View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

provided by CiteSeerX

Synthesizing Structured Text
from Logical Database Subsets

Alkis Simitsis
IBM Almaden Research Center
San Jose, California, USA
asimits@us.ibm.com

Yannis Alexandrakis
National Technical University of Athens
Athens, Hellas

i.alex@dblab.ntua.gr

ABSTRACT

In the classical database world, information access has been based
on a paradigm that involves structured, schema-aware, queries and
tabular answers. In the current environment, however, where infor-
mation prevails in most activities of society, serving people, ap-
plications, and devices in dramatically increasing numbers, this
paradigm has proved to be very limited. On the query side, much
work has been done on moving towards keyword queries over struc-
tured data. In our previous work, we have touched the other side as
well, and have proposed a paradigm that generates entire databases
in response to keyword queries. In this paper, we continue in the
same direction and propose synthesizing textual answers in response
to queries of any kind over structured data. In particular, we study
the transformation of a dynamically-generated logical database sub-
set into a narrative through a customizable, extensible, and template-
based process. In doing so, we exploit the structured nature of
database schemas and describe three generic translation modules
for different formations in the schema, called unary, split, and join
modules. We have implemented the proposed translation procedure
into our own database front end and have performed several exper-
iments evaluating the textual answers generated as several features
and parameters of the system are varied. We have also conducted
a set of experiments measuring the effectiveness of such answers
on users. The overall results are very encouraging and indicate the
promise that our approach has for several applications.

1. INTRODUCTION

In the classical database world, information access has been based
on a paradigm that involves structured, schema-aware, queries and
tabular answers. In the current computing environment, however,
where information prevails in most activities of society, serving
people, applications, and devices in dramatically increasing num-
bers, this paradigm has proved to be very limited. On the query
side, much work has been done on moving towards keyword queries
(over structured data), which are much easier to handle for most

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

EDBT’08, March 25-30, 2008, Nantes, France.

Copyright 2008 ACM 978-1-59593-926-5/08/0003 ...$5.00.

428

Georgia Koutrika
Stanford University
Palo Alto, California, USA
koutrika@stanford.edu

Yannis loannidis
University of Athens
Athens, Hellas
yannis@di.uoa.gr

users. On the answer side, however, there has been very little work
to move to different paradigms. Indeed, a table may be ideal for
many kinds of information, e.g., the daily transactions in a bank-
ing environment, a person’s contacts list, or the movies shown in
theaters around town, and for particular types of users, e.g., peo-
ple with technical background. Nevertheless, there are many other
scenarios, involving different users, applications, or query contexts,
where other forms of answers are suitable. For example, enterprises
often need subsets of their regular, large, databases that conform to
the original schemas and satisfy all constraints for use in realistic
tests of new applications before deploying them to production. In
our previous work, we have dealt with the above scenario and have
proposed the generation of entire databases in response to keyword
queries [15, 22]. In this paper, we continue in the same direction
and propose synthesizing textual answers in response to queries (of
any form) over structured data.

As a motivating example from an actual, real-world situation,
consider an international group of leading organizations that oper-
ate in the environmental sector, including ESA (European Space
Agency), IMO (International Maritime Organization), UNESCO
IOC (Intergovernmental Ocean Committee), several coast-guard
offices, and others [1]. One typical activity in which these organiza-
tions are involved is the preparation of periodical reports on specific
environmental topics of concern. For example, during the first few
hours and days following an oil spill, scientists from these orga-
nizations retrieve data from multiple data sources (some archival,
others injected with real-time data from satelite measurements) and
continuously generate new assessment reports on the status of the
marine and coastal environment in the area of the spill and the po-
tential impact on its biological ecosystem. These reports are ad-
dressed to governmental agencies, they typically follow a prespec-
ified layout, and their contents are essentially derived from the re-
sults of particular queries. By generating these results in textual
form (and attaching any related raw data and graphs necessary),
the reports could be generated almost entirely automatically, sav-
ing valuable time for the fight against the spill.

In the same spirit as above, textual answers can be useful in sev-
eral other practical cases: a short description of a museum’s ex-
hibits, possibly customized to a visitor’s particular interests; a brief
history of a patient’s medical conditions; the highlights of a collec-
tion in a digital library, with a few sentences on the main authors in
the collection; a summary of a theater play in an information portal;
and others. In such situations, textual answers are usually preferred
by all users, independent of their technical experience. Moreover,
the formation of textual answers becomes critical in all situations

https://core.ac.uk/display/357352317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

for people with visual impairments or reading disabilities. Using a
speech recognizer [6, 20] to convert a speech signal to a query and
a text-to-speech system (TTS) [4, 5, 20] to convert the textual form
of the query answer into speech, these people would be given the
chance to interact with information systems, orally pose queries,
and listen to their answers.

In this paper, we study the transformation of the output of a query
over a relational database, which we call a logical database sub-
set, into a narrative. In our approach, which could be generalized
to other data models as well, we exploit the structured nature of
the underlying database schema and generate readable and con-
cise query answers. In doing so, we face two main technical is-
sues, which we address as follows: to enrich the semantics of the
database schema graph, we resort to template logic and provide a
language and a mechanism that allow the definition of customiz-
able, reusable, and extensible templates for the automated transla-
tion of individual structures of the graph; to traverse the graph, we
devise three generic translation modules, for three different schema
formations, and offer a translation algorithm that synthesizes a nar-
rative from the tuples contained in a logical subset.

Contributions. Specifically, the main contributions of this paper
are the following:

e We introduce a framework for transforming structured data
into structured text (Section 3) and provide a template mech-
anism and language for semantically annotating a database
schema (Section 4).

e We formulate an algorithm for translating a logical database
subset into a narrative that synthesizes the contents of the
subset following a set of rules and templates. This includes
three methods for translating arbitrary combinations of rela-
tions (modules) of three particular forms, respectively (Sec-
tion 5): sequences of relations (unary modules); individual
relations connected with two or more relations (split mod-
ules); and two or more relations connected to individual re-
lations (join modules).

e We present our implemented prototype system and our ex-
perimental evaluation. In particular, we demonstrate how the
narrative produced is affected as several features and param-
eters of our approach are varied, as well as how the response
time of the system is affected by its configuration. We have
also conducted a set of experiments measuring the impact
that different answers, generated by different configurations,
have on users. Overall, the results of our experiments are
very encouraging and indicate a strong potential for our ap-
proach. (Section 6.)

2. RELATED WORK

The problem of facilitating information access to databases has
two facets: facilitating querying and improving system answers.

In the first direction, keyword queries have been proposed as
a way to relax the schema-aware, structured query paradigm over
structured data (e.g., [2, 12, 14]) or semi-structured data (e.g., [8,
9, 10, 13]). Précis queries are unstructured queries over relational
data with multi-relation databases as answers [15]. RDBMS ven-
dors also present solutions that create full text indexes on text at-
tributes of relations in order to make them searchable [7, 11, 16].

The problem of facilitating the non-technical user has been also
discussed in the field of natural language processing (NLP). Sev-
eral works are presented concerning NL Querying [17, 27], NL
and Schema Design [18, 25], NL and DB interfaces [3, 19], and

429

Question Answering [23, 26]. As far as we are aware of, related lit-
erature on NL and databases, has focused on totally different issues
such as the interpretation of users’ phrasal questions to a database
language, e.g., SQL, or to the automatic database design, e.g., with
the usage of ontologies [24]. Several recent efforts use phrasal pat-
terns or question templates to facilitate the answering procedure
[19,23].

In earlier work, we have described the idea of constructing a pré-
cis, i.e., a close to natural language representation of information in
a database, using the information conveyed by the database graph,
which is properly annotated in order to enhance its semantics [21].
We have presented the translation of a single relation into stylized
textual form that resembles a narrative and have provided a sketch
for the translation of a simple join relationship between two rela-
tions. In this paper, we build upon the ideas suggested in [21] and
significantly extend them as follows: (a) we provide a framework
for the presentation of structured data as structured text; (b) we for-
mally describe the translation of a logical subset; (c) we present a
method for the translation of any arbitrary combination of relations
schematically formed either as a unary or a split or a join module;
(d) we support the translation of an arbitrary logical subset; (e) we
identify the limitations of the translation and provide solutions for
its applicability; (f) we present our implemented prototype system;
and (g) we evaluate our approach both from an efficiency as well
as an effectiveness viewpoint.

The translation process presented resembles those used for han-
dling natural language querying over relational databases (e.g., [19,
23]) in that they all involve some amount of additional predefi-
nitions for the meanings represented by relations, attributes and
primary-to-foreign key joins. However, natural language query
processing is more complex, since it has to handle ambiguities in
natural language syntax and semantics whereas our approach uses
well defined templates to rephrase relations and tuples. Further-
more, it has the advantage that it is not limited to any dictionary,
because it concerns relational databases where the schemata are
predictable and familiar to an expert, e.g., the dba; thus the tem-
plate mechanism, presented later in this paper, is sufficient for this
aim. Moreover, this work considers arbitrary, dynamically gener-
ated, logical database subsets whose form is only limited to the
database schema graph. Works, such as [23], use a set of pre-
defined question patterns, which cannot claim for completeness,
i.e., this set is difficult to capture any possible query over a given
database, and they produce pre-specified answers, where only the
values in the patterns change. This is in contrast to our approach,
which takes as input a logical subset and uses templates and con-
structs of sentences defined on the constructs of the database graph
to generate dynamic answers. Template multi-utilization is a plus.

3. FRAMEWORK

In this section, we first introduce our data model and several key
concepts that are pertinent to the problem we try to solve, and then,
we formulate the translation problem.

Data Model. We consider a relational database D represented by
its database schema graph G(V,E), which is a directed graph cor-
responding to the schema of D. There are two types of nodes in
V: (a) relation nodes, R - one for each relation in the schema; and
(b) attribute nodes, A - one for each attribute of each relation in the
schema. Likewise, edges in E are: (a) projection edges, II - one for
each attribute node, emanating from its container relation node and
ending at the attribute node, representing the possible projection of
the attribute in a query answer; and (b) join edges, J - emanating
from a relation node and ending at another relation node, represent-

ing a potential join through a primary key - foreign key relationship
between these relations. Therefore, a database schema graph is a
directed graph G(V,E), where V=RUA and E =ITUJ. Since
projection edges are always from relation nodes to attribute nodes,
they are typically indicated without their direction, which is easily
inferred by the types of the nodes. Both nodes and edges are an-
notated by appropriate template labels. (We will elaborate on these
templates in section 4.) Since a join edge involves two relations, it
may have two different directions; in our setting, we consider that
an appropriate template label corresponds to each direction.

A logical database subset L of a database D is a subgraph of
G(V,E) having the following properties: (a) it contains a subset of
the relations in the original database schema, (b) it involves some
of the attributes of each of these relations, (¢) it contains a subset of
the tuples that each of these relations had in the original database
(projected on the set of attributes that are present in the subset), and
(d) it contains a subset of the edges, along with their directions, in
the original database graph. The nodes and edges of this subgraph
are annotated by the respective template labels, which have been
specified a priori in the database schema graph.

A logical database subset can be derived from a database in var-
ious ways. For example, it may be generated by a set of queries
that aim at building a new, smaller, database that captures the re-
lationships between tuples in the original one. Or it may be the
output of a précis query [15, 22], which is an unstructured query
whose answer is a multi-relation database that contains tuples that
match the query terms as well as tuples that are implicitly related
to them in the database aiming at providing greater insight to the
user. How a logical subset is described and shaped, i.e., which re-
lations, attributes, and tuples should be present in it or which join
edges connect the relations involved and in which direction, and
how it is generated are both issues that are orthogonal to our trans-
lation framework and algorithms. For instance, if it is the result of a
précis query, its shape and tuples are determined by semantics and
constraints of that query.

In order to synthesize a narrative from a given logical database
subset L of D, the starting point (central element) of the narration
needs to be given too. This point is a relation Ry, which will be
referred to as the initial relation in the rest of the paper. Hence, the
logical subset schema graph is a rooted graph with relation Ry, as
the root.

Example. We consider a movie database described by the follow-
ing schema; primary keys are underlined.
THEATRE (tid,name, phone, region)
MOV IE (mid,title,year,did) GENRE (mid, genre)
ACTOR(aid,aname,blocation,bdate) CAST (mid,aid,role)
DIRECTOR(did,dname,blocation,bdate,nominat)
An example logical subset containing information about the direc-
tor Woody Allen, such as personal information and some movies
that he has directed, is depicted in Figure 1. It contains two re-
lations with a subset of their attributes and four tuples, one in
relation DIRECTOR and three in relation MOVIE. The relation
DIRECT OR (depicted in grey) is the initial relation. Directed edges
show the direction of translation.

PLAY (tid, mid , date)

Heading attributes. Given a database D, in order to describe
the semantics of a relation R; along with its attributes in natu-
ral language, we consider that R; has a conceptual and a physical
meaning. Its conceptual meaning is expressed by an appropriate
comment attached to the relation. For instance, in most modern
DBMS’s we can use the COMMENT statement to add a comment
on a relation or an attribute. For simplicity in the presentation, we
refer to the conceptual meaning of a relation (or an attribute) as

430

(DID)
L

—(owmes) ((zrmie)
—(BDATE) (YEAR)—

_[Woody Allen ; 1 December, 1935 ; Brooklyn, New York, usz.\]

DIRECTOR

Melinda and Melinda ; 2004

Match Point ; 2005
; 2003

Anything Else

Figure 1: An example logical database subset

its name. The physical meaning of a relation is represented by the
name of one of its attributes that most characterizes the tuples of
this relation. This attribute is termed the heading attribute and it is
depicted as a hachured rounded rectangle.

The heading attribute hg of a relation R is defined as the at-
tribute whose name represents the physical meaning of that rela-
tion. This attribute should always be present in the logical sub-
set, which is to be translated, independently of the method or the
requirements/constraints used for its creation. A domain expert
makes the selection of heading attributes at the phase of initial con-
struction of the database schema graph.

We do not anticipate that all relations should have a heading at-
tribute. For instance, a relation used only for storing n-to-m re-
lationships between different entities does not require a heading
attribute. Usually, such relations are used only for interconnecting
tuples found in other relations and have no attributes in the logical
database subset (apart from those used in the join edges participat-
ing in the primary and foreign keys.)

Labels. Each node n is annotated by a label /(n) that represents
the conceptual meaning —i.e., the name— of the node and is stored
as a comment on the specified node. For example, the label of the
attribute node TITLE is “title”. Each projection edge e€II that
connects an attribute A% with its container relation R; is annotated
by a label that signifies the meaning, in terms of natural language,
of the relationship between this attribute and the heading attribute
of the respective relation. If a projection edge connects a relation
node with its heading attribute, then the respective label reflects
the relationship of this attribute with the conceptual meaning of
the relation; e.g., “the TITLE of a MOVIE”. Each join edge ec]J
between two relations has a label that signifies the relationship be-
tween the heading attributes of the relations involved; e.g., “the
GENRE (.GENRE) of a MOVIE (.TITLE)”. The label of a join
edge involving a relation without a heading attribute signifies the
relationship between its previous and subsequent relations. The la-
bels are defined by the designer/administrator of the database. In
the following section, we present a template mechanism that facil-
itates this procedure.

Example. Consider the logical subset depicted in Figure 1. Rela-
tion MOV IE conceptually represents “movies” in real world; thus,
a comment containing the concept MOVIE may express its con-
ceptual meaning. Moreover, “title” is the main characteristic of a
“movie”; thus, relation MOV IE should have TITLE as its head-
ing attribute, since the “title” captures the physical meaning of a
“movie”. A possible label attached to the projection edge between
relation MOV IE and its attribute Y EAR may be: “the YEAR of a
MOVIE (.TITLE)”.

Constraints. The translation of the information stored in one or
more relations can be realized by different means. Therefore, for
the translation, a set of constraints may be provided to facilitate
the construction of answers following different formats. Such con-
straints may determine: (a) the length of a phrase created w.r.t. the
number of words or lines contained in it; (b) the maximum number

of tuples that should be considered in the result; and (c) the means
by which different design structures should be translated. We will
elaborate on the functionality and the usage of the constraints in the
presentation of our translation algorithm (see subsection 5.3.)
Problem Description. Given the schema graph G describing a
database D, a logical subset L of D, an initial relation Ry in it, and a
set of translation constraints, the problem of synthesizing text from
a logical database subset is defined as constructing a textual synthe-
sis of the tuples in the subset that captures the semantics conveyed
by the database schema G(V,E) and the correlation of relations
through primary and foreign keys starting from the initial relation.

4. TEMPLATE MECHANISM

The text synthesis of tuples contained in a logical subset follows
the database schema and the correlation of relations through pri-
mary and foreign keys. This process is facilitated by alphanumeric
expressions called template labels. First, we define the template
labels, and then, we present a language for their construction.

Templates. A template label, label(u,z), is assigned to each edge
e(u,z)€E of the database schema graph G(V.E). This label is
used for the interpretation of the relationship between the values
of nodes u and z in a narrative. The template label label(u,z) of
an edge e(u,z) is an alphanumeric expression constructed by the
concatenation of the following elements: (a) the label, /(u) —i.e.,
the name- of the starting or source node; (b) the label, /(z) —i.e.,
the name— of the ending or target node; (c) a finite set of alphanu-
meric expressions, expr;; and (d) a finite set of constructs supported
by our template language presented next. A simple template label
may have the form:

label(u,z) = expri +1(u) + expry +1(z) + expr3 (1)

where exprl, expr2, expr3 are alphanumeric expressions and the
operator “4” acts as a concatenation operator.

A template label for a node contains the label of the node and a
finite set of expressions. However, for simplicity of the presenta-
tion, we will consider that such a template is the label of the node.

In order to use template labels or to register new ones, we use a
simple language for templates that supports variables, loops, func-
tions, and macros.

In a template, when we refer to the conceptual meaning of a
node, we simply use its name. When an instance of the node is
needed, then we use the node as a variable. There are two kinds of
variables: parameter variables and loop iterators.

Parameter Variables. Parameter variables are marked with a @
symbol at their beginning and they are replaced by values at instan-
tiation time. In several cases, the values returned in a query result
from a certain attribute could be more than one. Then, we use a list
of parameters denoted as:

@ < parametername > | |
For such lists, their length is provided at instantiation time.

Example. A template label for the projection edge e(THEATRE,
PHONE) could be:

label(THEATRE, PHONE) =
“The ” 4 [((PHONE) + * of the ” + |(THEATRE) +
@THEATRE.NAME + “is” + @THEATRE .PHONE

where [(PHONE) = “phone” and ((THEATRE) = “theatre” stand
for the conceptual meaning of the attribute PHONE and the rela-
tion THEATRE, respectively. Assuming that the parameter values

@THEATRE NAME and @THEATRE.PHONE get the values
“ALPHAVILLE” and “12345”, a valid narrative for this edge is:

“The phone of the theatre ALPHAVILLE is 12345

Loop iterators. Loop iterators are implicitly defined in the loop
constraint, as we will discuss later. In each round of the loop, all
the properly marked appearances of the iterator in the loop body are
replaced by its current value (similarly to the way a C preprocessor
treats {DEFINE statements). Iterators that appear marked in the
loop body are instantiated even when they are part of another string
or a variable name. We mark such occurrences by enclosing them
between $’s. This functionality enables referencing all values of a
parameter list and facilitates the creation of an arbitrary number of
pre-formatted strings.

Functions. We employ a built-in function:
arityOf (< list_of_parameters >)

which returns the arity of a list of parameters, mainly in order to
define upper bounds in loop iterators. All the well-known string
manipulation functions are supported too.

Loops. Loops enhance the genericity of the templates by allowing
the designer to handle templates with unknown number of variables
and with unknown arity for parameters involved. The general form
of loops is:

[< simple constraint >] {(loop body)} (2)

where simple constraint has the form:
<lower><operator><iterator><operator><upper>

We consider only linear increase with step equal to 1. Upper
bound and lower bound (default value 1) can be arithmetic expres-
sions involving arityOf() function calls, variables and constants.
Valid arithmetic operators are +, —, /, * and valid comparison op-
erators are <, >, =, all with their usual semantics. During itera-
tions, the loop body is reproduced and at the same time all marked
appearances of the loop iterator are replaced by its current value, as
described before. Loop nesting is permitted.

Example. Consider the following case:

[i < arityOf(MOVIE)] {MOVIE_Si}

The lower bound has the default value 1, and the upper bound is
limited to the number (arity) of attributes of the relation MOV IE.
Thus, the iterator i takes values between 1 and the total number
of attributes of MOVIE. The loop body contains a parameter list
that stores the attributes involved in the relation MOVIE. After
the evaluation of the function arityOf, the loop that represents the
attributes of MOV IE has the following form:

i <2] {MOVIE_i}

and at the instantiation of the parameters, the following results are
obtained: MOVIE_1 = TITLE (first attribute) and MOVIE_2 =
YEAR (second attribute).

Macros. We introduce macros to ease the definition and to improve
the readability of templates. Macros facilitate attribute and variable
name expansion. For instance, one major problem in defining a
language for templates is the difficulty in dealing with attributes or
attribute values of arbitrary arity. At the template level, it is not
possible to pin-down the number of (a) attributes that are projected
in the logical subset, and (b) values of the involved attributes, to a
specific value. Hence, in order to find out:

type template macro

instantiated macro

evaluated macro

DEFINE MOVIES_LIST as

DEFINE MOVIES_LIST as

MOVIES_LIST = {

{@MOVIE.TITLE[i]}

th‘;‘f;u‘t’e‘cs [i < arityOf(MOVIE)] {MOVIE_Si$, } i < 2] {MOVIE_1,} TITLE,
i =arityOf(MOVIE)) {MOVIE_i} i=2] {MOVIE_2} YEAR }
DEFINE MOVIES_TITLES_LIST as DEFINE MOVIES_TITLES_LIST as
YR i < 3] MOVIES_TITLES_LIST = {
. [i <arityOf(@MOVIE.TITLE)) g L
series of . {@MOVIE.TITLE_1,} Match Point”,
{@MOVIE TITLE[i],} s N
values li = arityO f(@QMOVIE.TITLE)] {@MOVIE.TITLE_2,} Melinda and Melinda”,
i y [i=3] “Anything Else” }

{@MOVIE.TITLE_3}

Figure 2: An example macro instantiation concerning the relation MOVIES depicted in Figure 1

(a) the attributes of a relation R projected in a certain logical sub-
set, we create a series of attributes as follows:

DEFINE REL_R_LIST as
[i < arityOf(R)] {R_i,}
[i = arityOf(R)] {R_i}

(b) the values of an attribute A of a relation R corresponding to a
certain logical subset, we create a series of values as follows:

DEFINE REL_R_ATTR_A_LIST as
[i <arityOf(@R.A)] {@R.A[i],}
[i = arityOf(@R.A)] {@R.A[i]}
Note that the existence of the two loops in each macro serves to

@

avoid the presence of an erroneous “,” after the last value in a list.

Example. For the example logical subset of Figure 1, the determi-
nation of the attribute and value series for the relation MOV IE and
its attribute TITLE, respectively, is realized as shown in Figure 2
(from left to right.)

S. TRANSLATION

In this section, we describe a method that parses a logical database
subset and composes a synthesis of tuples in a narrative. The nodes
and edges of the logical subset are already annotated by the appro-
priate template labels, which have been constructed by an adminis-
trator following the mechanism presented in the previous section.

The translation starts from the initial relation and continues fol-
lowing the correlation of the relations through the edges of the log-
ical subset. Each clause created renders information stored in a re-
lation; e.g., “Woody Allen was born in New York”, and/or captures
the relationships between tuples stored in relations interconnected
through join edges; e.g., “Woody Allen has directed the movie The
Jade Scorpion”. These relations will be referred as neighbors. The
translation terminates when the traversal of the logical subset graph
is complete. At this point, all clauses generated are listed.

In what follows, we first describe the translation of the informa-
tion stored in a single relation. Then, we present the construction of
phrases containing information stored in multiple relations, by us-
ing three generic modules that capture the possible schematic rep-
resentations that can be met in the traversal of the logical subset
graph. Finally, we introduce an algorithm that combines the above
for the translation of a logical subset.

5.1 Translation of a single relation

The translation of a single relation results in sentences constructed
by using the values stored in it. For each tuple of this relation a
different sentence is created. The coalescence of all sentences is
driven by the template assigned to the relation by the designer.

There are two alternatives for the representation of a relation’s
content:
(a) using only the heading attribute of the relation or
(b) constructing a phrase determined by one or more macros that
combines the information stored in the heading attribute of a
relation and in the rest of attributes projected in the logical
subset.

The translation of information stored in a relation R is annotated
as R°, when only the heading attribute of R is considered (case a),
and as R®, when information from all the attributes of R is consid-
ered (case b).

In the first case, if the translation mode chosen is R°, then the
clause produced contains only the heading attribute and the tem-
plate label of its projection edge. Usually, such clauses are subor-
dinate clauses, thus, they cannot form separate sentences but they
can form a sentence when joined with a main clause; this is realized
in the translation of multiple relations (see 5.2.)

In the second case, if the translation mode chosen is R®, ex-
haustively, a different clause per attribute should be considered.
Since the value of the heading attribute characterizes the informa-
tion stored in a relation, it is used as the subject and comprises
the first part of each of the sentences. The labels of the projection
edges found in the logical subset are evaluated next. For multiple
attributes of the same relation, inevitably, the same subject has to be
repeated many times. To avoid this, a domain expert should attach
suitable expressions to the projection edges to allow the construc-
tion of composite meaningful sentences. This is facilitated by a
simple find-and-replace mechanism, resolve_common_expressions,
which finds common expressions in the clauses that correspond to
the label attached to each projection edge.

Example. For the translation of relation DIRECT OR depicted in
Figure 1 in the mode R®, assume that the labels of the projection
edges that connect the relation —practically, its heading attribute,
DNAME- to its attributes BDATE and BLOCATION, which store
information about the birth date and birth location of a director,
are the following:

label(DIRECTOR,BDATE) =
@DNAME + “was born” + “on” + @BDATE

label(DIRECTOR,BLOCATION) =
@DNAME + “was born” + “in” + @BLOCATION

When both attributes are involved in the answer, the applica-
tion of the resolve_common_expressions mechanism identifies that
@DNAME and “ was born” are common expressions. Finally, the
clause derived from the DIRECT OR relation can be as follows:

Algorithm Translation of a Relation (T'R)

Input: arelation R, a logical subset L, constraints 7',
translation mode (R*/°)
Output: an array of sentences Sentences| |
Begin
1. Let hg be the heading attribute of R
2. If R° mode {
2.1 Foreach tuple t€R, REL, w.r.t. the constraints T {

2.1.1 Sentences|t] = I(hg)
1}

Else {
2.2 Foreach tuple t€R, REL, w.r.t. the constraints T {
2.2.1 empty Sentences|t] and clause|]
2.2.2 clause(t,hg] = 1(hg)
2.2.3 Foreach attribute A in R, A#hg {
clauselt,A] = label (hg,A)

2.2.4 Sentences|t] < resolve_common_expressions(clause|])

1}

3. Return Sentences] |
End

Figure 3: Algorithm TR
“@DNAME was born on @BDATE in @ BLOCATION”

Formally, the procedure for the translation of the information
stored in a relation is described by the algorithm 7R (Figure 3).

5.2 Translation of multiple relations

A logical subset of a database usually contains more than one re-
lation, and constitutes a graph. As the translation procedure parses
this graph, following the correlation of relations through primary
and foreign keys, three design patterns can be identified, as shown
in Figure 4. The first one, My, represents the simple connection of
two subsequent relations though a join edge (unary module). The
second one, Mg, represents the connection of a source relation to
more than one target relation (split module). The third one, M,
represents the connection of more than one source relation to a sin-
gle target relation (join module).

In order to describe the translation of multiple relations, we first
describe how this procedure is realized in each one of these mod-
ules. In the next subsection, we present an algorithm that describes
the translation of the whole graph.

Unary module. Let us first examine the simple case of two subse-
quent (neighboring) relations R; and R}, depicted in Figure 4 as the
unary module, M. Essentially, if we consider the unary module
in abstraction, then we have to translate the information residing in
both relations R; and R}, taking into consideration the relationship
that joins the two relations. This translation consists of two parts:
one part representing the information stored in the source relation
R; of the join edge and one part corresponding to the target relation
R; and following the join edge between the two relations. Each of
these parts may comprise more than one sentence.

The first part is constructed as discussed in the previous subsec-
tion. We elaborate here on the construction of the sentences of the
second part. In order to capture the relationship between the two
relations, the subject of the respective sentence is the heading at-
tribute of the source relation R; in the join sequence. The rest of
the sentence comprises an expression that usually contains a verb
phrase and a clause representing the information stored in the tar-
get relation R;. The verb phrase is stored as an expression in the
template label tagged on the join edge that connects the relations.
There are two ways to represent the information stored in relation
R; in this template:

e using only its heading attribute (R;- mode) or

433

Figure 4: Different cases for translation of multiple relations

e constructing a phrase combining the information stored in all
its attributes (R; mode).

In the former case, in order to complete the translation of the tar-
get relation, an extra clause is needed representing the information
contained in the remaining attributes of the target relation R;. This
sentence is constructed as described in subsection 5.1 considering
that the target relation is translated in R% mode.

The aforementioned analysis can be formally summarized as fol-
lows. For the unary module My comprising two relations R; and
R; with a direction from the former to the latter, the translation is
realized in two steps:

(i) evaluation of R;® (as described in subsection 5.1)

(ii) evaluation either of
(RS —Rj") O] RJ.' or
(R°—R?)

where R; — R stands for the creation of a phrase having as parts the
information adapted from R; and R, represented by an appropriate
template attached to the join edge between R; and R;. The symbol
W represents the concatenation of different sentences. At the end,
the sentences produced by the two steps are combined to produce
the final result.

Consequently, the translation of a unary module first generates a
sentence containing the complete information stored in the source
relation (step (i)). Then, there are two alternatives to follow in step
(ii). Following the first one, a set of phrases is constructed consist-
ing of: (a) a simple phrase of the form “subject - verb - object” with
the possible addition of some fixed expressions to complement the
phrase, and (b) a phrase for the complete translation of the second
relation of the form ““subject - verb - several subordinate clauses”.

Hence, we observe in step (ii) that the two alternatives are or-
dered by increasing order of construction’s complexity. The second
alternative constructs a more compact, thus more complex, and ap-
pealing phrase. However, the production of such a sentence is not
always feasible due to the potential constraints imposed; in such
case, the first alternative should be followed. In general, the choice
of one of them is driven by the constraints given, but this is further
explained in the subsection 5.3.

Example. In the example of Figure 1, the relation DIRECTOR
is connected to MOV IE through the DID key. This case matches
with the unary module. The subject of the respective clause for the
translation of the single relation DIRECT OR will be the DNAME

attribute. We construct the template clause that corresponds to the
DIRECT OR relation (step (i)) as described in subsection 5.1:

@DNAME + “was born” + “on” +
@BDATE + “in” + @BLOCATION

Next, we should choose any of the two alternatives of step (ii)
w.rt. the constraints given. Let us consider that the constraints
allow the choice of the second one: Rio — R *. Assume, that the
respective template clause for the MOV IE relation is the following:

@TITLE +“ (" + @QYEAR +)"

Since the relation MOV IE may contain more than one tuple, a
macro is needed to iterate the above template among the tuples.
We proceed with the clause composed by the join relationship that
connects DIRECTOR and MOV IE. The template label of this re-
lationship can be represented by the following formula:

label(DIRECTOR,MOVIE) =
expr; + @DNAME + expry + MOVIE_LIST

The macro MOVIE_LIST and expressions may be defined as:

DEFINE MOVIE_LIST as
[i <arityOf(@TITLE))
{@TITLE[i] +* (”+ @YEAR[$:i$] +),”}
[i = arityOf(@TITLE))
{@TITLE[i]+“ (" + @YEAR[i] +*).”}
expry < “Asadirector,”
expry «— “'swork includes”

Therefore, after the instantiation of the template (see Figure 2)
and the appropriate concatenations, the result for “Woody Allen”
located in the relation DIRECTOR is:

“Woody Allen was born on December 1, 1935 in Brooklyn,
New York, USA. As a director, Woody Allen’s work includes
Match Point (2005), Melinda and Melinda (2004), Anything
Else (2003).”

If we had considered the first alternative of step (ii), then the
result would be different in that the translation of the information
residing in relation MOV IE would be represented by more than one
clause. A possible interpretation of this w.r.t. the example of Figure
1 might be the following:

“Woody Allen was born on December 1, 1935 in Brooklyn,
New York, USA. As a director, Woody Allen’s work includes
Match Point, Melinda and Melinda, Anything Else. Match
Point was released in 2005. Melinda and Melinda was re-
leased in 2004. Anything Else was released in 2003.”

With the resolve_common_expressions mechanism mentioned in
the previous subsection, a more elegant result would be produced.

However, the two results have some critical differences. The first
one is more compact, it does not have any overlaps, and it resem-
bles natural language in a great extent. On the other hand, its
creation is more complex and in some cases even infeasible. For in-
stance, if the relation MOV IE in the logical subset contained more
attributes and the creation of more than one clause was needed to
describe them, then such elegant result is difficult to be created.
The second result is constructed in a straightforward manner and
it consists of a coalescence of several simple phrases. This kind of
synthesis can describe more complex logical subsets.

Split module. Another case to be examined concerns the corre-
lation between a single source relation and more than one target

relation, depicted in Figure 4 as the split module Ms. As before,
the description of the module comprises two parts: one that corre-
sponds to the source relation and one that describes the connection
between the source and target relations involved. The first part is
constructed as described in subsection 5.1.

The second part contains a set of sentences capturing the join
relationships among relations involved along with the information
stored in the target relations. A sentence created using information
spread in different relations has as a subject the heading attribute
of the source relation. The rest of the sentence comprises a verb
phrase and one or more clauses representing the information stored
in the target relations. Although it is possible to consider the case
as two separate unary modules, there is the problem of repeating
information from the source relation. To avoid this issue, the infor-
mation adapted from the neighboring relations is presented as one
phrase combined with a coordinating conjunction (joining word) 6;
the default word in our approach is the “and”. The components of
this combined phrase can be either in R° or R® mode.

Thus, formally, for the split module Mg comprising relations R;
and R; 1> Rjns with direction from the former to the latter, the trans-
lation is realized in two steps:

(i) evaluation of R;* (as described in subsection 5.1)

(ii) evaluation either of
Rio — (leo 0 Rjzo) L+,|le.] Rjz' or
Rio — (RjI. 0 Rjzo)] R.fZ. or
R = (Rj" O R;y)

Observe that the possible choices in step (ii) are listed by increas-
ing order of construction’s complexity in the same sense described
above for the unary module. At the end, the results of both steps are
combined to the final phrase. The above analysis is also valid for a
split module comprised of more than two target relations: Rj,, ...,
Rj,, with the respective combinations of R; * or R; ° mode.

Example. Consider the hypothetical logical subset that com-
prises three relations MOV IE (title,year), DIRECT OR(name, birth
_location), and ACT OR(name, nationality) (the title and name at-
tributes are considered as the heading attributes.) Also, for sim-
plicity in presentation, the keys are omitted. In each relation there
is one tuple, let us say having for the heading attributes the val-
ues l;” R llD, and lf‘, respectively. Assume that the schema of this
logical subset is as follows: DIRECTOR «— MOVIE — ACTOR.
Then, this scenario resembles a split module, where R; is MOV IE
while Rj, and Rj, are the other two relations. Considering some
exemplary expressions in the template labels, each one of the afore-
mentioned alternatives for the step (ii) may produce the clauses de-
picted in the top part of Figure 5. Observe that the first alternative
produces simpler clauses with some overlap, while the second and
mainly the third alternative produce more complex but more ele-
gant results. In all cases, the default word “and” is used as the
Jjoining word 0. Also, in the last two cases the template label used
is slightly different as the respective expressions were enriched by
the word “who”. (A technicality in our implementation provides
the functionality to store different template labels on the edges of
the graph; one for each module.)

Join module. The third case to be examined concerns the corre-
lation between several source relations and a single target relation,
depicted in Figure 4 as the join module M;.

In this case, it is practically meaningless to combine the full
descriptions of all relations. Thus, the information stored in the
source relations that join to the target one, should have already been
translated before the translation of the join module is realized. This

The movie 1)1 involves the director tP and the actor t}".
R —(Rj°OR;y) W R;*WR;,
e director t;” was born in Italy. The actor 1} is Greek.
’_(fl_”l\f),\’f,, The director t was b Italy. The actor t}* is Greek
.M . . D . A
split R —(R;" O R;S)WR;, The movie t)" involves the director t;’ who was born in Italy and the actor t;’ .
——
module The actor tf‘ is Greek.
N— ———
R°—(Rj; O R},
(R i) The movie t}! involves the director tP who was born in Italy and
the actor t{* who is Greek.
The actor 1" is involved in the movie t!.
(Ri1° — R7)W (R — R°)W R?
! ! ! AN The director tP is involved in the movie 1) . The movie 1) is released in 2006.
Lo _pe .o _ po e actor t; is involved in the movie t;” which is released in .
(Ri® — R*) W (Rn® — R?) The actor ti! Ived in th M which is released in 2006
J J
join The director tP is involved in the movie 1},
module
Ri1° O R»°) — R’ WY R , . . .
(Rix) J The actor 1 and the director tP are involved in the movie 1.
|
The movie 1)1 is released in 2006.
(Ri1° O R°) — R}
The actor tf and the director t,D are involved in the movie tf’[which is released in 2006.

Figure 5: Construction of example sentences using the different alternatives of the split and join modules

means that all source relations of the join module participate in its
translation in R° mode. This observation guides the next definition.
Formally, for the join module M; comprising relations R;{, Ri»
and R;, with direction from the source R;, relations to the target
relation R}, the translation is realized as follows:
(i) evaluation of R;{*® (as described in subsection 5.1)
(ii) evaluation of R;»*

(iii) evaluation either of

(Rilo 7Rjo) (C] (Rizo - Rjo) ErJRj' or

(Ri1® = R) W (Rin® — R})
(R; 6R,2°)7RO+R or
(R; 6R,2)7R or

The candidate choices in step (iii) are listed by increasing order
of construction’s complexity in the same sense described before for
the other modules. The final phrase is produced by the appropriate
concatenation of the individual results of all three steps. The above
analysis is also valid for a join module comprised of more than two
source relation: R;y, ..., Rj;, with the respective combinations of
R;,® or R;,° mode.

In the special case where the information stored in R;; and Rj»
refers to the same term, it is possible to avoid the second step and
to simplify the expression (R;1° 6 R;»°) with a process similar to
the resolve_common_expressions of the algorithm TR (Figure 3).

However, there is also the option to translate several or all the
parts of the join module as individual unary modules. This should
be the typical case when: (a) the source relations contain informa-
tion related to different terms; even if the terms are the same, extra
knowledge that they refer to the same physical entity is needed; (b)
the interpretation of the information stored produces large phrases

435

w.r.t. the constraints given; or (c) there is a requirement to differ-
entiate the information stored in different paths; e.g., one may want
separate reports on the movies that Woody Allen has directed and
has acted in, while another may want a full list of the movies that
Woody Allen has participated in.

Example. Consider the hypothetical logical subset presented in the
split module but, in this case, with a different schema: DIRECT OR
— MOVIE «— ACTOR. Then, this scenario resembles a join mod-
ule, where Rj is MOVIE and R;; and R;y are the other two re-
lations. Considering some exemplary expressions in the template
labels, each one of the aforementioned alternatives for step (iii)
may produce the clauses depicted in the bottom part of Figure 5.
Notice that as we pick a lower alternative, the result becomes more
complex and appealing. On the other hand, when such merging of
individual results is not feasible then a higher alternative should
be chosen. In such case, the answer contains more and simpler
clauses. A discussion on the decision of such an alternative is given
in the following section.

5.3 Generalization of results

Once we have described the building blocks needed, we elabo-
rate on the translation of a logical subset L given an initial relation
Ry and a set of constraints 7. The result of this procedure is a syn-
thesis of simple clauses. The translation is realized by the algorithm
Translation of a Logical Subset, TRLS, which is presented in Fig-
ure 6 and described below. The algorithm takes as input a logical
subset and a set of constraints, and it produces a textual answer.

TRLS traverses the logical subset graph starting from the initial
relation Ry of the respective initial subgraph. TRLS constructs a
different phrase for each tuple of R;. The traversal continues to
the neighboring relations following the directed edges of the graph,
until the whole graph is explored.

Algorithm Translation of a Logical Subset (T'RLS)

Input: a logical subset L, an initial relation Ry, constraints T
Output: an array of phrases Text |

Begin

1. Text[L]="'

2. Start from the root Ry,
3. Foreach tuple teR; {
3.10P —{R.}
3.2 While (QP not empty) {
a. pick head R; of QP
b. If in-deg(R;) < 1 {
OP « find the neighboring relations R; , ...
If out-deg(R;) =1
{ evaluate My (R;,R;) }
If out-deg(R;) > 1
{ evaluate Ms (R, R}, ...

s Rjy

’Rjk) }

}
c. Else
If all paths from sources Rj, ..., Rj; to R; are met
{ evaluate M, (R, ..., Rj;, Ri) }
Else
{ continue with next R; }
d. update R;*/° flag for R;
e. update Text[S]

4. Return Text[]
End

Figure 6: Algorithm TRLS

PRODUCER OWN

>

| !

>

MOVIES PLAY —>» THEATRE

Figure 7: Example use of a join module

In this procedure, a list QP is used, which stores the neighboring
relations of the relation currently processed. The way that these re-
lations are placed in QP determines how each subgraph is explored.

Each time a relation R; is visited, TRLS matches it with one of
the three patterns previously presented (subsection 5.2), according
to the connection of this relation with its sources. If R; has at most
one source relation, it may participate in a unary module (when R;’s
out-degree equals to 1) or a split module (when R;’s out-degree is
greater than 1.) In this case, the target relation(-s) of the module
are added in QP. When R; has more than one source relation, then
it participates in a join module as the target relation. Then, if all the
paths from the source relations toward R; have been considered, the
algorithm interprets the information of the join module. Otherwise,
it continues with another relation until all relations that participate
in the join module are fully translated and then, the join module is
ready to be processed. Given that there are no cycles contained in
the logical subset, this policy does not drive to a deadlock [22].

Observe that the case of a join module does not signify the exis-
tence of a cycle. An example case is depicted in Figure 7. Starting
from the initial relation PRODUCER it is possible to reach relation
THEATRE via two ways: a producer has produced a movie that is
played in a theatre and a producer owns a theatre.

Each relation R; is annotated with a R;*/° flag corresponding to
the R} or R mode. After the processing of the appropriate module,
this flag is updated. When a relation has been fully translated, the
respective flag for R} mode is activated and from that time, the in-
formation stored in this relation may be evaluated only in R} mode.

436

Hence, translating the same entity more than once is avoided and
respectively, some steps in the evaluation of a module indicating
the translation in R mode are omitted.

Each time a module is evaluated, the ambiguity in the choice of
the proper expression in steps (ii) or (iii) (as presented in the formal
definition of each module in subsection 5.2) of the translation of
each module, is resolved as follows.

o The state of a relation’s flag R;*/° should be taken into con-
sideration.

e The constraints T should be satisfied; for instance, such con-
straints may determine (a) the length of a phrase w.r.t. the
number of words or lines; (b) the maximum number of tu-
ples that should be included in a (R° - R'*) phrase, before it
should split in (R° - R”®°) W R'® phrase; and (c) the transla-
tion mode; e.g., the whole translation should be realized in
R° mode.

e The choice of a candidate expression is driven by the goal
of creating the most feasible compact answer w.r.t. the con-
straints given. For this reason the hierarchy that represents
the increasing order of complexity in the answer’s construc-
tion is used. Each time, the lowest feasible alternative in the
hierarchy of the candidate choices in step (ii) (in unary and
split module) or in step (iii) (in join module) is favored.

5.4 Applicability issues

The translation process is generic, in the sense that allows any
policy to be chosen. One of the most prominent approaches is us-
ing a weighting scheme on the graph relations. In this way, the most
significant results would be presented first. Going a step further, tu-
ples in each relation could be ranked. That would allow for the most
significant ones to be presented first and also for less significant tu-
ples to be skipped using appropriate constraints. Additionally, it is
possible to have different settings (e.g., different heading attributes
and labels on nodes and edges) in order to produce customized nar-
ratives for multiple users or group of users. However, this issue
does not affect the applicability of the approach presented, because
the choice such settings is made before the translation takes place.

Although our approach technically works with databases of any
size, translation of a very large database, in terms of relations, at-
tributes, or tuples, will most likely not lead to meaningful or con-
cise answers. The great usefulness of this approach is in describing
small (subsets of) databases; hence, our focus is on query answers
that constitute logical database subsets. Moreover, the intention of
this work is not the construction of a human-intelligent system, this
is not feasible. Thus, our method has limitations that are related to
the length of the final output. In our understanding and experience
gained by the interaction with users (Section 6), a meaningful and
even a fascinating answer should be a short one. In most cases, it is
practically useless to produce a narrative containing all information
found in a database. Rather, it is preferable to produce short com-
prehensive answers. Therefore, the restraint on the result’s length
seems as a desideratum. There are several ways to achieve this; we
mention the most prominent.

e To provide users with the capability to limit the contain-
ment of the answer by putting appropriate constraints, such
as those we have already mentioned (Sections 3 and 5.3.)

e To consider translation only in R;° mode; i.e., only phrases
containing information derived from heading attributes. Then,
each word/phrase of a heading attribute may be enriched with
a hyperlink that guides to the full description of the respective

relation (R;* mode.) Another more conservative approach
signifies the enrichment with hyperlinks only of the most “in-
teresting” heading attributes.

o To split the results into paragraphs; e.g., for each tuple in the
initial relation.

In the following section, we present our experimental results in
order to evaluate the efficiency as well as the effectiveness of the
logical subset translation.

6. EVALUATION
6.1 System Prototype

We have implemented a prototype system for the translation of
logical subsets, which consists of three main modules: the trans-
lator engine, the metadata repository, and the graphical user in-
terface (GUI). The translator engine is implemented in C++ and
uses the LEDA 5.0 library to handle graphs. The engine imple-
ments the template language presented in Section 4 and provides
the database graph traversal functionality described in Section 5.
The metadata repository is stored in an Oracle 10g RDBMS and
contains the metadata needed for the translation process; e.g., the
template label for each link between a relation and another rela-
tion or an attribute. Personalized annotation of the database graph
for different users or user groups is applicable through storage of
different template profiles in the metadata repository. The GUI is
implemented in Java and is to be used by the administrator of each
application (usually only once) to tune the translation and annotate
the database graph with appropriate template labels. To help the
designer in this cumbersome task, the GUI provides the following
features:

e FEasy navigation. The database is representated as a graph,
which can be manipulated in diverse ways: different repre-
sentation levels, zoom-in/out, rotation, hyperbolic node dis-
tance correction, node expansion/collapse of a subgraph, etc.

Figure 8(a) depicts a snapshot of the GUI with a movie database

graph.

e Easy supervision. It is possible to preview a single relation
or two relations interconnected through a join edge. The pre-
view may show either a graph representation of the entity(-
ies) involved, e.g., snapshot for relation MOVIE in Figure
8(c), or the template labels for the edges involved, e.g., join
edge connecting relations MOVIE and GENRE in Figure
8(d). (Observe that the template label consists of the heading
attribute of the first relation (T/TLE), an expression, and a
macro responsible for the translation of the second relation
(MGENRES_HA_LIST).)

e Easy annotation. There is template editor that supports all
the constructs of the template language introduced in Sec-
tion 4 and automates the construction of macros. Figure 8(b)
demonstrates a snapshot of that editor concerning a macro
for the dynamic representation of the tuples stored in rela-
tion MOVIES. A typical macro construction for a specific
relation can be done through simple ‘drag-n-drop’ operations
as follows: after the relation and the desired attributes are
chosen, the designer determines the macro type (tuple- or
attribute-based), the translation parameters (e.g., the trans-
lation mode, RO/ *), formatting symbols (e.g., the line delim-
iter), and so on. Also, a macro may be stored in the repository
and afterwards a new macro can be created from the stored
one.

437

6.2 Experiments

We have performed several experiments to evaluate the efficiency
and effectiveness of our approach as well as alternative tuning op-
tions for different desired results. We have used a database contain-
ing information about movies taken from imdb!. In all cases, the
input databases to the translator engine have been logical database
subsets [15, 22] containing a relatively small number of relations
(up to 8) and tuples (up to 1000).

We have used both quantitative and qualitative measures. The
former include the number of words included in the narrative pro-
duced and the execution time for the translation to complete. The
latter are subjective and include readability, capturing the extent to
which a reader can easily understand a textual answer, and conci-
sion, capturing the extent to which a textual answer contains suffi-
cient information with respect to the user expectations.

In the experiments, we have varied the following: (a) the method
of database-graph traversal, i.e., either the TRLS algorithm (Figure
6) or a simpler version of it without any of the proposed mecha-
nisms or the translation modules (referred to as DF'S, as it resem-
bles a straightforward translation following the depth-first search
algorithm); (b) the absence or presence of the resolve_common_
expressions mechanism (RCE); and (c) constraints either on the in-
put database schema (SC) or on the cardinality of the input database
(CC).

Regarding the SC constraints, we have considered two classes:
soft (sSC) and hard (ASC) constraints. The former are not very
strict on the size of phrases and on when those should be split (see
Section 5.3), and allow more relations to be included in the result.
In the experiments, as a soft constraint, we have considered that the
distance of a relation from the initial one should be at most 3 joins
away. On the other hand, the hard constraints restrict the size of
phrases and favor the translation of relations that are close to the
initial relation (2 or 3 joins away) in R° mode, while the closest
relations are translated in the mode imposed by TRLS. Regarding
the CC constraints, we have examined two cases: the full-blown
input database (no cardinality constraints, k=co) and the k-limited
tuple sets, i.e., only k tuples from each relation. (The translation
favors tuples from a relation that can join with tuples from other
relations and avoids the presence of nulls.) For k, we have used the
values 1, 3, and 5. Note that, in the input logical database subsets,
tuples are not ranked; otherwise, we would have top-k semantics.

In summary, we have experimented with the evaluation of quan-
titative and qualitative measures for the following cases (for k=co,
5,3, 1): (a) DFS; (b) DF S and RCE; (c) TRLS and RCE; (d) TRLS,
RCE, sSC; and (e) TRLS, RCE, hSC. Figure 9(a) demonstrates the
corresponding execution times. For translation with no SC con-
straints, the simple translation (DFS) and the proposed method
(TRLS) have similar performance. The latter is slightly slower due
to the additional operations performed. In the presence of such
constraints, however, performance improves as smaller answers are
produced. Use of CC constraints limits the result even further.
Hence, as the cardinality constraints become stricter, k going from
5 down to 1, translation times decrease. In all cases, we observe
reasonable execution times (less than 4.5 sec in the case of large
logical subsets containing around 1000 tuples without constraints.)
Execution times can be explained by Figure 9(b) that shows the
number of words produced in each scenario and confirms that using
(SC or CC) constraints reduces the answer size (and, thus, execu-
tion times).

Regarding qualitative experiments, a small number of users have
provided feedback for a set of answers that corresponded to the

lwww.imdb.com

|2 Graph Sefector

=)

EIX]

(£ Macro Editor

Relations. Graph

BIRTHDATE

ACTOR_NAME

DURATION

Clor.s
DIR_NAME
DIRECTED_BY
(e

O

5UBOB

BIRTHLOCATION

'DEFINE MOVIES_TUPLES_LIST a5
[i < arityOR@MOVIE_ID)]

"MOVIE, ID:*+@MOVIE_ID[$if]+
“TITLE+@TITLE[S]+
"YEAR"+@YEAR[$i§]+
“DURATION "+@DURATION(SiS]+
*SUBDB: “+@SUBDBI$if]+,"

Relations Attrs (CTRL + cick For mukiple)

MovEE_1D
TIME
YEAR
DURATION
SuBDe

ACTORS
MOVIES

casT
DIRECTORS
DIRECTED_BY
PRODUCERS
PRODUCED_BY
MGENRES

}
[1= arityOR@MOVIE _ID}]

"MOVIE_ID:"+@MOVIE_ID[i]+
“TITLE: +@TITLE[$iS]+

YEAR[SIS]+
"DURATION:"+@DURATION[i]+
*SUBDB:"+@SUBDB[$if]+"."

}

Macra elements

Macro Generation Loop Properties
Tuples

Tuples translation

(3 Ha only (Ro)

Ol (Rx) @Single

Opatid Olon

Line dalmiter

=

Separate last Ine
Last line end symbol

Attrbutes
O Fixedsize
@ Arity OF

MOVE_ID

WrapText |

Auto-generate selection

[unarapText |

Shon Graph

SAVE TEMPLATE DELETE TEMPLATE CLEAR ALL

(a)

(b)

£} Relation Viewer

£/ Join Relations Viewer

BEX

Relations Template Label For Projection Edge | Graph View

Relations
#-ACTORS
MOVIES
MOVIE_ID
TITLE
YEAR
DURATION
SUBDB
casT
DIRECTORS
DIRECTED_BY
PRODUCERS £l 12
PRODUCED_BY
MGENRES

& +

R T

Translation Options

B

[SetHA] [Edit Template] [Show Label]

Source relation

Relations

ACTORS
MOVIES

~~MOVIE_ID

= TITLE
- YEAR
DURA

SUBDB

CAST

DIRECTORS
DIRECTED_BY

PRODUCE
PRODUCE
MGENRES

Possible target relations Template Label for Join Edge | Graph Vien

Relations @TITLE + "'s mgenre is" + MGENRES_HA_LIST

MOVIE_ID

GENRE

SUBDB
®-PRODUCED_BY

TION +-CAST

"
RS Translation Options

D_BY

[Edit Template] I Show Graph

©

()]

Figure 8: Bird-eye view of our system

same set of queries. Figure 9(c) shows the evaluation in terms
of the readability of the answers. Interestingly, although DF'S,
DFS+RCE, and TRLS+RCE have the same performance and out-
puts of similar size, readability of those outputs differs signifi-
cantly. This is due to RCE and the translation modules incorporated
in TRLS, which create textual output closer to the spoken language.
Furthermore, we observe that readability increases with the appli-
cation of (SC or CC) constraints, which coincides with the decrease
of result size. Consequently, users found that smaller results are
more understandable.

On the other hand, smaller answers may not always contain suf-
ficient information regarding a user information need. Figure 9(d)
presents the concision of the answers from the user perspective.
There exist two factors that have driven the users’ assessment: the
quantity of information in the answer and the length of the answer.
Interestingly, concision does not follow the same trends as readabil-
ity. We observe that, for k = 3 or 5, answers have higher concision
scores. Moreover, in all cases, the methods without SC constraints
have almost identical scores. This is due to the absence of a dis-
crimination criterion for the choice of tuples. If the tuples were
considered in a ranked fashion (any ranking function can be used as
input to the translator according to the application) then the results
would be different for the cases where a CC constraint (k#) is
enforced. Figure 9(e) presents the average of readability and con-
cision, weighing the two measures equally. One effect of taking
readability into account is differentiation of the scores of methods
without SC constraints.

Based on the above, TRLS+RCE and the enforcement of SC and

438

CC constraints produce answers of acceptable quality but also of re-
duced size, which results in an efficient translation process. When
the translation is to be used on the entire input database, then the
use of SC constraints is highly recommended to control the output
size and keep execution times low. If CC constraints exist, then
the use of TRLS with or without SC constraints is suggested. We
have also observed that some cases receive similar evaluations, e.g.,
for k=1 (Figure 9(d)). This is due to the absence of tuple ranking,
which would provide room for differentiation.

7. CONCLUSIONS

In this paper, we have provided a framework and a method for the
presentation of structured data as text. This is viewed as a proper
structured management of individual tuples, according to certain
rules and templates predefined by the designer or administrator of
the database. We have described our prototype system and we have
discussed several experiments that demonstrate how the narrative
produced is affected as several features and parameters of our ap-
proach are varied, as well as how the response time of the system is
affected by its configuration. We have also conducted a set of ex-
periments measuring the impact that different answers, generated
by different configurations, have on users.

As future work is concerned, we are interested in extending our
approach towards explicitly taking into account tuple ranking in the
text generated; e.g., either for producing texts, such as “... the most
important movie of this director is ... Other movies include ..." or
for generating shorter answers containing only the most interesting

5000 1500
W DFS W DFS
il @ DFS+RCE _ 0 DFS+RCE
4000 OTRLSRCE || |2 O TRLS+RCE
O TRLS+RCE+sSC 5 O TRLS*RCE+SSC
O TRLS+RCE+hSC H O TRLS+RCE+hSC
5 1000
g 3000 3
£ £
e 2
£ 2000 g
5 500
- L r @ m m
0 T oA W=
k=w k=5 k=3 k=1 k=0
(@) (b)
o |/mDFs 0 DFS+RCE OTRLSHRCE | 10 [mDFs 0 DFS+RCE OTRLSWRCE | 10 , O DFSRCE O TRLSHRCE
O TRLS*RCE+sSC B TRLS+RCE+hSC | | O TRLS+RCE+sSC O TRLS+RCE+hSC D PRUsiRCEsSC B TRUGIRCE+hSC
? -~ K
§ 8 B 8 Z 8
g
S g >
2 64 g 6 3 61
< & x
E I
g 4 miNEEES E 44
E 8 B
2 ﬁ |]
0 - - - 0 0
ko k=5 k=3 k=1 k=n k=5 k=3 k=1
© (d) ©)

Figure 9: Evaluation results

information. Another challenge is to explore the feasibility of our
approach with languages having a more complicated grammar than
the English language.

Acknowledgments.

We thank the anonymous referees for their

careful reading of the paper and their valuable comments that sig-
nificantly improved its presentation and quality.

8.
[1]
[2]

(3]

(4]

[5

=N
&S

[7

—

(8]

[9

—

[10]

[11]

[12]

REFERENCES
www.diligentproject.org.
S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system for
keyword-based search over relational databases. In ICDE, pages
5-16, 2002.
I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Natural language
interfaces to databases - an introduction. CoRR, cmp-1g/9503016,
1995.
AT&T Labs Inc. - Research. Text-to-speech (TTS), The synthesis of
audible speech from text. url:
http://www.research.att.com/ ttsweb/tts/index.phpftop, March 2007.
Bell Labs. Text-to-speech synthesis. url:
http://www.bell-labs.com/project/tts, March 2007.
R. Cole, J. Mariani, H. Uszkoreit, G. Varile, A. Zaenen, V. Zue, and
A. Zampolli. Survey of the State of the Art in Human Language
Technology. Cambridge University Press and Giardini, 1997.
P. Dixon. Basics of Oracle text retrieval. IEEE Data Eng. Bull.,
24(4):11-14, 2001.
D. Florescu, D. Kossmann, and I. Manolescu. Integrating keyword
search into XML query processing. Computer Networks, 33(1-6),
2000.
J. Graupmann, R. Schenkel, and G. Weikum. The SphereSearch
engine for unified ranked retrieval of heterogeneous xml and web
documents. In VLDB, pages 529-540, 2005.
L. Guo, F. Shao, C. Botev, and J. Shanmugasundaram. XRANK:
Ranked keyword search over xml documents. In SIGMOD
Conference, pages 16-27, 2003.
J. R. Hamilton and T. K. Nayak. Microsoft SQL server full-text
search. IEEE Data Eng. Bull., 24(4):7-10, 2001.
V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient IR-style
keyword search over relational databases. In VLDB, pages 850-861,
2003.

439

[13]

[14]

[15]
[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

V. Hristidis, Y. Papakonstantinou, and A. Balmin. Keyword
proximity search on XML graphs. In ICDE, pages 367-378, 2003.
V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and
H. Karambelkar. Bidirectional expansion for keyword search on
graph databases. In VLDB, pages 505-516, 2005.

G. Koutrika, A. Simitsis, and Y. Ioannidis. Précis: The essence of a
query answer. In /CDE, 2006.

A. Maier and D. E. Simmen. DB2 optimization in support of full text
search. IEEE Data Eng. Bull., 24(4):3-6, 2001.

E. Métais. Enhancing information systems management with natural
language processing techniques. Data Knowl. Eng.,
41(2-3):247-272, 2002.

E. Métais, J.-N. Meunier, and G. Levreau. Database schema design:
A perspective from natural language techniques to validation and
view integration. In ER, pages 190-205, 1993.

M. Minock. A phrasal approach to natural language interfaces over
databases. In NLDB, pages 333-336, 2005.

T. Schultz and K. Kirchhoff. Multilingual Speech Processing, chapter
10. Speech-to-Speech Translation. Elsevier, Academic Press, April
2006.

A. Simitsis and G. Koutrika. Comprehensible answers to précis
queries. In CAISE, pages 142—-156, 2006.

A. Simitsis, G. Koutrika, and Y. Ioannidis. Précis: From unstructured
keywords as queries to structured databases as answers (to appear).
Int’l Journal on Very Large Data Bases.

E. Sneiders. Automated question answering using question templates
that cover the conceptual model of the database. In NLDB, pages
235-239, 2002.

V. C. Storey. Understanding and representing relationship semantics
in database design. In NLDB, pages 79-90, 2000.

V. C. Storey, R. C. Goldstein, and H. Ullrich. Naive semantics to
support automated database design. IEEE Trans. Knowl. Data Eng.,
14(1):1-12, 2002.

A. Toral, E. Noguera, F. Llopis, and R. Mufioz. Improving question
answering using named entity recognition. In NLDB, pages 181-191,
2005.

Q. Wang, C. Nass, and J. Hu. Natural language query vs. keyword
search: Effects of task complexity on search performance, participant
perceptions, and preferences. In INTERACT, pages 106-116, 2005.

