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Wind-Tunnel Interference Effects on Delta Wing Aerodynamics
Computational Fluid Dynamics Investigation

M. R. Allan,∗ K. J. Badcock,† G. N. Barakos,‡ and B. E. Richards§

University of Glasgow, Glasgow, Scotland G12 8QQ, United Kingdom

Reynolds averaged Navier–Stokes simulations of a static and pitching delta wing within three wind tunnels have
been performed. These simulations have been compared with the case of the wing in free air to ascertain the
various influences of the walls on the vortical flow. The presence of tunnel walls has been found to promote vortex
breakdown, with side wall proximity being the dominant factor. Roof and floor proximity has been seen to have
a negligible effect on vortex breakdown. During pitching motion, side wall proximity delays vortex reformation
after breakdown has reached its most upstream location, during cyclic pitching motion. This delay is recovered on
the upstroke of the motion. These results confirm previous work with Euler simulations of tunnel interference.

Nomenclature
b = wing span
CD = drag coefficient, D/(q∞S)
CL = lift coefficient, L/(q∞S)
CM = pitching moment coefficient, M/(q∞Scr )
CP = pressure coefficient, P/q∞
cr = root chord
D = drag
f0 = model oscillation frequency
H = tunnel height
K = reduced frequency of pitching motion, 2π f0cr/U∞
k = kinetic energy of turbulent fluctuations per unit mass
L = lift
M = pitching moment
M∞ = freestream Mach number
P = pressure
Pk = limited production of k
Pu

k = unlimited production of k
q∞ = freestream dynamic pressure, ( 1

2 )ρU 2
∞

Re = Reynolds number, ρU∞cr/µ
r = ratio of magnitude of rate of strain and vorticity tensors
S = wing area
t = time
U∞ = freestream velocity
ur = friction velocity
W = tunnel width
x = chordwise coordinate
y+ = dimensionless, sublayer-scaled, distance, uτ y/ν
α = angle of attack
αm = mean angle of attack
α0 = pitch oscillation amplitude
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β∗ = closure coefficient (0.09)
� = circulation
η = spanwise coordinate/local span
µ = dynamic viscosity
ν = kinematic viscosity
ρ = mass density
τ = nondimensional time, tU∞/cr

φ = helix angle
ω = specific dissipation rate

Introduction

W IND tunnels are used to test the aerodynamic characteris-
tics of aircraft, and the influence of the tunnel walls must

be taken into account when considering test results. Historically,
wind-tunnel corrections have been based on linear potential flow
theory.1 To obtain good quality and reliable test data, factors relat-
ing to wall interference, flow angularity, local variations in velocity,
and support interference must be taken into account. Karou2 found
that for delta wings with aspect ratio equal to one and spanning
up to half the tunnel width, classical wall correction techniques
can be used to correct flowfield and force results up to 30-deg
angle of attack. (Note that vortex breakdown was unlikely to be
present over the wing.) Also, for swept wings with a blockage ra-
tio (ratio of model planform area to tunnel cross-sectional area) of
less than 0.08, tunnel interference effects can usually be considered
negligible.3

Clearly, the flow conditions within a wind tunnel will be different
from those a wing would experience in free air. The interactions
between the wing and wall flowfields induce longitudinal and lat-
eral variations (streamline curvature and aerodynamic twist, respec-
tively) to the freestream, in addition to those attributed to the wing
alone. These differences may result in a reduction in the average
downwash experienced by the model, a change in the streamline
curvature about the model, an alteration to the local angle of attack
along the span of the model, and changes in dynamic pressure about
the model due to solid and wake blockage and in the buoyancy effect
due to the axial pressure gradient along the tunnel test section. The
magnitude of these effects increases with model size (increasing
solid blockage).

Weinberg4 conducted an experimental investigation into wall ef-
fects. Two sets of three wings were tested (one set with 60-deg
sweep and one set with 70-deg sweep), each wing with a different
span size. The experiment was performed in a square water tunnel
(low Reynolds-number) at a constant flow velocity of 11 m/s. The
tunnel size was 45 × 45 cm. He found that for the three wings with
70-deg sweep, as the wing size was increased and at a constant an-
gle of attack, vortex breakdown moved downstream. For the three
wings with 60-deg sweep, he found that, as the wing span-to-tunnel
width ratio increased from 0.175 to 0.35, the wall effects followed
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similar trends, that is, vortex breakdown was shifted downstream
with increasing wing size. However, when the wing span-to-tunnel
width ratio was increased from 0.35 to 0.7, no significant change
was observed. This suggested that effective camber was not the only
influence. For both the 60- and the 70-deg wings, the difference in
breakdown location observed from the smallest model to the largest
model was of the order 25%cr .

Thompson and Nelson5 investigated experimentally the influence
of tunnel walls on a 70-deg delta wing by testing full-, two-thirds-,
and half-scale models in a square tunnel. (The largest model gave
the ratios b/H = b/W = 0.364.) Because of a steady hysteresis ef-
fect, the wing was tested for a quasi-steady upward stroke and a
downward stroke. It was found that for the smallest model tested
(b/H = b/W = 0.124) the breakdown location shifted downstream
by as much as 15%cr on both the quasi-steady upstroke and down-
stroke. For the half-scale model and the full-scale model, there ap-
peared to be little difference in the breakdown locations. As stated
by Thompson and Nelson, this shift downstream as model size is
decreased is in contrast to the results of Weinberg.4 Weinberg used
a Reynolds number an order of magnitude lower, and a constant
velocity, as opposed to keeping the Reynolds number constant (as
in the experiments of Thompson and Nelson). The vortex suction
on the model surface increased with model size.

More recently, Pelletier and Nelson6 studied the effect of tunnel
interference on 70-deg delta wings. Experiments were conducted in
a water tunnel with three different sized wings. These low Reynolds
number tests agreed with the previous findings of Thompson and
Nelson,5 who tested at higher Reynolds number, in that breakdown
moved toward the apex with increasing wing size. Pelletier and
Nelson used the method of images to explain this effect, concluding
that the tunnel walls increased the mean incidence of the wing, thus,
promoting breakdown.

Verhaagen et al.7 performed Euler calculations of the flow over
a 76-deg delta wing inside wind tunnels of increasing size. The
wing span-to-tunnel width ratios considered were 0.292, 0.389, and
0.584, and the test section was octagonal. To model the effect of
a secondary separation, a small fence was placed where secondary
separation would occur. It was found that decreasing the tunnel
size (increasing the wing span-to-tunnel width ratio) increased the
suction in the vortices and increased the velocities in the vortex core,
due to an increase in circulation with decreasing tunnel size.

Mitchell8 tested a at upper and lower surface 70-deg delta wing
at 27-deg angle of attack in the ONERA S2Ch and ONERA F2
tunnels. The tests had model span-to-tunnel width ratios of 0.23 and
0.49, respectively. It was found that the mean location of breakdown
was upstream (around 7%cr ) in the narrower ONERA F2 tunnel in
comparison to the larger ONERA S2Ch tunnel.

Allan et al.9 performed Euler simulations of tunnel interference
effects on a 65-deg delta wing in various tunnels for static and
pitching cases. It was observed that tunnel side walls were the most
influential factor on breakdown location with roof and floor having
little effect. It was also noted that in pitching simulations the tunnel
interference effects were strongest on the downstroke, during the
vortex reformation.

Allan et al.10 performed Reynolds averaged Navier–Stokes RANS
simulations of a 70-deg delta wing in a wind tunnel, with and with-
out downstream support structures. It was found that the level of
support structure interference was heavily dependent on whether or
not the vortex cores impinged on the support. Using tunnel cen-
terline supports with small models may promote vortex breakdown,
with breakdown moving downstream as the model size increases (as
the core trajectory moves away from the centerline and interference
region).

It is the aim of this work to confirm the previous Euler results and
suggest best practices for tunnel testing of delta wings.

Flow Solver
All simulations described in this paper were performed using

the University of Glasgow parallel multiblock (PMB) Reynolds
averaged Navier–Stokes (RANS) solver. A full discussion of the
code and turbulence models implemented is given in Ref. 11. PMB

uses a cell-centered finite volume technique to solve the Euler and
RANS equations. The diffusive terms are discretized using a central
differencing scheme, and the convective terms use Roe’s scheme
with MUSCL interpolation offering third-order accuracy. Steady
flow calculations proceed in two parts, initially running an explicit
scheme to smooth out the flow solution, then switching to an implicit
scheme to obtain faster convergence. The preconditioning is based
on block incomplete lower–upper factorization and is also decou-
pled between blocks to increase the parallel performance. The linear
system arising at each implicit step is solved using a generalized con-
jugate gradient method. For time-accurate simulations, Jameson’s
pseudotime (dual-time stepping) formulation12 is applied, with the
steady-state solver used to calculate the pseudosteady states at each
physical time step.

The RANS equations are solved, and the two-equation k–ω turbu-
lence model is used for closure. It is well known that most linear two-
equation turbulence models overpredict the eddy viscosity within
vortex cores, thus, causing too much diffusion of vorticity.13 This
weakens the strength of the vortices and can eliminate secondary
vortices, especially at low angles of attack, where the vortices are
already weak. The modification suggested by Brandsma et al.14 was,
therefore, applied to the standard k–ω model of Wilcox15 to reduce
the eddy viscosity in vortex cores, by limiting the production of
turbulent kinetic energy k, as

Pk = min
{

Pu
k , (2.0 + 2.0 min{0, r − 1})ρβ∗kω

}
(1)

Here Pu
k is the unlimited production of k and r is the ratio of the

magnitude of the rate of strain and vorticity tensors. When k is over-
predicted in the vortex core, it will be limited to a value relative to the
dissipation in that region. After comparison with experiment,14,16,17

this modification was found to improve predictions compared with
the standard k–ω turbulence model and is, therefore, used in all
simulations presented.

The Computational Fluid Dynamics Laboratory at the Univer-
sity of Glasgow owns a cluster of personal computers. The clus-
ter is known collectively as Jupiter and is fully described by
Badcock et al.18 The cluster used for this study has 32 nodes
of 750-MHz AMD Athlon Thunderbird uniprocessor machines,
each with 768 MB of 100-MHz dynamic random access memory
(DRAM). Message passing interface (MPI) is used to link up multi-
ple nodes to create a virtual machine, which is used to execute com-
putationally demanding problems. PMB balances the node loadings
(number of cells per node) by spreading the blocks over all of the
nodes of the virtual machine. Halo cell values are passed between
adjacent blocks using MPI.

Test Cases
The wing used for all work described is that of the WEAG-TA15

WB1 65-deg sweep delta wing. The WEAG-TA15 WB1 model
(Fig. 1) was tested at DLR, German Aerospace Research Center,
Braunschweig, Germany, by Löser.19 Experiments were carried out
at two freestream Mach numbers (0.06 and 0.12) with Reynolds
numbers based on the root chord of 1.55 × 106 and 3.1 × 106. The
experiments were carried out in the 2.85 × 3.2 m low-speed atmo-
spheric wind tunnel (NWB) of DNW, located at DLR Braunschweig,
using the open test section.

The wind-tunnel model had an inner chord of 1200 mm, a tip
chord of 180 mm, and a leading edge sweep of 65 deg. The model
is fully symmetric with a sharp leading edge, which has a radius of
0.25 mm. The aerofoil consists of an arc segment from the leading
edge to 40% of the local chord, the region 40%–75% of the local
chord is defined by the NACA 64A005 aerofoil, and from 75% of
the local chord to the trailing edge the aerofoil is a straight line
inclined at 3 deg. The wind-tunnel model has a fuselage of 160 mm
diameter built into the lower surface of the wing, though this is not
expected to influence the upper surface flow. The fuselage was not
modeled in the current work.

The computational test cases in Table 1 were considered. Four
boundary conditions were specified relating to free air and in-tunnel
situations. The first case was that of far-field conditions specified at
the outer boundaries with all boundaries being 10cr from the wing.
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Table 1 Summary of test cases

Tunnel b/W b/H α, deg M∞ Re

Far field —— —— 21 0.2 3.1 × 106

3 × 3 0.42 0.42 21 0.2 3.1 × 106

3 × 2 0.42 0.63 21 0.2 3.1 × 106

2 × 3 0.63 0.42 21 0.2 3.1 × 106

Far field —— —— 22 0.2 3.1 × 106

Far field —— —— 23 0.2 3.1 × 106

Experiment —— —— 21 0.12 3.1 × 106

Fig. 1 WEAG-TA15 wing surface mesh (every second point removed
for clarity).

The remaining three cases represent a 3 × 3 (square cross section),
a 3 × 2 (equivalent to bringing the 3 × 3 tunnel roof and floor closer
to the wing), and a 2 × 3 tunnel (equivalent to bringing the 3 × 3
side walls closer to the wing). No tunnel contraction or diffuser were
modeled because their geometries are unique to a specific tunnel.
Instead far-field conditions were specified at the tunnel inlet located
10cr upstream of the wing. An extrapolation boundary condition
was set 10cr downstream of the wing. Inviscid wall conditions were
applied at the tunnel walls to avoid the grid sizes required to model
the tunnel boundary layers. For all four cases mentioned, the wing
is meshed inside the tunnel at 21 deg and steady fully turbulent flow
is assumed. A symmetry condition along the root chord of the wing
was also used, requiring only half the wing to be meshed. At the
angle of attack considered in the current study, it is expected that the
flow will be symmetric. Two additional cases were also considered
that had far-field conditions as in the first case, with the freestream
velocity vector rotated such that the wing was at an angle of attack
of 22 and 23 deg.

To be able to perform a fair comparison between different tunnels,
it was decided that one mesh should be constructed in such a way
that removing outer blocks would allow different tunnel shapes to
be assessed. This has the advantage that the resolution of the flow
is constant, irrespective of tunnel shape; thus any variations are
occuring due to the presence and location of walls and roof and
floor. The topology that facilitated this was the H–H topology. Views
of the wing in the tunnels are shown in Fig. 2. Initial cell spacing
normal to the wing was 1.0 × 10−6cr , giving y+ < 1.0 over the wing.

Sinusoidal pitching computations were at a Reynolds number of
3.1 × 106 and Mach number of 0.2, with a pitching amplitude of
6 deg and reduced frequency of motion K of 0.56. There were 50
time steps per cycle with 4 complete cycles being computed. A

a) 3 ×× 3 tunnel b) 3 ×× 2 tunnel

c) 2 ×× 3 tunnel

Fig. 2 Wind-tunnel shapes considered in this study.

pitching calculation was performed with 100 time steps per cycle to
ensure an adequate temporal resolution, and it was concluded that
50 time steps per cycle was sufficient.16

Verification and Validation
Because the experimental data of Löser19 was obtained in an open

test section wind tunnel, the far-field case at 21-deg angle of attack
is used for validation of the steady and pitching solutions.

To verify the accuracy of the solutions, a grid-dependence study
was conducted. Visbal and Gordnier20 observed for a 75-deg delta
wing that breakdown moved downstream with grid refinement; how-
ever, the finest grid used was of a lower density than the current
standard grid. Because of computational limitations, the resolution
of the grid was doubled by increasing the number of points in the
direction normal to the wing only. However, it has been shown
with Euler simulations (see Ref. 16) that the flow is most sensitive
to refinement in this direction. Figure 3 shows the upper surface
pressure distributions obtained on the square tunnel grid. As can
be seen, at x/cr = 0.3 and 0.6 the differences are minimal; how-
ever, at x/cr = 0.8, there is a slight variation. This is likely due to
a slight difference in vortex breakdown position in this region. We
can, therefore, consider the solutions grid converged. In any case,
because an identical resolution of the vortical region is used in all
simulations, any possible grid dependency will be common to all
solutions. As will be discussed, the trends are also identical with
Euler and RANS models of the flow.

A comparison of the computed and experimental surface pres-
sures at three chordwise locations is given in Fig. 4. As can be seen,
the primary vortex suction levels compare very well with experiment
at the chordwise locations of x/cr = 0.3, x/cr = 0.6, and x/cr = 0.8.
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Fig. 3 Grid refinement study; upper surface pressure distributions,
square tunnel.

Fig. 4 Comparison of computed upper surface pressure distributions
with experiment.

However, one noticeable difference is the location of the primary
vortex core. In the CFD solution, the primary vortex core is clearly
more inboard than was observed in the experiment (most evident at
the chordwise locations of x/cr = 0.3 and 0.6). This indicates that
the secondary vortex is too large because a larger secondary vor-
tex will push the primary vortex core inboard and away from the
surface. (The secondary separation occurs too early, which is likely
due to turbulence model predictions of the boundary-layer profile.)
This is the reason for the slightly lower primary suction peaks pre-
dicted in comparison to experiment. Further evidence of the large
secondary vortex is that the secondary suction region predicted by
CFD is more “peaked” (most evident at the chordwise locations of
x/cr = 0.3 and 0.6) than that found in experiment. The early sec-
ondary separation can be attributed to the turbulence levels in the
boundary layer predicted by the modified k–ω model. (Low levels
of turbulence in the boundary layer will cause early secondary sep-
aration.) Interestingly, at the chordwise location of x/cr = 0.8, the
primary and secondary suction levels compare very well with ex-
periment, and as such, the primary vortex core location is also well
predicted. Note that at this chordwise location there is a smaller
spanwise pressure gradient (due to the vortices being burst), thus,

reducing the dependency of the solution on the boundary-layer pro-
file. Despite the more inboard primary vortex in the CFD solutions,
it is concluded that the leeward flow over the WEAG-TA15 wing
has been well predicted.

All steady simulations described in this paper were converged at
least six orders of magnitude.

Results and Discussion
Steady Results

Before pitching simulations were conducted, the steady cases
were considered. The breakdown locations for all steady test cases
are given in Table 2. Note that no experimental breakdown locations
were available.

The breakdown locations were obtained by extracting a vertical
slice through the vortex core and locating the point where the chord-
wise velocity component becomes negative. It can be seen that the
trend of breakdown location with tunnel wall constraints predicted
by the RANS solver are similar to those predicted by the Euler equa-
tions (see Ref. 9). For the 3 × 3 and 3 × 2 tunnels, it can be seen
that the breakdown locations are almost identical nearer the apex
in comparison to the far-field results. This indicates that the roof
and floor proximity has little influence. Comparing the 2 × 3 tunnel
breakdown locations with those from the 3 × 3 and 3 × 2 tunnels,
we clearly see that the largest influence on breakdown location is the
side wall proximity. This agrees qualitatively with the Euler results
of Allan et al.9 To give an indication of how the mean angle of attack
of the wing has varied in the tunnels, we see that the 3 × 3 and 3 × 2
tunnel breakdown locations are similar to those of the wing in free air
at 22-deg angle of attack, and the 2 × 3 tunnel breakdown location
is similar to that of the wing in free air at 23-deg angle of attack.

A comparison of the upper surface pressure distributions at two
chordwise locations are given in Figs. 5 and 6. As with Euler sim-
ulations (see Ref. 9), it is clear that for the wing in a tunnel the
suction peak beneath the primary vortex core increases (by up to

Table 2 Summary of steady breakdown locations
for WEAG-TA15 wing

Breakdown
Tunnel α, deg b/W b/H location, %cr

Far field 21 —— —— 81
3 × 3 21 0.42 0.42 77
3 × 2 21 0.42 0.63 77
2 × 3 21 0.63 0.42 71
Far field 22 —— —— 77
Far field 23 —— —— 71

Fig. 5 Comparison of upper surface pressure distributions, x/cr = 0.3.
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Fig. 6 Comparison of upper surface pressure distributions, x/cr = 0.6.

a) 3 ×× 3 tunnel b) 3 ×× 2 tunnel

c) 2 ×× 3 tunnel

Fig. 7 Tunnel wall pressure distributions.

13% in the 2 × 3 tunnel at 30%cr ). Although not presented here, it
has been seen that there is a minor shift in the secondary separa-
tion location toward the leading edge of the wing, when the wing is
placed in a tunnel.16 Any delay in secondary separation is likely to
be dependent on the upper surface shape, the primary suction peak,
and the crossow momentum. (Note that the WEAG-TA15 wing has
a convex upper surface.) A more apparent shift in secondary sepa-
ration location was observed in tunnel interference effects on a flat
upper surface 70-deg delta wing.10 Inboard of the primary vortices
(near the wing root), it can be seen that there is additional suction
(about 10–15% in the 2 × 3 tunnel) on the wing upper surface due
to the blockage effect of the tunnels. It is also evident that when the
roof and floor are brought closer to the wing there is little change
in the suction peak (compare the 3 × 2 and 3 × 3 tunnel solutions),
which indicates that roof and floor proximity has little bearing on
the strength of the vortices.

The tunnel wall pressure distributions for all three tunnels are
given in Fig. 7. As in the Euler solutions (see Ref. 9), there is a clear
favorable pressure gradient in the axial direction. This is expected
because the vortices become closer to the side wall as they extend
toward the trailing edge of the wing. At the cropped tip of the wing,
the side wall induced upwash will be greatest, producing the largest
suction on the wall. Looking at the strength of the pressure contours,
the pressure gradient on the wall becomes more favorable as the side
wall is moved closer to the wing, which is seen as we move from

the 3 × 3 to the 2 × 3 tunnel. Again, as seen in Euler solutions, there
is a clear vortical flow pattern on the side wall downstream of the
wing’s trailing edge. This vortical flow pattern extends the length of
the tunnel. The vortical flow pattern on the side walls is observed for
the three tunnels, reducing in extent with decreasing b/W ratio.21 It
is clear that the close proximity of the 2 × 3 tunnel side wall induces
the largest favorable pressure gradient, which indicates that the side
wall produces the most detrimental interference.

To assess the adverse pressure gradient experienced by the vortex
core in the tunnels, the pressure distribution along the leading-edge
vortex core is shown in Fig. 8. As the vortex is placed within tun-
nel constraints, it can be seen that the suction in the vortex core
increases, with the largest increment being observed in the 2 × 3
tunnel, where the maximum suction is around 15% greater than that
for the far-field solution. The 3 × 3 and 3 × 2 tunnels produce a sim-
ilar increment in suction (of around 6% in comparison to that of the
far-field solution). This increase induces a stronger adverse pressure
gradient, as seen in Fig. 8, thus, promoting vortex breakdown.

The flow angles (the angle at which the flow is deflected due to
the presence of the wing) at the 2 × 3 tunnel side wall location are
shown in Fig. 9. As in the Euler results (see Ref. 9), it can be seen
that the presence of the side walls has increased the flow angles
along the wing, thus, increasing the mean effective incidence of the

Fig. 8 Pressure distributions along vortex core.

Fig. 9 Flow angles at 2 ×× 3 tunnel side wall location.
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wing. Evidently the proximity of the 2 × 3 tunnel side wall induces
the largest mean incidence, followed by the 3 × 3 and 3 × 2 tunnels,
which induce a near equal mean incidence. Clearly it is the presence
of the side wall that will influence how much the mean effective in-
cidence changes. Because the breakdown location moves upstream,
it would appear that the increase in mean effective incidence is dom-
inant over the induced camber effect.

The helix angle of the flow through the vortex core can be seen
in Fig. 10. These data were extracted at a chordwise location of
60%cr , where breakdown is downstream in all solutions. The helix
angle increases due to the side wall-induced velocity components,
and clearly the roof and floor again have little effect. The vortex
tightens the most in the 2 × 3 tunnel, followed by the 3 × 3 and
3 × 2 tunnels, which are nearly equal. An increase in helix angle is
well known to promote vortex breakdown.22

The tunnel centerline pressure distributions can be seen in Fig. 11.
It can be seen that the 3 × 2 and 2 × 3 tunnels produce similar block-
age levels ahead of the wing. The jump from the pressure side to
the suction side of the wing can be seen around x/cr = 0.5625. As
already observed, when the wing is placed within wind tunnels the
static pressure increases on the lower surface and decreases on the
upper surface (due to the blockage effect). As in Euler solutions
(see Ref. 9), well downstream of the wing the pressure distributions

Fig. 10 Comparison of helix angles, x/cr = 0.6.

Fig. 11 Tunnel centerline pressure distributions.

Fig. 12 Comparison of circulation distributions.

indicate that the broken down vortical system is displaced upward
into the center of the tunnel. In the vicinity of the broken down
swirling flow, there will be a reduction in pressure relative to the
static pressure in the tunnel. Thus, near the trailing edge, where the
flow on the lower surface is expanding, the 2 × 3 tunnel solution
exhibits characteristics of the vortical flow being displaced to the
centerline of the tunnel. Despite the pressure near the trailing edge
being higher in the 2 × 3 tunnel than in the far-field solution, one
must recall the increment in pressure due to blockage. Thus, when
the effect of blockage is deducted, it is clear the flow past the trail-
ing edge must be lifted in the 2 × 3 tunnel in comparison to the
far-field, 3 × 3, and 3 × 2 tunnel solutions (because there is a reduc-
tion in static pressure due to the presence of the displaced broken
down swirling flow). This was confirmed via flow visualization.

The chordwise distributions of circulation for the 21-deg cases
are given in Fig. 12. The circulation was computed by integrating the
axial component of vorticity over entire chordwise slices through the
domain. The secondary vortex was eliminated from the calculation
of circulation because the axial vorticity component of the secondary
vortex is of opposite sign to that of the primary vortex. Clearly the
tunnel walls increase the strength of the vortices in the chordwise
direction, with the 2 × 3 side wall inducing the strongest vortices
(increasing the circulation by up to 15% near the trailing edge in the
2 × 3 tunnel). The almost equal circulation near the apex, and the
steeper gradient of the circulation curve in the tunnels, indicates that
the effect of the tunnel side walls increases down the leading edge
as expected. Because the 3 × 3 and 3 × 2 tunnels produce similar
strength vortices, the roof and floor have little influence on vortex
strength.

We now compare the effect of the 2 × 3 tunnel walls with the effect
of increased mean incidence in Fig. 13. Here we see that increasing
the mean incidence of the wing has the effect of shifting the curves
upward, with slightly increasing gradient. This is in contrast to the
effect of the side walls. If we compare the 2 × 3 tunnel curve with
that of the far-field solutions, we see that near the apex the vortex
strength is close to the 21-deg case, becoming stronger than the
23-deg case near the trailing edge. This is due to the induced camber
effect. Such a result may have important implications for correcting
parameters such as pitching moment. Despite vortex breakdown
being at a similar location in the 2 × 3 tunnel compared with that
of the wing in free air at 23-deg angle of attack, the variation in
circulation along the length of the vortex is quite different.

Pitching Results
The lift, drag, and pitching moment curves from each of the pitch-

ing cases considered are compared with the experimentally obtained
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Fig. 13 Comparison of circulation distributions.

Fig. 14 WEAG-TA15 wing, CL–α curves for pitching motion.

loads and moments in Figs. 14–16. The pitching motion of the wing
is defined by the sinusoidal function given by Eq. (2). The reduced
frequency K of the pitching motion was 0.56, with the mean inci-
dence αm being 21 deg and the amplitude α0, being 6 deg. Thus,

α(τ) = αm + α0 sin(K τ) (2)

For validation purposes, the far-field solution is considered. The
lift and drag curves can be seen to have been predicted well, with
the lift being slightly overpredicted. The magnitude of the pitching
moment curves has also been predicted well, though the trend is not
so well predicted. However, note that parameters such as pitching
moment are very sensitive to vortex breakdown location and vortex
strength, which are hard to predict to a high level of accuracy with
current RANS methods. As can be seen, particularly in the lift curve,
there is a thinning of the hysteresis loop as the angle of attack is
increased. This is due to a region of reduced lift curve slope occurring
at around 23-deg angle of attack. At this incidence it is observed from
flow visualizations that vortex breakdown has crossed the trailing
edge, resulting in a reduction in the lift curve slope.23 The resulting
nonlinearity is not observed in the experimental data, which may be
a result of the data presentation. [The experimental data are given in

Fig. 15 WEAG-TA15 wing, CD–α curves for pitching motion.

Fig. 16 WEAG-TA15 wing, CM–α curves for pitching motion.

the frequency domain via Fourier transformation (see Ref. 19).] The
response of the vortices to pitching motion is predicted sufficiently
well, and as such, comparisons of vortex response to pitching motion
in tunnels can be considered.

Considering first the lift and drag curves in Figs. 14 and 15, we
initially see that the tunnels have a considerable influence on the
shape and positions of the curves. As the wing is placed into the
3 × 3 tunnel, we see an increment of the lift curve. There is also a
narrowing of the curve, most evident at the higher incidence. This
can be attributed to the vortex breakdown passing the trailing edge
at a slightly lower angle of attack when compared with the far-field
solution. A similar situation is seen in the 3 × 2 tunnel where the
curve is further incremented due to increasing blockage effects. As
expected, the location at which the lift curve slope drops (when
breakdown crosses the trailing edge) appears to be similar in the
3 × 3 and 3 × 2 tunnels. Finally, comparing the 2 × 3 tunnel solution
with that from the far-field solution, we see a further increment in
lift as expected with the stronger vortices. Also it is evident that by
far the thinnest loops occur for the 2 × 3 tunnel solution. Again, this
is because vortex breakdown has crossed the trailing edge earliest in
the 2 × 3 tunnel. A similar situation is seen with the drag curves. The
thinning of the hysteresis loops can be explained as follows. Because
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the effect of increasing blockage is to increment the lift and drag,
the vortex lift contribution (recalling Polhamus’s suction analogy24)
becomes a lower percentage of the total lift. Therefore, when the
blockage is increased and the potential lift component becomes
larger, the hysteresis due to vortex lift contribution becomes less
apparent. If we compare against Euler solutions (see Ref. 9), where
the vortices are closer to the surface and, therefore, the vortex lift
is higher, the effect of the increase in potential lift on the hysteresis
loop width is lower. Also because the vortices are closer to the
wing in the Euler solutions, an increase in vortex strength, that is,
as incidence or b/W ratio increases, will be more apparent on the
suction peaks (and, therefore, the vortex lift) in comparison to the
RANS solutions.

The pitching moment curves provide a good measure of how
much the flow structure varies at a given point in the pitching cy-
cle due to tunnel wall constraints. Because breakdown locations
are unavailable once breakdown has passed the trailing edge (due
to the grid density decreasing in that region), the pitching moment
curves provide a great deal of insight as to how the tunnel walls
are influencing the flow at the low incidences, being sensitive to
longitudinal flow variations. The understanding of the side wall in-
fluences on breakdown location gained from the steady results, and
the effect that blockage has on the loads and moments, allows a
great deal of information to be interpreted solely from the pitch-
ing moment curves. Figure 16 shows the pitching moment curves
obtained from each solution. Clearly the smallest difference is in
the angle of attack range 15–21 deg on the upstroke of the pitch-
ing motion. When it is recalled that the blockage in the 2 × 3 and
3 × 2 tunnels is similar (which will have an effect on the pitch-
ing moment), it can be concluded that, because the pitching mo-
ment curves in the 2 × 3 and 3 × 2 tunnels are almost identical in
the low incidence range, the tunnel side walls have a lesser influ-
ence on the vortices. Also note that wind-tunnel wall interference
will depend heavily on vortex strength, which increases with inci-
dence. (The mirror images strengthen as the leading edge vortices
strengthen.) Thus, we would expect the greatest interference to oc-
cur at high incidence. It can, therefore, be assumed that, at low
incidence, the difference between the 2 × 3 and 3 × 2 tunnel curves,
and those from the 3 × 3 and far-field solutions, is purely due to
blockage.

As the incidence is increased and the influence of the tunnel side
walls increases, the effect of the promotion of vortex breakdown
crossing the trailing edge early in the 2 × 3 tunnel can be seen at
around 22 deg on the upstroke. Because the breakdown forms just
past the trailing edge, there is a slight increase in the nose down
pitching moment due to the breakdown region acting like a bluff
body in the CFD solutions. (A small suction peak is observed on the
wing surface beneath the vortex breakdown region.) This provides
additional suction near the trailing edge, increasing the nose down
pitching moment slightly. As the incidence increases further and
breakdown moves completely onto the wing, a loss of the nose
down pitching moment occurs as expected. (This occurs earliest in
the 2 × 3 tunnel at around 24.5 deg.) The solutions from the other two
tunnels and the far-field solution follow a similar pattern, although
this occurs later in the pitching cycle. At around 25 deg, it is evident
that vortex breakdown is well established over the wing in all of the
solutions (Fig. 17), which is highlighted by a sharp decrease in the
nose down pitching moment.

Now consider only the 2 × 3 tunnel pitching moment curve: It
can be seen that from 27 deg to around 25 deg on the down-
stroke that the pitching moment remains relatively constant. In
this region, vortex breakdown is held at its most upstream loca-
tion (Fig. 17 for confirmation) due to the increased influence of
the tunnel walls at high incidence, which are promoting vortex
breakdown. It can be concluded that, as in Euler simulations (see
Ref. 9), there is a delay in vortex recovery. From around 25 to
22 deg, it is observed that the 2 × 3 tunnel solution tends toward
that of the other tunnels, due to the reducing tunnel interference.
From around 22 deg downward, it can be seen that the pitching
moment curves from all tunnels follow a similar trend to that of
the far-field solution as the tunnel interference decreases. Most

Fig. 17 WEAG-TA15 wing, unsteady breakdown locations for sinu-
soidal pitching motion.

attention has been paid to the 2 × 3 tunnel solution: however, it
is also clear that the 3 × 3 and 3 × 2 tunnels have influenced the
curves, both in blockage terms and from a slight promotion of vortex
breakdown.

The vortex breakdown locations for the RANS pitching calcu-
lations are given in Fig. 17. Only locations at which breakdown is
over the wing are shown. Downstream of the trailing edge, the grid
coarsens, and as such, breakdown locations cannot be obtained in
this region. Note that on the upstroke the vortex breakdown loca-
tion has been taken where the axial component of velocity becomes
zero. However, on the downstroke of the motion where vortex break-
down is moving downstream, it is not possible to use this criterion
for breakdown because the motion of the breakdown location pro-
hibits this. (The axial velocity does not become zero.) As such, for
the downstroke the breakdown location was defined as the location
where the turbulent Reynolds number (or equally the eddy viscos-
ity) increases rapidly. A turbulence Reynolds number of near 600.0
(where eddy viscosity is 600 times greater than the molecular vis-
cosity) was chosen as the breakdown location, which corresponded
well with where the axial velocity was observed to become zero on
the upstroke. As the wing pitches up, the breakdown clearly moves
upstream in a near linear manner, reaching its most upstream value
at around 26 deg on the downstroke. In the 2 × 3 tunnel, in particu-
lar, it can be seen that the breakdown is held near its most upstream
location until around 24 deg on the downstroke. This is because the
tendency of the side walls is to promote vortex breakdown; thus,
at the high incidence, the effect of the side walls is strong and,
therefore, breakdown is held upstream. When the remainder of the
downstroke is considered, as the wing pitches down it can be seen
from the pitching moment curves that there is still a wide variation in
pitching moment between the various solutions. This indicates that
the tunnel effects are large on the downstroke of the motion because
breakdown will remain over the wing for longer as the wing leaves a
state of high tunnel interference. A similar trend was observed with
Euler simulations (see Ref. 9).

To visualize the extent of the interference with incidence, the
tunnel wall pressure distributions for the 2 × 3 tunnel are given in
Fig. 18. The side wall interference is clearest in the solutions from
the 2 × 3 tunnel, although the discussion applies to the other tunnels.
As the wing pitches up and the vortices become stronger, we see
a much stronger interference pattern on the side walls. It is this
strong interference at high incidence that causes the delay in vortex
recovery in the 2 × 3 tunnel. The effect of blockage can also be seen
as a high pressure beneath the wing, increasing with frontal area
blockage and incidence.
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a) α(t) = 21.0 deg b) α(t) = 16.9 deg

c) α(t) = 15.0 deg d) α(t) = 16.9 deg

e) α(t) = 21.0 deg f) α(t) = 25.1 deg

g) α(t) = 27.0 deg h) α(t) = 25.1 deg

Fig. 18 Tunnel wall surface pressures during sinusoidal pitching.

Conclusions
A study has been conducted to investigate the various effects

wind tunnel wall constraints have on delta wing aerodynamics. The
following conclusions can be drawn from the study:

1) The simulations have confirmed that the RANS equations can
adequately model the leeward surface flow over delta wings.

2) The current simulations have shown that the side walls have
the dominant role in wind-tunnel interference on delta wings. Thus,
models should be orientated such the side walls are a far away as
possible.

3) The simulations have shown that the presence of the roof and
floor has a lesser influence on vortex breakdown than that of side
walls.

4) Side wall proximity consistently promotes vortex breakdown.
5) The distribution of vorticity throughout a vortex differs in tun-

nels when compared with free air cases. As such parameters such
as pitching moment may be diffcult to correct by simply assuming
a change in mean effective incidence.

6) For sinusoidal pitching motion, the extent of the breakdown
variation is dependent on the wing’s position in the pitching cycle.

7) Side walls have a strong influence on the rate of vortex break-
down motion, being strongest during the downstroke (vortex re-
covery) and weaker on the upstroke. (Breakdown travel toward the
apex.)

8) The results of the current work indicate that the trends of tunnel
interference predicted by RANS simulations are identical to those
predicted with Euler simulations.
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naire sure une aile delta aux hautes incidences,” Ph.D. Dissertation, Univ. of
Paris 6, Paris, July 2000.

9Allan, M. R., Badcock, K. J., and Richards, B. E., “A CFD Investigation
of Wind Tunnel Wall Influences on Pitching Delta Wings,” AIAA Paper
2002-2938, June 2002.

10Allan, M. R., Badcock, K. J., Barakos, G. N., and Richards, B. E.,
“Wind Tunnel Interference Effects on a 70◦ Delta Wing,” Proceedings of
CEAS Aerospace Aerodynamics Conference, Royal Aeronautical Society,
London, 10–12 June 2003.

11Badcock, K. J., Woodgate, M., Stevenson, K., Richards, B. E., Allan,
M., Goura, G. S. L., and Menzies, R., “Aerodynamics Studies on a Beowulf
Cluster,” Parallel Computational Fluid Dynamics Practices and Theory,
edited by P. Wilders, A. Ecer, Jr., J. Periavx, N. Datofuka, and P. Fox, Elsevier
Science, Amsterdam, 2002, pp. 39–46.

12Jameson, A., “Time Dependent Calculations Using Multigrid with Ap-
plication to Unsteady Flows Past Airfoils and Wings,” AIAA Paper 91-1596,
June 1991.

13Gordnier, R. E., “Computational Study of a Turbulent Delta-Wing

Flowfield Using Two-Equation Turbulence Models,” AIAA Paper 96-2076,
1996.

14Brandsma, F. J., Kok, J. C., Dol, H. S., and Elsenaar, A., “Leading Edge
Vortex Flow Computations and Comparison with DNW-HST Wind Tunnel
Data,” Proceedings of the RTO/AVT Vortex Flow Symposium, Leon, Norway,
7–11 May 2001.

15Wilcox, D. C., Turbulence Modeling for CFD, DCW Industries, La
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