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Adaptive Boundary Control of 
Out-of-Plane Cable Vibration 
This paper develops active controllers for the out-of-plane vibration of a flexible 
cable using boundary actuators and sensors. An exact model knowledge controller 
exponentially stabilizes the cable displacement assuming known system parameters. 
An adaptive controller asymptotically stabilizes the cable displacement while compen- 
sating for parametric uncertainty in the actuator mass and cable tension. The perfor- 
mance of the controllers is experimentally demonstrated. 

1 Introduction 

Cables are used in many engineering applications due to their 
inherent low weight, flexibility, strength, and storability. The 
transverse stiffness of a cable depends on its tension and length, 
however, so long, sagged cables can vibrate excessively in re- 
sponse to relatively small disturbances. This vibration degrades 
the performance of the cable system and ultimately leads to 
failure. 

To understand cable structure vibration, many researchers 
have developed sophisticated modeling and analysis techniques 
(see Irvine, 1981, for a review). Small sag approximation tech- 
niques (Soler, 1970), lumped parameter models (West et al., 
1975), finite element techniques (Fried, 1982), and Galerkin 
methods (Perkins and Mote, 1987) represent several approaches 
used to predict the behavior of cables in a variety of applica- 
tions. These analysis tools motivate the development of passive 
vibration control methods, including increase of the cable ten- 
sion and/or addition of damping mechanisms. Increased tension 
induces high stress, however, reducing the cable life. Cable 
dampers can reduce the resonant forced response but may have 
little effect on the transient response. 

Active vibration control has only recently been applied to 
cable systems. Cost and/or feasibility of this method often dic- 
tates that control actuators be located at the boundaries of the 
cable span. Fujino et al. (1993) developed axial boundary force 
control laws for a single-mode cable model and experimentally 
demonstrated a large reduction in peak resonant response. Fu- 
jino and Susumpow (1995) extended this approach to multiple 
cable modes. Baicu et al. (1996a) developed a linear feedback 
controller for the out-of-plane vibration of a distributed cable 
model. The proposed controller consisted of boundary position, 
velocity, and slope feedback. The cable position was proven to 
be stable under the proposed control. Simulation and experimen- 
tal results demonstrated very good vibration damping. 

Researchers have also applied boundary control to many 
other flexible systems. The motion of flexible gantry robots can 
be regulated with boundary control (Luo et al., 1995). Bound- 
ary controllers have been developed to stabilize the vibration 
associated with flexible beam-like structures (e.g., aircraft 
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wings, robot links, or space structures) (Chen et al., 1987; 
Morgtil, 1991; Rahn and Mote, 1993; Canbolat et al., 1997). 
Related boundary control work for string-like dynamic models 
can also be found in Morgtil (1994) and Shahruz and Krishna 
(1996). Interestingly, the control structure proposed in this pa- 
per reduces to a form which is similar to the one given in 
Morgtfl (1994) if the cable tension is assumed to be constant. 

In this paper, we develop new control strategies for the dis- 
tributed cable model given in Baicu et al. (1996a). Specifically, 
we develop a model-based controller that exponentially stabi- 
lizes the displacement of the cable given exact knowledge of 
the mechanical system parameters and measurements of the 
slope, slope-rate, and velocity at the cable's actuated boundary. 
We then illustrate how the exact model knowledge controller 
can be redesigned as an adaptive controller which asymptoti- 
cally stabilizes the cable displacement while compensating for 
parametric uncertainty. The control approach differs from the 
previous work in that (i)  the stability analysis utilizes more 
intuitive mathematical tools to illustrate the exponential and 
asymptotic stability results, (ii) a new Lyapunov-like function 
is crafted to deal with the spatially varying tension, and (iii) 
adaptive nonlinear control techniques are applied. 

2 Mathematical Model 

Figure 1 (b) shows a cable sagging under gravity loading. 
The cable vibrates perpendicular to the plane formed by the 
equilibrium cable configuration. Figure 1 (a)  shows the out-of- 
plane displacement U(S, T) where S is the arc length coordinate 
and T is time. The left boundary is pinned and the right boundary 
is free to translate in the out-of-plane direction. A control force 
F(T) applies in the out-of-plane direction at the left boundary. 
From B aicu et al. (1996a), the linearized out-of-plane equation 
of motion, valid for small amplitude motion, is 

pAUrr-  [P(S)Us]s = O, (1) 

where pA is the cable mass/length and subscripts indicate par- 
tial differentiation. The equilibrium tension 

= + ( 2 )  

where P0 is the midspan (S = L/2) or horizontal component 
of the cable tension, g is the acceleration due to gravity, and L 
is the cable length. The pinned boundary condition at S = 0 is 

U(0, T) = 0, (3) 

and the controlled boundary condition at S = L is 
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MUrr + P(S)Us - Ff = F, (4) 

where M is the actuator mass and Ff( UT(L, T))  models friction 
and/or damping in the actuator. 

Nondimensionalization simplifies the control development. 
Substitution of the nondimensional variables 

S . / e  U M F 
= • T g ~ " _ _ ;  f = _ _ .  s ~ ,  t = ; u = ~ ,  m = pAL pAgL'  

p(s )  = pAgL P2° + s - ; Po = pAg"~ (5) 

into Eq. (1) yields 

u,(s, t) - [p(s)u~(s, t )L = 0 (6) 

with boundary conditions 2 

u(0, t) = 0, (7) 

mu,(a, t) + p(1)u~(1, t) + Y(u,(a, t))qb = f ( t ) ,  (8) 

where Y(ut( 1, t ) ) ¢  is the nondimensionalized Ff linearly pa- 
rameterized as a known regression matrix Y(ut(1, t)) E 311×q 
multiplied by a constant parameter vector ~b E 31q× 1. For exam- 
ple, an actuator with viscous damping b and Coulomb friction 
# has 

Y(u,(1, t)) = [ut(l ,  t) sgn (ut(1, t ) ) ] ,  (9) 

6~= [b M, (10) 

where sgn ( . )  is the signum function. We will also assume that 
Y(ut(1, t)) remains bounded Vt E [0, oo) if ut( 1, t) is bounded 
Vt E [0, ~) .  

3 Control Formulation 

In this section of the paper, we present two control strategies 
that stabilize the distributed cable vibration Eqs. (6) - (8) using 
the boundary control force f ( t ) .  First, we define the structure 
and closed-loop boundary dynamics of a controller that requires 
exact knowledge of the system parameters. Using a Lyapunov- 
like stability analysis, we prove this exact model knowledge 
controller drives the cable displacement to zero exponentially 
fast. Dynamic compensation using an adaptive controller allows 
implementation without knowledge of the cable tension and 
actuator mass. This controller, however, provides only asymp- 
totic regulation of the cable displacement. 

2 The pinned boundary conditions of (7) imply that ut(0, t) = 0. 

3.1 Exact Model Knowledge Control Law. The exact 
model knowledge control law is defined as follows: 

f = -must(l ,  t) + p(1)u.~(1, t) 

- k,(ut(1, t) + u~(1, t)) + V(u,(1, t))~b, (11) 

where ks is a positive control gain. Note that the actuator mass 
m and tension p(  1 ) must be known to implement this controller. 
THEOREM 1. Given the field equation o f (6)  and the boundary 
conditions given by (7) and (8), the boundary controller given 
by (11) ensures that the cable displacement is regulated expo- 
nentially fast in the following sense, 

lu(s , t )  l .ttkl - . - t V s E  [0,11, (12) 

where kl, k2, and X3 are positive bounding constants, the posi- 
tive constant •o is given by 

Ko = ~ up(or, O)dcr + ~ p(~7)u~(a, O)dcr 

+ (u,(1, 0) + u~(1, 0))  2 , (13) 

if the controller gain k~. defined in (11 ) satisfies 

p(1 )  
ks > - -  (14) 

2 

Proof To facilitate the stability proof, we first define an auxil- 
iary tracking signal 

~7(t) = u t ( l ,  t) + us( l ,  t) .  (15 )  

After differentiating (15) with respect to time, multiplying the 
resulting expression by m, and then substituting the right-hand 
side of (8) for mutt(l, t), we have 

rot7 = mUst(l, t) - p ( 1 ) u s ( 1 ,  t) - Y(ut(1, t))(b + f ,  (16) 

where/7 = ~Tt. After substituting (1 1 ) into (16), we obtain the 
following closed-loop dynamics on the boundary: 

me} = -kAT. (17) 

Remark 1. The following inequalities are used in the proof. 
First, the boundary condition Eq. (7) allows formulation of (see 
Hardy et al., 1959) 

So u2(s, t) <- u~(~r, t)&r Vs E [0, 1]. (18) 

Second, using the triangle inequality we have 

_ ( z  2 + y2) _< IzYl Z 2 + y2 > zy VZ, y E 3t. (19) 

To prove Eq. (12), we begin with the following function: 

V(t)  = Es(t) + ½ mzl2(t) + Ec(t). (20) 

The cable vibration energy is 

a f0' l f0' Es(t) = ~ u2,(~r, t)&r + ~ p(cr)u~(cr, t)&r, (21) 

and the crossing term is 

Yo E~(t) = 23 y(a)ut(~z, t)uo(a, t)da, (22) 

where fl is a positive design constant and the weighting function 
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[ (2s-1 
y(s)  = - ~ -  arctan + p o l n ( 2 s -  1 + h(s))  

\ 2po / 

, ] + arctan 2p---~ + p0 In ( 4~p0Z + l - 1) (23) 

with 

h(s)  = x/4p~ + 4s 2 - 4s + 1. 

If the design constant/3 is selected according to 

min { 1, P0 } 
fl < , (24) 

43'( 1 ) 

we can formulate the following upper and lower bound on V(t)  
(see Lemma A. 1 in the Appendix) 

kl(Es(t) + r f ( t ) )  --< V(t)  -< k2(E,(t) + q2(t)) ,  (25) 

where the positive constants k~ and ~2 are 

( 4/3y(1) ~ }  
X, : min 1 m i ~ : p o }  ' ' 

{ k2 = max 1 + min { 1, p0 } ' 

After differentiating (20) with respect to time and substituting 
(6),  (7),  and (17), we obtain the following upper bound on 
the time derivative of V (t) (See Lemma A.2 in the Appendix): 

(z(t) <-- -)t3(E.~(t) + @(t) ) ,  (27) 

where the positive constant 3 k3 is defined by 

k3 = min {2fl, ks - - ~ }  . (28) 

Remark 2. The structure of the weighting function 'y(s) de- 
fined in (23) has been crafted to facilitate the construction of 
the inequalities given in (25) and (27). 

From (25) and (27), we obtain the following upper bound 
for the time derivative of V(t)  

k3 V(t) ,  (29) 

whose solution yields 

g( t ) -< U(O) exp - ~ t  -< k2Koexp - ~ t  , (30) 

where Eq. (25) has been utilized to formulate the inequality on 
the right-hand side of Eq. (30) and the positive constant Ko is 
defined in Eq. (13). In addition, we use Eqs. (18), (21), and 
(25) to formulate the following inequality: 

P__2 u2(x, t) < 1 fo' 1 2 - ~ p(~r)u,~(~r, t)da _< Edt )  -< ~ V( t )  

V x c  [0, 11. (31) 

The inequality given in Eq. (12) now directly follows by com- 
bining Eqs. (30) and (31) and then using Eqs. (15) and (21). 

[] 
Remark 3. Since the proposed control strategies are relatively 
simple, smooth functions, we have assumed existence of solu- 
tion for the dynamics given by (6) through (8) under the pro- 

3 The controller gain k, must satisfy (14)  to ensure that k3 is positive. 
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posed control. To illustrate bounded-input, bounded-output sta- 
bility for the closed-loop system, we invoke the following rea- 
sonable assumption: The distributed variable u(s, t), and its 
time derivative us(s, t), belong to a space of functions which 
has the following properties: (i) if u(s, t) is bounded Vt E [0, 
oo) and Vs E [0, 1], then us(s, t) and u~(s, t) are bounded Vt 

[0, o~) and Vs E [0, 1], and (ii) if the kinetic energy for the 
mechanical system of (6) through (8) 

1 fo ~ 1 mu~(1, t) (32) u~(cr, t)dcr + 

is bounded then u,(s, t) and u,(s ,  t) are bounded for Vt E [0, 
oo) and Vs E [0, t].  
Remark 4. From (20) and (30), we can state that E~(t) and 
rl(t) are bounded Vt E [0, oo). Since E,(t) is bounded Vt E 
[0, ~) ,  we can use (21), ( i 8 ) ,  and the properties discussed in 
Remark 3 to state that u(s, t), u ds ,  t), and u,,(s, t) are bounded 
Vt E [0, oo) and Vs E [0, 1]. Since r/(t) and us(I, t) are 
bounded Vt E [0, oo), we can use (15) to state that u,( l ,  t) is 
bounded Vt c [0, w); hence, the kinetic energy of the mechani- 
cal system defined in (32) is bounded Vt E [0, w). Since the 
kinetic energy is bounded Vt E [0, oo), we can use the properties 
discussed in Remark 3 to state that ut(s, t) and u,,(s, t) are 
bounded for Vt c [0, oo) and Vs E [0, 1]. From the above 
information, we can now state that all of the signals in the 
control of ( 11 ) and the mechanical system given by (6) through 
(8) remain bounded Vt E [0, oo) during closed-loop operation. 

3.2 Adaptive Control Law. In this subsection, we rede- 
sign the exact model knowledge controller ( 11 ) to compensate 
for constant parametric uncertainty while asymptotically stabi- 
lizing the mechanical model given by (6) through (8). The 
adaptive control law is 

f = - W 0  - k,r/, (33) 

where W(t)  E !R ~x(q+2> is a known regression matrix and 
0(t)  E gt (q+2)xa is a dynamic parameter estimate vector: 

W = [u,,(1, t), - u,(1, t), - Y(u,( l ,  t ) ) ] ,  

0 = [fit, p~ , t~T]  r. (34) 

The parameter estimate vector introduced in (33) is updated 
online according to 

b = FwTo, (35) 

where F E i ~  (q+2)X(q+2) is a constant, diagonal gain matrix with 
elements Fi > 0. 
THEOREM 2. Given the field equation o f (6 )  and the boundary 
conditions given by (7) and (8), the boundary controller given 
by (33) and (35) ensures that the cable displacement is regu- 
lated asymptotically fast in the following sense: 

lim [u(s, t)[ = 0 Vs E [0, 1], (36) 
t-moo 

where the controller gain k,. defined in (33) must be selected 
to satisfy (14). 
Proof. After differentiating (15) with respect to time, multi- 
plying the resulting expression by m, and then substituting the 
right-hand side of (8) for mu,(L, t), we have 

mill = WO + f ,  (37) 

where W(t)  was defined in (34) and 0 E R (q+2)xl is the un- 
known constant parameter vector defined as 
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0 = [m p (1 )  ~ T ] T  (38) 

After substituting (33) into (37), we obtain the following 
closed-loop dynamics on the boundary: 

m¢7 = -ks, r/ + W0, 

b = - F W r ~ ,  (39) 

where 00(t) = 0 - 0(t)  E fft(q+2)x~ is the parameter estimate 
error vector, and (35) has been used to obtain the parameter 
estimation error dynamics. 

To prove Eq. (36), we begin with the following function: 

1 ~ r ( t ) F - ~ ( t ) ,  (40) V~(t) = V( t )  + 

where V(t)  was defined in (20). If the design constant/3 of 
(22) is selected to be sufficiently small, Lemma A.1 can be 
used to show 

Xla[E,(t) + ~2(t) + I1~(t)1123 
v~(t)  ~- x=.EE,(t) + ~=(t) + II0(t)ll=], (41 

where the positive constants hXa and h2a are defined by 

{ 4/3y(1) m l m i n { 1 / F i } }  ' 
k l , =  min 1 min {1, p} ' 2 ' 2  

~k2a = max  
{ 1 } 1 + 4/3y(1) m , ~ m a x  {1/Fi} • 

max {1, p} ' 2 

After differentiating (40) with respect to time, substituting (6),  
(7),  and (39), and using Lemma A.2, we obtain the following 
upper bound for the time derivative of V,(t): 

V,,(t) -< -h3(Es( t )  + ~72(t)) & g~,(t), (42) 

where h3 was defined in (28). We can now use (41), (42), 
and a similar argument as that outlined in Remark 3 to state 
that all of the signals in the control of (33) and (35) are bounded 
and that all of the signals in the mechanical system given by 
(6) through (8) remain bounded. 

After differentiating the right-hand side Of (42) with respect 
to time, we have 

g , ( t )  = - ) t3( /~( t )  + 2~7(t)//(t)). (43) 

Since we illustrated how all of the system signals remain 
bounded Vt E [0, oo), we can use (53) and (39) to show that 
/~,(t) and/?( t )  are bounded Vt E [0, c~); hence, we can see 
from (43) that the time derivative of the right-hand side of (42) 
is also bounded Vt E [0, c~). We can now invoke Lemma A.3 
in the Appendix to the right-hand side of (42) to show that 

lim E,(t),  ~7(t) = 0. (44) 
t ~  

We can now use the result given by (44) and the inequality- 
type bound developed in (31) to state the result given by (36). 

[] 

Remark 5. It should be noted that several extensions to the 
basic controllers given in the previous sections can be devel -  
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Fig. 4 Experimental results--adaptive controller 

oped. For example, an additional gain constant in the definition 
of the tracking variable r~(t) defined in (15) can be added. 
Specifically, we can redefine the exact model knowledge input 
control force originally defined in (11 ) as follows: 

f =  -mCeUst(1, t) + p(1)us(1,  t) 

- k~r I + Y(u , ( l ,  t ) ) 4 ,  (45)  

where c~ is a positive controller gain, and the variable ~(t) 
originally defined in (15) is now defined as follows: 

q = u,(1, t) + au~(1, t). (46) 

As illustrated in Canbolat et al. (1997) for a similar mechanical 
system, we can slightly modify the arguments outlined in Re- 
mark 3 and the proof of Theorem 1 to show that all of the signals 
in the control and the mechanical system remain bounded and 
to state a similar exponential stability result as that given by 
(12). By following the adaptive control technique given in the 
previous section, we can also redesign the controller given by 
(45) as an adaptive controller which compensates for parametric 
uncertainty and achieves asymptotic displacement regulation. 

4 E x p e r i m e n t a l  R e s u l t s  

The proposed controller was implemented on a cable control 
system designed and built in-house (see Fig. 2). A braided 
polyester rope, pinned at one end, and connected to a horizon- 
tally translating gantry at the other end was used for the experi- 
ments. A brushed DC motor (Baldor model 3300) was coupled 
to the gantry using a timing belt. Two 1000-count rotary en- 
coders (Hohner) were used to measure the gantry position and 
the cable depm'ture angle. A mounting bracket attached to the 
gantry aligned the departure angle encoder axis with the normal 
(in-plane) direction. Thus, the measured encoder rotation 
caused by cable motion corresponded to out-of-plane slope at 
the controlled boundary us( 1, t). A 486 ISA-based PC hosting a 
Texas Instruments TMS320C30 digital signal processing board 
served as the computational engine. An encoder interface card 
(Integrated Motions, Inc., Model DS-2) allowed for quadrature 
extrapolation of the encoder signals. The DS2 board also sup- 
ported two channels of 16-bit ADCs and DACs. The linear 
and angular velocities were obtained by applying a backwards 

difference algorithm to the position and angle signals, respec- 
tively. To eliminate quantization noise, the velocity signals were 
filtered using a second-order digital filter. To test the response 
of the proposed controller, the cable was perturbed using a 
repeatable displacement input disturbance near the pinned end. 
As defined in (5),  the parameter values for the mechanical 
system were determined via standard test procedures to be as 
follows: 

M =  3.229kg L = 2 .69m pA = 0.085kg/m 

g = 9.81 m/s 2 Po = 0.127N 

m = P0 = p (1 )  = 0.503 I 
I 

14.1 0.056 

Two experiments were conducted to test the performance 
of the proposed controller. First, the exact model knowledge 
controller given by (45) was implemented using the following 
settings: 

.[ks = 5.0 o~ = 4.0 V(u,(1, t))q5 = 0.] 

The results of these experiments appear in Fig. 3. As is clear 
from the figure, the cable system exhibits excellent transient 
response under the proposed controller. The uncontrolled 
swinging of the cable to the same input is shown for comparison 
purposes. The gantry position and the voltage signals are also 
shown. It should also be noted that the Y(ut( l ,  t))<6 term could 
have been used to model static friction on the rail of the actua- 
tor; however, the feedback portion of the controller seemed to 
adequately compensate for friction in our experiment. 

The adaptive version of (45) was !mplemented with the up- 
date law given by (35) and the parameter estimates initialized 
to 80 percent of their nominal values. The best performance 
was achieved using the following settings: 

k~= 5.0 a = 4 . 0  Y(ut(1, t))4~=O F = diag {5 ,2} . ]  

The results of these experiments appear in Fig. 4. In the first 
subplot of Fig. 4, the transient performance of the adaptive 
controller to the disturbance is compared to the uncontrolled 
swinging of the cable for the same input. Subsequent subplots 
show the gantry position and the voltage .signals. As is clear 
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from the figure, the estimates for the parameters m and p (1 )  
remain bounded during closed-loo p operation. 
Remark 6. The input control force at the actuator is actually 
applied by rescaling this force as a desired motor torque. The 
desired motor torque is then achieved by using a high-gain 
current feedback loop (recall for the brushed DC motor that 
7"moto r ~ I where I is the motor current). The current feedback 
loop and the torque-force conversion are incorporated into the 
control software and power is supplied to the motor by the 
single-channel linear power amplifier which is capable of out- 
putting up to 1000 W at 100 V with a power bandwidth of 0 
to 40 KHz. It should be noted that the backstepping paradigm 
(Kokotovic, 1992) allows electrical dynamics to be incorpo- 
rated in the overall control solution for this class of hybrid 
partial/ordinary differential equation problems as illustrated in 
Baicu et al. (1996b). 
Remark 7. Dimensional quantities are used in the experiment 
so the control force is scaled according to (5) (i.e., F = fpAgL). 
Th.is implies that the weight of the cable must be known in 
order to implement the controllers. 

5 C o n c l u s i o n  
In this paper, we develop new boundary control strategies 

for a flexible cable with actuator dynamics. The control structure 
differs substantially from the controller in Baicu et al. (1996a) 
because different signals are sensed. 4 While the controller given 
in Baicu et al. (1996a) only provides for bounded-input, 
bounded-output stability, the proposed exact model knowledge 
controller exponentially ̀ stabilizes the position of the cable and 
the adaptive controller asymptotically stabilizes the position of 
the cable and compensates for parametric uncertainty in the 
cable tension and actuator mass. The experimental results are 
similar to those of Baicu et al. (1996a), demonstrating fast 
transient decay under the proposed control. 
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A P P E N D I X  
Stability Lemmas 
LEMMA A.i .  The non-negative function given by (20) can be 
upper and lower bounded as given by (25). 
Proof First, note that (19) can be used to bound Ec(t) of 
(22) as follows: 

fo Ec = 2/3 y(~r)u,uo&r -< 2/37(1) (u~ + u])da, 

< g i lT( l )  [~f01 ] - m i n ( 1 ,  p0) (u] + p(cr)u2~)&r , (47) 

1 where we have used the facts that p(s) is minimum at s = 
for s E [0, 1] and that y(s) of (23) is maximum at s = 1 for 
s ~ [0, 1]. We can now use (21) and (47) to establish the 
following inequality: 

4py(  1 ) 4/3T( 1 ) 
E, -< E~ -< Es; (48) 

rain (1, Po) rain ( 1, Po) 

hence, if/3 is selected according to (24), we have 

( 4/37(1) ) E~<-E~+E~ 
0 -< 1 min {1, po} 

4/3T(1) ) Es. (49) 
_< 1 + rain {1, p0} 

Given the structure of V(t) defined in (20) and the inequality 
given by (49), the inequality given by (25) is obvious. 
LEMMA A.2. The time derivative of the nonnegative function 
given by (20) can be upper bounded as given by (27). 
Proof After differentiating (20) with respect to time, we have 

9 = L + ~c - ks~ 2, (50)  

where (17) has been used. To determine /~,(t) in (50), we 
differentiate (21) with respect to time to obtain 

fo fo t~ = ut[p(~r)u~]~dcr + p(cr)uou~tdcr, (51) 

where (6) has been used. If we integrate the first term on the 
right-hand side of (51) by parts, we obtain 

/~s = P ( l ) u t ( 1 ,  t)u.~(1, t ) - p ( 0 ) u t ( 0 ,  t)us(0, t). (52) 

After applying the boundary conditions given in (7) to (52), 
we have 

/~ = p(1)u, (1 ,  t)u,(1, t), (53) 
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which can be written as 

p(1) ~72 (54) /~s - p(1)2 (u'2 (1, t) + u~ z (1, t)) + - - ~  

upon application of ( 15 ). 
To determine/~(t) in (50), we differentiate (22) with re- 

spect to time as follows: 

/~ = A, + az, (55) 

where 
1 

Ai = 2/5 y(~y)u,uo,&r, 

fo' A2 = 2/3 y(~)u~[p(~)u~l~d~,  (56) 

after using (6) in the expression for A2. After integrating the 
expression for A~ given by (56) by parts, we obtain 

A, = 2/3 y( ! )u~(1 ,  t ) -  y.(cr)u~&r 

fO l - 2/3 y(~r)u~,u,da, (57) 

where we have used the fact that y(0) = 0. After noting that 
the last term in (57) is equal to A~, we can write (57) as 
follows: 

( f0 ) A1 = /3 y( l )u~(1 ,  t ) -  y~(a)u~&r , (58) 

where %(s) is explicitly given by 

= 4~h-(7)8s-4 [ ( 2 S -  1 ) 2 p 0  y,(s) arctan \ - ~ - - - /  +poln ( 2 s - l  + h(s)) 

- arctan 2p0 + P0 In (4~p~ + 1 - 1 ) 

l / 8 s - 4 ~  1 h(s)  1 p0~2 + 2h(s) ) 

2p0 P0(1 + - - - ~ - - - /  (2s_  1)2~ d ~s-- 1-~h~s) " 

It can be shown that y , ( s )  > 1 for s E [0, 1]; hence, we can 
utilize (58) to construct the following upper bound for A~: 

A t -  [3 t ) -  u~&r . (59) 

After integrating the expression for A2 given by (56) by parts, 
we obtain 

A2 = 2/3 y ( 1 ) p ( 1 ) u ~ ( 1 ,  t) - yo(Cr)p(~r)u~ &r 

- f j  y (~r)p(cr)u~u~&r) ,  (60) 

where we have used the fact that 3,(0) = 0. After noting that 
the expression for A2 given by (56) can be expanded into the 
following form, 

A2 = 2/3(fo~Y(cr)u~p~(~r)&r 

+ f~ ~(o)p(o)u~u~d~), (61) 

we can combine (60) and (61) to eliminate the last term in 
(60) as follows: 
A2 = /3~y(1)p(1)u~(1, t) 

- f0' [y~(cr)p(~)-y(cr)p~(cr)]u~dcr).  (62) 

From the structure of y(s) and p(s),  it is straightforward to 
show that 

% ~ ( s ) p ( s ) -  y ( S ) p s ( S ) =  1 + p(s);  (63) 

hence, we can use (62) and (63) to construct the following 
upper bound for A2: 

( f0 ) A2 -~ fi y(1)p(1)u~ (1, t) - p ( ~ ) u ~  dcr . (64) 

After substituting (59) and (64) into (55) and then substitut- 
ing the resulting expression along ~vith (54) into (50), we have 

¢ < _  ( ~ _ 2 _  /3y ( l ) )u~  (1, t) 

_ (p~l____)_ /3T(1)p(1))u2 (1, t)) 

- (k~-P~----~) ~2 - 2/3Es, (65) 

where (21) has been utilized. From (65) and (24), it is clear 
that if the controller gain ks is selected according to (14) and 
the design constant/3 is selected according to 

p(1) ' 2T(1)l min4y( 1 ){I'P} } (66) /3 < min L ~ i  ' ' 

then ¢(t)  can be upper bounded by the nonpositive scalar func- 
tion given in (27). 
LEMMA A.3. I f  (i)  V.( t )  is a non-negative, scalar function 
which is lower bounded by zero, ( ii ) Co(t) -< - f ( t ) where 
f (  t ) is a scalar, non-negative function, and ( iii ) f (  t ) is bounded 
then 

l imf( t )  = 0. (67) 
t ~ 

Proof First, we define the following function: 

f0 V,,(t) = Vo(t) - (Ca(r) + f ( r ) ) d r ,  (68) 

which is lower bounded by zero (since we have assumed that 
V.(t) ~- 0 and that ¢ . ( t )  -< " f ( t ) ,  we know that V.( t )  -> 0).  
If we differentiate (68) with respect to time, we obtain 

9 . ( t )  = - f ( t ) .  (69) 
We now apply a lemma from Slotine and Li (1991) (see 

page 127) which states that if: (i) V,, (t) is a non-negative, scalar 
function which is lower bounded by zero, (ii) ¢,,(t) = - f ( t )  
where f ( t )  is a scalar, non-negative function, and (iii) f ( t )  is 
bounded then 

l imf( t )  = 0. (70) 

Application of the above lemma to (68) and (69) yields the 
result given by (67). 
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