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Abstract—Device-to-Device (D2D) communication is emerging
as a viable solution for alleviating the severe capacity crunch
in content-centric wireless networks. D2D encourages backhaul-
free communication directly between devices with similar content
requirements grouped into clusters. In this work, a self-sustaining
D2D network is considered, where a set of commonly requested
files are completely stored within the collective devices memories
in a cluster and file requests from devices are serviced by local
inter-device multicast transmissions. For such a network, new
information theoretic converse results are developed, in the form
of a lower bound on the minimum D2D multicast rate as a
function of the storage per device. The proposed converse is then
used to characterize the approximate tradeoff between the device
storage and D2D multicast rate to within a constant multiplicative
gap of 8.

I. INTRODUCTION

In recent times, the dynamics of traffic over wireless net-
works has undergone a paradigm shift to become increasingly
content centric with multimedia content distribution holding
precedence. This necessitates careful design of content storage
and over-the-air distribution schemes within the networks to
efficently use scarce spectral resources to handle heavy traffic
loads as evidenced by a wealth of recent research [1]–[12].

Device-to-device (D2D) communication systems have been
proposed as one of the solutions that could help in alleviating
the severe capacity crunch in wireless networks [13]–[16].
D2D uses low-power direct communications within devices
grouped into clusters to facilitate large scale frequency reuse
thereby freeing up precious spectral resources. We consider
a D2D network with K devices, and N files (denoted by
F1, . . . , FN , each of size B units), where the storage of each
device is MB units. The base-station populates the devices
with functions of files, depending on the number of users and
available device storage. The D2D system is self-sustaining
i.e., all N files must be recoverable from the collective storage
memory of the devices, which is equivalent to the condition
KM ≥ N . Once the devices reveal their file requests, all the
devices within the cluster transmit multicast messages over
the shared link to service the requests. Figure 1 illustrates
the system model. The storage/multicast mechanisms must
be designed such that any device must be able to decode
its requested file using its local storage and the multicast
transmissions from other devices.

Recently, Maddah-Ali and Niesen have investigated a re-
lated caching problem [1]–[4] for which it has been shown
that, by jointly designing the content storage and delivery,
order-wise improvement in transmission rates can be achieved.
The main difference between the caching problem studied
in [1,2] and the D2D problem is the distributed nature of
multicast transmissions. The caching problem allows for cen-
tralized delivery, in which the multicast can be any arbitrary
function of all N files. In the D2D problem however, the
outgoing multicast from each device can only depend on the
content stored at that device. The focus of this work is on
the fundamental tradeoff between the device storage and the
total multicast transmission rate (referred to as the (M,R)
tradeoff) for the D2D problem. In [15,16], Ji et.al. present new
storage/delivery mechanisms for the D2D problem. The results
in [16] show that for a self-sustaining D2D network, when
the devices can use local inter-device multicast transmissions
to satisfy the requests of others within the cluster, order-
wise rate improvements similar to [1,2] can be achieved. The
authors present an achievable scheme as well as a cut-set based
argument to obtain upper and lower bounds on the (M,R)
tradeoff for the D2D problem.

In this work, we develop a new converse (lower bound)
on the (M,R) tradeoff for the D2D problem. The new
lower bound addresses constraints that are unique to the D2D
network, i.e., the local dependence of device multicast on
its stored content. We show that the new converse is tighter
than the existing one presented in [16, Theorem 2] (which
are primarily based on the relaxation of the D2D problem to
the centralized caching problem) for all values of problem
parameters. Our result shows that the achievable scheme
presented in [16] is indeed optimal for the lowest allowable
value of storage memory for a self-sustaining D2D network
i.e., at M=N/K. Using our new converse result, together with
the achievable scheme of [16], we characterize the (M,R)
tradeoff for the D2D network to within a maximum constant
multiplicative gap of 8 for all values of problem parameters.

The paper is organized as follows: Section II outlines the
system model. Section III details the analysis of the new lower
bound on the storage vs. rate tradeoff for the D2D network,
while Section IV illustrates the intuition behind the new bound
through an example. Finally, Section V concludes the paper.



Fig. 1. System Model for device-to-device (D2D) Network.

Notation: Let Yi be a random variable. Y[a:b], where a < b
denotes the set of random variables {Yi : i = a, a+1, . . . , b−
1, b}. Also, Y[a,b] denotes the set {Yi : i = a, b}. Y[n] denotes a
set of any n arbitrary random variables Yi such that |Y[n]| = n.
N+ denotes the set of natural numbers; the function (x)+ =
max(0, x); ⌈x⌉ denotes the ceil function; ⌊x⌋ denotes the floor
function.

II. SYSTEM MODEL

The D2D network has K users, and a total of N files,
denoted by F1, .., FN , where each file is assumed to be of
size B, for some B ∈ N+. Formally, the files Fn are i.i.d and
distributed as

: Fn ∼ Unif{1, 2, . . . , 2B}. (1)
We next define the key components of the D2D problem:

Definition 1 (Storage). The content storage phase consists of
K storage functions, which map the files (F1, . . . , FN ) into
the device storage content

Zk , ϕk
(
F1, . . . , FN

)
, (2)

for each user k ∈ {1, 2, . . . ,K}. The maximum allowable
size of the contents of each device storage, Zk, is MB units.
An additional constraint of self-sustainability is enforced i.e.,
KM ≥ N , which ensures all the files in the system are
completely stored within the D2D cluster.

Definition 2 (Delivery). In the delivery phase each device
k ∈ {1, 2, . . . ,K} uses one of NK encoding functions to map
its storage contents, Zk, to a multicast transmission:
Xk

(R1,...,RK) , ψ(R1,...,RK)

(
Zk

)
∀k ∈ {1, 2, . . . ,K}. (3)

over the shared link in response to the requests
(R1, . . . , RK) ∈ {1, 2, . . . , NK}. Each such transmission
has rate RB/K units. The total multicast rate. when all K
devices transmit, is RB units.

Definition 3 (File Decoding). Once the multicast transmission
is received, KNK decoding functions map the received signal
over the shared link X1

(R1,...,RK), . . . , X
K
(R1,...,RK) and the

storage content Zk to the estimate

F̂Rk
, µ(R1,...,RK),k

(
X1

(R1,...,RK), . . . , X
K
(R1,...,RK), Zk

)
,

(4)
of the requested file FRk

for user k ∈ {1, 2, . . . ,K}.

For the (M,R) D2D scheme, the probability of error is defined
as:

Pe , max
(R1,...,RK)∈[N ]K

max
k∈[K]

P(F̂Rk
̸= FRk

). (5)

Definition 4 (Storage vs. Rate Tradeoff). The storage-rate
pair (M,R) is achievable if, for any ϵ > 0, there exists an
(M,R) D2D scheme for which Pe ≤ ϵ. The storage vs. rate
tradeoff is defined as:

R(M) , inf {R : (M,R) is achievable} . (6)

III. MAIN RESULTS AND DISCUSSION

We next present our main result which gives a new infor-
mation theoretic lower bound on the storage vs. rate tradeoff
for the D2D problem.

Theorem 1. In a D2D system with K devices and N files,
with each device having storage size M , and KM ≥ N , the
optimal content delivery rate R∗(M) is lower bounded by:

R∗(M) ≥ RLB(M) ,

max
s∈{1,...,K},

ℓ∈{1,...,⌈N
s ⌉}

N − sM −
(

µ
s+µ

)
(N − ℓs)+

ℓ
(
K−s
K

)
 , (7)

where µ = min
(⌈

N−ℓs
ℓ

⌉
,K − s

)
∀s, ℓ .

Proof. The proof of Theorem 1 is given in Appendix A

The expression in Theorem 1 has two parameters - (1) s,
which is related to the number of devices and as well as
(2) a new parameter ℓ. Compared to [16, Theorem 2], the
additional parameter ℓ adds further flexibility to the lower
bound expression and better models the file decoding through
the interaction of the device storage contents and the multicast
transmissions. Considering the cut-set based bound presented
in [16, Theorem 2], the first term inside the max(·) function
is simply the expression for the centralized caching problem
presented in [1, Theorem 2]. Furthermore, setting ℓ = ⌈N/s⌉
in Theorem 1 yields

R∗(M) ≥ max
s∈{1,...,K}

{
N − sM⌈
N
s

⌉ (
K−s
K

)} , (8)

which is greater than the cut-set expression in the first term
inside the max(·) function owing to the factor K−s

K ≤ 1 in
the denominator. The second term inside the max(·) function
can be obtained by setting s = 1, ℓ = N in Theorem 1. Thus,
the proposed bound is generally tighter than the bound in [16,
Theorem 2]. It is to be noted that the bound in [16] is tight
only for large values of device storage size M . As shown in
the sequel, the new bound in Theorem 1 is tighter for smaller
values of M and yields the existing bound as a special case
for large values of M .

Next, we present our second main result, which establishes
the optimal storage vs. rate tradeoff for the D2D network to
within a constant multiplicative factor. In [16], the authors
propose a D2D content distribution scheme which achieves a
rate given by [16, Theorem 1]. Using the result in (7), we
show a constant multiplicative gap exists between the new
lower bound and the achievable rate in [16, Theorem 1]:



Theorem 2. Let RUB(M) be the achievable rate of the D2D
scheme given in [16, Theorem 1] and let RLB(M) be the
lower bound on the optimal rate given in (7). For any K ∈
N+ devices, N ∈ N+ files, and device storage in the range
N
K ≤M ≤ N , we have:

Gap =
RUB(M)

RLB(M)


= 1 M = N

K

≤ 3 N
K < M ≤ 2

3

≤ 6 2
3 < M ≤ 1

≤ 8 1 ≤M ≤ N

. (9)

Proof. The proof of Theorem 2 is omitted for brevity.

IV. INTUITION BEHIND PROOF OF THEOREM 1

We next present a detailed example to illustrate the intuition
behind the proposed converse.

Example 1. Consider a D2D system with K = 3 devices,
each with a storage memory of M , and N = 3 files A,B,C
each of unit size. For this problem, the lower bounds [16,
Theorem 2] are given by:

R∗ + 3M ≥ 3 (10)
2R∗ +M ≥ 3. (11)

In contrast, the proposed bound in Theorem 1 gives following
tighter bounds for different choices of s and ℓ:

R∗ + 6M ≥ 8, s = 2, ℓ = 1 (12)
8R∗ + 6M ≥ 15, s = 1, ℓ = 2 (13)
2R∗ +M ≥ 3, s = 1, ℓ = 3, (14)

where (14) is the bound in (11). Next, we detail the derivation
of the new lower bounds (12) and (13). First, we consider the
request vectors (R1, R2, R3) = (A,B,C) and (R1, R2, R3) =
(B,C,A). The first s = 2 device storage contents Z1, Z2

along with two transmissions X̄ABC = {X3
ABC}, X̄BCA =

{X3
BCA} from the third device corresponding to the two

request vectors are able to decode all 3 files. Here each
transmission has the rate of 1

3R
∗. We upper bound the entropy

of ℓ = 1 transmission with this rate, while using the other
transmission’s decoding capability (in conjunction with the
device storage contents) to derive a tighter bound. We have:

3 ≤ H(Z[1,2], X̄ABC , X̄BCA) (15)
≤ H(Z[1,2]) +H(X̄ABC , X̄BCA|Z[1,2]) (16)
≤ 2M +H(X̄ABC) +H(X̄BCA|Z[1,2], X̄ABC) (17)

≤ 2M +
R∗

3
+H(X̄BCA|Z[1,2], X̄ABC , A,B) (18)

≤ 2M +
R∗

3
+H(X̄BCA, Z3|Z[1,2], X̄ABC , A,B) (19)

≤ 2M +
R∗

3
+H(Z3|Z[1,2], X̄ABC , A,B)

+H(X̄BCA|Z[1:3], X̄ABC , A,B) (20)

≤ 2M +
R∗

3
+H(Z3|Z[1,2], A,B)

+H(X̄BCA|Z[1:3], X̄ABC , A,B,C) (21)

≤ 2M +
R∗

3
+H(Z3|Z[1,2], A,B), (22)

where (22) follows from the fact that
H(X̄BCA|Z[1:3], XABC , A,B,C) = 0 since XBCA is a
function of the files A,B,C which are present inside the
conditioning. Considering the term H(Z3|Z[1,2], A,B), we
have:
H(Z3|Z[1,2], A,B) = H(Z[1:3]|A,B)−H(Z[1,2]|A,B).

(23)
Using (23) in (22), we have:

3 ≤ 2M +
R∗

3
+H(Z[1:3]|A,B)−H(Z[1,2]|A,B). (24)

Now considering all possible subsets of Z[1:3] having cardi-
nality 2, in the RHS of (24), we have the following:

3 ≤ 2M +
R∗

3
+H(Z[1:3]|A,B)−H(Z[2,3]|A,B). (25)

3 ≤ 2M +
R∗

3
+H(Z[1:3]|A,B)−H(Z[1,3]|A,B). (26)

Symmetrizing over the inequalities in (24), (25) and (26), we
have:

3 ≤ 2M +
R∗

3
+H(Z[1:3]|A,B)−

3∑
i,j=1,i̸=j

H(Z[i,j]|A,B)

3
.

(27)
Han’s Inequality: We next state Han’s Inequality [17, The-
orem 17.6.1] on subsets of random variables, which we use
throughout the paper for deriving the new lower bound. Let
{X1, X2, . . . , Xn} denote a set of random variables. Further,
let X[s] ⊆ {X1, X2, . . . , Xn} denote a subset of cardinality s.
Then given two subsets X[r],X[m] where r ≥ m, the statement
of Han’s Inequality can be stated as:

1(
n
r

) ∑
X[r]:|X[r]|=r

H
(
X[r]

)
r

≤ 1(
n
m

) ∑
X[m]:|X[m]|=m

H
(
X[m]

)
m

,

(28)
where the sums are over all possible subsets of size r,m
respectively.

Next, consider Z[1:3] as the set of random variables and the
subset Z[i,j] ⊆ Z[1:3] : i ̸= j,∀i, j = 1, 2, 3 of cardinality
2. Applying Han’s Inequality using the conditional entropy of
the sets, we have:

1(
3
3

) (33)∑
i=1

H
(
Z[1:3]|A,B

)
3

≤ 1(
3
2

) (32)∑
i,j=1
i ̸=j

H
(
Z[i,j]|A,B

)
2

(29)

⇒ 2

3
H

(
Z[1:3]|A,B

)
≤ 1

3

3∑
i,j=1,i ̸=j

H
(
Z[i,j]|A,B

)
. (30)

Substituting (30) into (24), we have:

3 ≤ 2M +
R∗

3
+H(Z[1:3]|A,B)−

2H(Z[1:3]|A,B)

3
(31)

≤ 2M +
R∗

3
+
H(Z[1:3]|A,B)

3
(32)

≤ 2M +
R∗

3
+
H(Z[1:3], C|A,B)

3
(33)

≤ 2M +
R∗

3
+
H(C|A,B) +H(Z[1:3]|A,B,C)

3
(34)

≤ 2M +
R∗

3
+

1

3
⇒ R∗ + 6M ≥ 8. (35)
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Fig. 2. M vs. R tradeoff for a D2D cluster with (a) N = K = 3 and (b) N = K = 10.

Next, we consider s = 1 device storage content, Z1, and three
request vectors (R1, R2, R3) = (A,B,C), (R1, R2, R3) =
(B,C,A) and (R1, R2, R3) = (C,A,B) along with
transmissions X̄ABC = {X2

ABC , X
3
ABC}, X̄BCA =

{X2
BCA, X

3
BCA}, X̄CAB = {X2

CAB , X
3
CAB} which are capa-

ble of decoding all 3 files. Each composite transmission is of
rate 2

3R
∗. We upper bound the entropy of ℓ = 2 transmissions

with their rate. Thus we have:
3 ≤ H(Z1, X̄ABC , X̄BCA, X̄CAB) (36)
≤ H(Z1) +H(X̄ABC , X̄BCA, X̄CAB |Z1) (37)
≤M +H(X̄ABC , X̄BCA|Z1)

+H(X̄CAB |Z1, X̄ABC , X̄BCA) (38)

≤M + 2 · 2R
∗

3
+H(X̄CAB , Z2|Z1, X̄ABC , X̄BCA) (39)

≤M +
4R∗

3
+H(Z2|Z1, X̄ABC , X̄BCA, A,B)

+H(X̄CAB |Z[1,2], X̄ABC , X̄BCA, A,B,C) (40)

≤M +
4R∗

3
+H(Z2|Z1, A,B) (41)

≤M +
4R∗

3
+H(Z[1,2]|A,B)−H(Z1|A,B), (42)

where, (40) follows from the fact that
H(X̄CAB |Z[1,2], X̄ABC , X̄BCA, A,B,C) = 0 since X̄CAB

is a function of the files A,B,C. Considering all possible
subsets of Z[1,2] of cardinality 1 and using a similar
symmetrization argument and Han’s Inequality, we get:

3 ≤M +
4R∗

3
+H(Z[1,2]|A,B)−

H(Z[1,2]|A,B)

2
(43)

≤M +
4R∗

3
+
H(C|A,B) +H(Z[1,2]|A,B,C)

2
(44)

≤M +
4R∗

3
+

1

2
(45)

⇒ 8R∗ + 6M ≥ 15. (46)
Finally, considering again, s = 1 device storage con-
tent, Z1, and three request vectors (R1, R2, R3) =
(A,B,C), (R1, R2, R3) = (B,C,A) and (R1, R2, R3) =
(C,A,B) along with three transmissions X̄ABC =

{X2
ABC , X

3
ABC}, X̄BCA = {X2

BCA, X
3
BCA}, X̄CAB =

{X2
CAB , X

3
CAB} which are capable of decoding all 3 files.

Each transmission has rate 2R∗/3. We upper bound the
entropy of ℓ = 3 transmissions by their rates. We have:
3 ≤ H(Z1, X̄ABC , X̄BCA, X̄CAB) (47)
≤ H(Z1) +H(X̄ABC) +H(X̄BCA) +H(X̄CAB) (48)

≤M + 3
2

3
R∗ (49)

⇒ 2R∗ +M ≥ 3. (50)
Finally, combining (12), (13) and (14), gives the proposed
lower bound on the optimal transmission rate as shown in
Figure 2(a). The last bound on the rate given in (50) is tight
only in the case when the transmissions are almost independent
of each other. The proposed converse is tight at the point M =
N
K where we show that the achievable point proposed in [16,
Theorem 1] is optimal. For increasing N,K we can see from
Figure 2(b) that the proposed converse significantly improves
on the existing bounds from [16, Theorem 2].

V. CONCLUSION

In this paper, we presented a new information theoretic
lower bound for a self-sustaining D2D network. We have
leveraged Han’s Inequality to better model the interaction of
shared content stored in the device memories and file decoding
capability of multicast transmissions to derive new lower
bounds which are generally tighter than the existing cut-set
based bounds. Using the new lower bound, we characterized
the device storage vs. transmission rate tradeoff of the D2D
network to within a maximum constant multiplicative factor
of 8 for all possible values of problem parameters.

APPENDIX A
PROOF OF THEOREM 1

Let there be a library of N ∈ N+ files F[1:N ] each of unit
size (without loss of generality), and K ∈ N+ devices in the
D2D cluster, with storage contents Z[1:K]. The self sustain-
ability condition of the D2D cluster, we have KM ≥ N .
Let s be an integer such that s ∈ {1, 2, . . . ,K}. Consider



the first s device storage contents, Z[1:s], and a request vector
(R1, R2, . . . , Rs, Rs+1, . . . , RK) = (1, 2, . . . , s, ϕ, . . . , ϕ) i.e.,
the first s requests are unique files while the remaining K− s
can be for arbitrary files. To service this request consider the
composite transmission vector:

X̄1 =


Xs+1

(1,2,...,s,ϕ,...,ϕ)

Xs+2
(1,2,...,s,ϕ,...,ϕ)

...
Xs+K

(1,2,...,s,ϕ,...,ϕ)

 , (51)

where Xs+1
(1,2,...,s,ϕ,...,ϕ) = ψ(F[1:s],F[K−s]) denotes the mul-

ticast transmission from the (s + 1)−th device to service
the request of the s devices. Note that the files in the set
F[K−s], denoting the requests of the other K − s devices,
are considered arbitrary. For achieving optimal transmission
rate R∗(M), each device in the D2D cluster multicasts with a
rate of R∗(M)/K. Thus the rate of each composite transmis-
sion vector is given by K−s

K R∗(M). Next, we note that the
composite transmission vector X̄1, composed of (K− s) sub-
multicast transmissions, along with the contents of s device
memories is capable of decoding s files i.e., F[1:s]. Similarly,
consider a request vector (R1, R2, . . . , Rs, Rs+1, . . . , RK) =
(s + 1, s + 2, . . . , 2s, ϕ, . . . , ϕ) where the first s requests are
again for unique files and rest are arbitrary. A composite
transmission vector

X̄2 =


Xs+1

(s+1,s+2,...,2s,ϕ,...,ϕ)

Xs+2
(s+1,s+2,...,2s,ϕ,...,ϕ)

...
Xs+K

(s+1,s+2,...,2s,ϕ,...,ϕ)

 , (52)

along with device storage contents Z[1:s], can decode another
s files F[s+1:2s]. Considering ⌈N/s⌉ composite transmission
vectors X̄[1:⌈N/s⌉] and s device storage contents Z[1:s], the
library of files F[1:N ] can be completely decoded. Thus, we
have:

N ≤ H
(
Z[1:s], X̄[1:⌊N/s⌋]

)
(53)

≤ H
(
Z[1:s]

)
+H

(
X̄[1:⌊N/s⌋]|Z[1:s]

)
(54)

≤ sM +H
(
X̄[1:⌊N/s⌋]|Z[1:s]

)
(55)

≤ sM +H
(
X̄[1:ℓ]|Z[1:s]

)
+H

(
X̄[ℓ+1:⌈N/s⌉]|Z[1:s], X̄[1:ℓ]

)
(56)

≤ sM +
ℓ(K − s)R∗(M)

K
+H

(
X̄[ℓ+1:⌈N/s⌉]|Z[1:s], X̄[1:ℓ], F[1:ℓs]

)
(57)

≤ sM +
ℓ(K − s)R∗(M)

K
+H

(
X̄[ℓ+1:⌈N/s⌉], Z[s+1:s+µ]|Z[1:s], X̄[1:ℓ], F[1:ℓs]

)
(58)

≤ sM +
ℓ(K − s)R∗(M)

K
+H

(
Z[s+1:s+µ]|Z[1:s], X̄[1:ℓ], F[1:ℓs]

)︸ ︷︷ ︸
,δ

+H
(
X̄[ℓ+1:⌈N/s⌉]|Z[1:s+µ], X̄[1:ℓ], F[1:ℓµ+ℓs]

)︸ ︷︷ ︸
,λ

, (59)

where (57) follows from the fact that each composite trans-
mission vector has rate K−s

K R∗(M) and that the device
storage contents, Z[1:s], along with the composite transmission
vectors X̄[1:ℓ] are capable of decoding the files F[1:ℓs]. In
(58), µ = min

{⌈
N−ℓs

ℓ

⌉
,K − s

}
is the number of additional

device memories which, along with the transmissions X̄[1:ℓ]

can decode all N files. For s = K, we have:
H

(
X̄[1:⌈N/s⌉]|Z[1:s]

)
= 0, (60)

and (55) yields the self-sustainability condition KM ≥ N .
Upper Bound on δ: We consider the factor δ, from (59):

δ = H
(
Z[s+1:s+µ]|Z[1:s], X̄[1:ℓ], F[1:ℓs]

)
(61)

≤ H
(
Z[s+1:s+µ]|Z[1:s], F[1:ℓs]

)
(62)

= H
(
Z[1:s+µ]|F[1:ℓs]

)
−H

(
Z[1:s]|F[1:ℓs]

)
. (63)

Considering all possible subsets of Z[1:s+µ] having cardinality
s, i.e., all possible combination of s device storage contents in
(53), and all possible combinations of files in the set F[K−s] for
each transmission X̄[1:ℓ] in (57), we can obtain

(
s+µ
s

)
different

inequalities of the form of (63). Symmetrizing over all the
inequalities, we have:

δ ≤ H
(
Z[1:s+µ]|F[1:ℓs]

)
− 1(

s+µ
s

) (s+µ
s )∑

i=1

H
(
Zi
[s]|F[1:ℓs]

)
,

(64)
where, Zi

[s] is the i-th size-s subset of Z[1:s+µ]. Next, consider
Z[1:s+µ] as a set of random variables and subsets Zi

[s] ⊆
Z[1:s+µ] ∀i = 1, . . . ,

(
s+µ
s

)
. Applying Han’s Inequality from

(28), we have:

1(
s+µ
s+µ

) (s+µ
s+µ)∑
i=1

H
(
Z[1:s+µ]|F[1:ℓs]

)
s+ µ

≤ 1(
s+µ
s

) (s+µ
s )∑

i=1

H
(
Zi
[s]|F[1:ℓs]

)
s

(65)

⇒ s

s+ µ
H

(
Z[1:s+µ]|F[1:ℓs]

)
≤ 1(

s+µ
s

) s+µ∑
i=1

H
(
Zi
[s]|F[1:ℓs]

)
.

(66)
Substituting (66) into (64), we have:

δ ≤ H
(
Z[1:s+µ]|F[1:ℓs]

)
− s

s+ µ
H

(
Z[1:s+µ]|F[1:ℓs]

)
(67)

=
µ

s+ µ
H

(
Z[1:s+µ]|F[1:ℓs]

)
(68)

≤ µ

s+ µ
H

(
Z[1:s+µ], F[ℓs+1:N ]|F[1:ℓs]

)
(69)

=
µ

s+ µ
H

(
F[ℓs+1:N ]|F[1:ℓs]

)
+H

(
Z[1:s+µ]|F[1:N ]

)︸ ︷︷ ︸
=0

(70)

≤ µ

s+ µ
(N − ℓs)+, (71)

where (70) follows from the fact that the device storage
contents are functions of all the N files in the library.
Upper Bound on λ: We consider the factor λ, from (59). We
have two cases:
Case 1: N ≤ ℓs+ ℓµ: We consider the case that all N files



can be decoded with µ ≤ K − s additional device storage
contents and transmissions X̄[1:ℓ], within the conditioning in
the factor λ in (59)i.e., ℓs+ ℓµ ≤ N . We have:

λ = H
(
X̄[ℓ+1:⌈N/s⌉]|Z[1:s+µ], X̄[1:ℓ], F[1:N ]

)
≤ H

(
X̄[ℓ+1:⌈N/s⌉]|Z[1:s+µ], F[1:N ]

)
= 0, (72)

which follows from the fact that the transmissions are func-
tions of all N files.
Case 2: N > ℓs+ ℓµ: We consider the case where µ = K−s
additional device storage contents along with the transmissions
X̄[1:ℓ], cannot decode all N files. We have:

λ = H
(
X̄[ℓ+1:⌈N/s⌉]|Z[1:K], X̄[1:ℓ], F[1:Kℓ]

)
≤ H

(
X̄[ℓ+1:⌈N/s⌉]|Z[1:K]

)
= 0, (73)

which follows from the fact that KM ≥ N i.e., all files
are stored within the collective device memories in the D2D
cluster and hence all transmissions are functions of all the
device storage contents. Thus combining (72) and (73) we
have:

λ = 0. (74)
Substituting (71) and (74) into (59), we have:

N ≤ sM +
ℓ(K − s)

K
·R∗(M) +

µ

s+ µ
(N − ℓs)+

⇒R∗(M) ≥

N − sM −
(

µ
s+µ

)
(N − ℓs)+

ℓ
(
K−s
K

)
 . (75)

Optimizing over all parameter values of s, ℓ, µ, we have:
R∗(M) ≥ RLB(M) ,

max
s∈{1,...,K},

ℓ∈{1,...,⌈N
s ⌉}

N − sM −
(

µ
s+µ

)
(N − ℓs)+

ℓ
(
K−s
K

)
 , (76)

which completes the proof of Theorem 1.
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