses, or more.

Matrix algebra can represent task/action mappings too; suppose, as a simple
case, that a user wants to get to some state t from an initial state s. How can
they do this? However as ordinary users they go about working out how to
solve their task, or even using trial and error, their thinking is equivalent to
solving the algebraic problem of finding a matrix M (possibly not the entire
matrix) such that sM = t, and then finding a factorization of M as a product
of matrices B1, B2, and so on, that are available as actions to them, such as
M = B1 B2, meaning in this case that two actions are sufficient: sB1 B2 = t.

Putting the user’s task into matrices may make it sound more complicated
than one might like to believe, but all it is doing is spelling out exactly what is
happening. Besides, most user interfaces are not easy to use, and the superficial
simplicity of ignoring details is deceptive.

3. INTRODUCTORY EXAMPLES

This section provides some simple motivating examples.

3.1 A Simple Two Button, Two State System

Imagine a light bulb controlled by a pushbutton switch. Pressing the switch
alternately turns the light on or off. This is a really simple system, but suffi-
cient to clearly illustrate how button matrices work. Figure 1a presents a state
transition diagram for this system.

There are two states for this system: the bulb is on or off. We can represent
the states as a vector, with on as

(
1 0

)
and off as

(
0 1

)
. The pushbutton action

push is defined by a 2× 2 matrix:

PUSH =
(

0 1
1 0

)
Such simple 2×2 matrices hardly look worth using in practice. Writing them

down seems as hard as informally examining what are obvious issues. In fact,
all elementary introductions to matrices have the same problem.3 The point

3You might first learn how to do two variable simultaneous equations, but next learning how to use
2×2 matrices to solve them further requires learning matrix multiplication, inverses and so on, and
the effort does not seem to be adequately rewarded, since you could more easily solve the equation
without matrices! However if you ever came across four, five or more variable equations—which
you rarely do in introductory work—the advantages become stark.
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is that the matrix principles, while very obvious with such a simple system,
also apply to arbitrarily complex systems, where thinking systematically about
interaction would be impractical. With a complex system, the matrix calcula-
tions would be done by a program or some other design or analysis tool: the
designer or user would not need to see any details. For complex systems, the
user interface properties are unlikely to be obvious except by doing the matrix
calculations. For large, complex systems, matrices promise rigour and clarity
without overwhelming detail.

Doing the matrix multiplication we can check that if the light is off then
pushing the button makes the light go on:

off PUSH = (
0 1

) ( 0 1
1 0

)
= (

1 0
)

= on

Similarly, we can show that pushing the button when the light is on puts it
off, since on PUSH = off.

It seems that pushing the button twice does nothing, as certainly when the
light is off, one push puts it on, and a second puts it off. We could also check
that pressing PUSH when it is on puts it off, and pressing it again puts it on,
so we are back where we started. Rather than do these detailed calculations,
which in general could be very tedious as we would normally expect to have far
more than just two states, we can find out what a double press of push means
in any state:

PUSH PUSH =
(

0 1
1 0

)(
0 1
1 0

)
=
(

1 0
0 1

)
= I

Thus the matrix multiplication PUSH times PUSH is equal to the identity
matrix I . We can write this in either of the following ways:

PUSH PUSH = I

PUSH
2 = I

Anything multiplied by I is unchanged—a basic law of matrices. In other
words, doing PUSH then PUSH does nothing. Thus we now know without doing
any calculations on each state, that PUSH PUSH leaves the system in the same
state, for every starting state.

From our analysis so far, we have established that a user can change the
state of the system or leave it unchanged, even if they changed it. This is a
special case of undo: if a user switched the light on we know that a second push
would switch it off and vice versa.

In general a user may not know what state a system is in, so to do some
useful things with it, user actions must have predictable effects. For example,
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if a lamp has failed (so we do not know whether the electricity is on or off), we
must switch the system off to ensure we can replace the lamp safely, to avoid
any risk of electrocution.

Let us examine this task in detail now. A quite general state of the system
is s. The only operation the user can do is press the pushbutton, but they can
choose how may times to press it; in general the user may press the button
n times—that’s all they can do. It would be nice if we could find an n and then
tell the user that if they want to do a “replace bulb safely” task, they should
just press PUSH n times. If n turns out to be big, it would be advisable for the
design to be such that the solution to the task be “press PUSH at least n times”
(in other words, so larger n is also acceptable) in case the user misses one or
loses count.

We will see below (Section 4) that for a Nokia mobile phone, the answer to
a similar question is n = 4. Nokia, noticing that, provided a feature so that
holding the button down continuously is equivalent to pressing it four times,
thus providing a simpler way for a user to solve the task.

Back to the light system. If we want to know how to get the light off we need
to find an n (in fact an n ≥ 0) such that

PUSH
n =

(
0 1
0 1

)
since this matrix is the only matrix that guarantees the light will be off whatever
state it operates on. Note that the user interface does not provide the matrix
directly; instead we are trying to find some sequence of available operations
that combine to be equal to the matrix describing the user’s task. For this
particular system, the only sequences of user operations are pressing PUSH ,
and these sequences of operations can only differ in their length. Thus we
have a simple problem, merely to find n rather than a complicated sequence of
matrices. It is not difficult to prove rigorously that there is no solution to this
equation.

For this system, the user cannot put it in the off state (we could also show it is
impossible to put it in any particular state) without knowing what state it is in
to start with. Clearly we have a system design inappropriate for an application
where safe replacement of failed lamps is an issue. If a design requirement was
that a user should be able to do this, then the user interface must be changed,
for instance to a two-position switch.

A two-position switch gives the user two actions: ON and OFF .

ON =
(

1 0
1 0

)
OFF =

(
0 1
0 1

)
We can check that OFF works as expected whatever state the system is in:

off OFF = (
0 1

) ( 0 1
0 1

)
ACM Transactions on Computer-Human Interaction, Vol. 11, No. 2, June 2004.
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= (
0 1

)
= off

on OFF = (
1 0

) ( 0 1
0 1

)
= (

0 1
)

= off

Thus, regardless of the initial state, pressing OFF results in the lamp being
off (we now have a solution for the task). The explicit check, above, that this
is so seemed tedious because it involved as many matrix calculations as there
are states. Could we reason better from a diagram? Unfortunately, simple as
Figure 1b seems, it presents a state transition diagram that only resembles this
system (the diagram omits some transitions that are defined in the two matri-
ces) and we cannot reason reliably from it. We cannot even tell, just by looking
at the diagram, that it is faulty! For larger systems, we certainly need a more
reliable approach than informal reasoning based on pictures, and certainly we
will need techniques that are effective when there are many more, even mil-
lions, of states (and diagrams for such systems would be so complex that they
would be useless). In general, a better approach must be more abstract.

Here there are just two user actions (and in general there will be many fewer
actions than there are states): we have just ON and OFF . Let us consider the
user doing anything then ON . There are only two possibilities: the user’s action
can follow either an earlier ON or an earlier OFF :

ON ON =
(

1 0
1 0

)(
1 0
1 0

)
=
(

1 0
1 0

)
= ON

OFF ON =
(

0 1
0 1

)(
1 0
1 0

)
=
(

1 0
1 0

)
= ON

These are calculations purely on the matrices, not on the states. (Coinciden-
tally, and somewhat misleadingly, for this simple system there happen to be as
many user actions as there are states, and we ended up calling them with the
same names to confound the confusion!) The point is that we are now using the
algebra to deal with things the user does—actions—and this is generally much
easier to do than to look at the states.

In the two cases above the result is equivalent to pressing a single ON . We
could do the same calculations where the second action is OFF , and we would
find that if there are two actions and the second is OFF the effect is the same as
a single OFF . This system is closed, meaning that any combination of actions
is equivalent to a single user action. Closure is an important user interface
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property (it may not be relevant for some designs or tasks): it guarantees any-
thing the user can do can always be done by a single action.

This system is not only closed, but furthermore any sequence of actions is
equivalent to the last action the user does. Here is a sketch of the proof. Con-
sider an arbitrarily long sequence S of user actions A1 A2 . . . An for this system.
(S = A1 A2 . . . An is just a matrix multiplication.) We have calculated that the
system is closed for any two operations: thus (as we confirmed above by explicit
calculation) A1 A2 must be equivalent to either ON or OFF , and in fact it is equal
to A2. But this followed by A3 will be either ON or OFF , so that followed by A4
will be too . . . it’s not hard to follow the argument through and conclude that
S = An. Put in other words, after any sequence of user actions, the state of
the system is fully determined by the last user action. Specifically if the last
thing the user does is switch off, whatever happened earlier, the system will be
off; and if the last thing the user does is switch on, whatever happened earlier,
the system will be on. We now have a system that makes solving the task of
switching off safely and reliably even when not knowing the state (or any of
the previous history of use of the system) very easy. For the scenario we were
imagining, this design will be an easier and a much safer system.

None of this is particularly surprising, because we are very familiar with
interactive systems that behave like this. And the two designs we considered
were very simple systems. What, then, have we achieved? I showed that various
system designs have usability properties that can be expressed and explored
in matrix algebra. I showed we can do explicit calculations, and that the calcu-
lations give us what we expect, although more rigorously. We can do algebraic
reasoning, in a way that does not need to know or depend on the number of
states involved.

3.2 Simple Abstract Matrix Examples

Having seen what matrices can do for small concrete systems, we now explore
some usability properties of systems in general—where, because of their com-
plexity, we typically do not know beforehand what to expect.

Matrix multiplication does not commute: if A and B are two matrices, the
two products AB and BA are generally different. This means that pressing
button A then B is generally different from pressing B then A. The last system
was non-commutative, since for it ON OFF 6= OFF ON . This is not a deep insight,
but it is a short step from this sort of reasoning to understanding undo and
error recovery, as we shall see below.

In a direct manipulation interface, a user might click on this or click on that
in either order. It is important that the end result is the same in either case.
Or in a pushbutton user interface there might be an array of buttons, which
the user should be able to press in any order that they choose. Both cases are
examples of systems where we do want the corresponding matrices to commute.
We should therefore either check Click 1 Click 2 = Click 2 Click 1 by proof or
direct calculation with matrices, or we should design the interface to ensure
the matrices have the right form to commute. Just as allowing a user to do
operations in any order makes the interface easier to use [Thimbleby 2001],
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the analysis of user interface design in this case becomes much easier since
commutativity permits mathematical simplifications.

Suppose we want a design where pressing the button OFF is a shortcut for
the two presses STOP OFF , for instance as might be relevant to the operation
of a DVD player. The DVD might have two basic modes: playing and stopped.
If you stop the DVD then switch it off, this is the same as just switching it
off—where it is also stopped. What can we deduce? Let S and O be the corre-
sponding matrices; in principle we could ask the DVD manufacturer for them.
The simple calculation SO = O will check the claim, and it checks it under all
possible circumstances—the matrices O and S contain all the information for
all possible states. This simple equation puts some constraints on what S and
O may be. For instance, assuming S is non trivial, we conclude that O is not
invertible. We prove this by contradiction.

Assume SO = O, and assume O is invertible. If so, there is a matrix O−1 that
is the inverse of O. Follow both sides by this inverse: SOO−1 = OO−1 which can
be simplified to SI = I , as OO−1 = I . Since SI = S we conclude that S = I .
Hence S is the identity matrix, and STOP does nothing. This is a contradiction,
and we conclude that if O is a short cut then it cannot be invertible. If it is not
invertible, then in general a user will not be able to undo the effect of OFF .

What not being invertible means, more precisely, is that the user cannot
return to a previous state only knowing what they have just done. They also
need to know what state the device was in before the operation and be able to
solve the problem of pressing the right buttons to reach that state.4

To summarize, if we had the three seemingly innocuous design requirements:

(1) STOP does something (such as switching the playing off!)
(2) OFF is a shortcut for STOP OFF

(3) OFF is undoable or invertible (e.g., so ON , would get the DVD back to what-
ever mode it was in before switching off—that is, where ON = OFF

−1
).

Then we have just proved that they are inconsistent—if we insist on them, we
end up building a DVD player that must have bugs and must have a user manual
that is misleading too. Better, to avoid inconsistency, the designer must forego
one or more of the requirements (here, the third requirement is obviously too
strict), or the designer can relax the requirements from being universal (fully
true over all states) to partial requirements (required only in certain states).
I discuss partial theorems below, in Section 4.2.

We now turn from these illustrative examples to some real case studies.

4. EXAMPLE 1: THE NOKIA 5110 MOBILE PHONE

The menu system of the Nokia 5110 mobile phone can be represented as a FSM
of 188 states, with buttons ∧ , ∨ , C , and NAVI (the Nokia context sensitive but-
ton: the meaning is changed according to the small screen display). In this

4Or the user needs to know an algorithm to find an undo: for instance, to be able to recognize the
previous state, and be able to enumerate every state, would be sufficient—but hardly reasonable
except on trivial devices.
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