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Abstract

Sparse computations constitute one of the most impor-
tant area of numerical algebra and scientific computing.
While there are many studies on the locality of dense codes,
few deaf with the locality of sparse codes. Because of indi-
rect addressing, sparse codes exhibit irregular patterns of
references. In this paper, the behavior on cache of one of
the most frequent primitives SpMxV Sparse Ma.triz- Vector
mtdttp2g is analyzed. A model of its references is built, and
then performance bottlenecks of SpMxV are analyzed us-
ing model and simulations. Main parameters are identified
and their role is explained and quantified. Then, this anal-
ysis is used to discuss optimizations of SpMxV. Moreover
a blocking technique which takes into account the specifics
of sparse codes is proposed.

Keywords: sparse primitives, cache, performance

prediction, data locality.

1 Introduction

Due to the increasing difference between memory

speed and processor speed, it becomes critical to min-

imize communications between memory and proces-

sor, by addition of caches on the data path. However,

a consequence of this worsening difference is that the

cost of a cache miss, in terms of processor clock cycles,

is becoming quite large, making it critical to improve

the hit ratio.

Numerical codes are now some of the most demand-

ing programs in terms of execution time and memory

usage. The existing literature related to the study of

numerical codes behavior on cache memories focuses

on regular do-loops, i.e with linear references to arrays

[8, 2]. There is an important set of numerical codes,

“sparse codes”, which do not belong to this category.

Sparse numerical codes like classic numerical codes are

made of a collection of simple numerical primitives.

We chose to study Sparse Matrtx- Vector multiply (Sp-

MxV) because it is among the most frequently used

ones along with gavss~an ehmmatzon [3], and still it

is simple enough to allow a sharp analysis of its work-

ings (cf. figure 5); moreover, a number of sparse prim-

itives exhibit rather similar patterns of references (i .e

a few arrays addressed regularly and indirect address-

ing to another array). Because of indirect addressing,

sparse codes have the particularity of breeding trregu-

larpatterns of references to memory and to cache, and

consequently, the behavior of caches under numerical

workloads is seemingly non-predictable and hard to an-

alyze. Because of this apparently random behavio,,

caches, which principles rely on locality of programs,

are generally said to be inefficient with sparse codes

[14].

However, in this paper, we show that this assump-

tion is true only for a restricted domain of main prob-

lem parameters (cache size, line size, matrix band-

width and number of non-zero elements). Even then,

in some cases, it is possible and worthwhde to exploit

unused locality through software techniques. Though

classic blocking methods hardly allow the utilization of

this locality, it is possible to exploit it through block-

ing techniques that take into account the specifics of

sparse matrices.

In section 2 of this paper, spatial and temporal

locality of SpMxV is qualitatively evaluated and po-

tential problems are identified. Then, in section 3, a

meaningful share of the paper is devoted to modeling

the non-regular references which appear in SpMxV are

presented (see [12] for details of the model), because

a necessary prerequisite to evaluating and optimizing

a primitive is a good understanding of its behavior.

Besides, the purpose of this section is to show that it

is possible to predict the behavior and performance of

sparse codes, and to actually quantify their impact on

caches. In section 4, using the model and simulations,

the behavior of SpMxV is characterized according to

the values of the parameters. Finally, in section 5,

software optimizatious are discussed, and a blocking

technique based on the observations of the previous

section is preseuted.

2 A qualitative study of locality within
SpMxV

Position of the problem The purpose of the pa-
per is to analyze SpMk\J on caches. Storage-by-row

has been chosen because it is among the most conl-

monly used storage techniques (see page 2 for more

details). Otherwise, for sake of simplicity the cache

is assumed to be direct-mapped. It can be seen in

section 4.4 that this hypothesis is not very restrictive

since set-associative and direct-mapped caches exhibit

relatively similar behaviors with SpMxV, and that the

model built can be extended to set-associative caches

(cf. [12]).
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Figure 1: Banded sparse matrix; matrtx and cache param-

eters.
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Remark:
.411 cache dtmens:ons arc dauided by the st.ce of a smgle-preczsaon floatang-poant element (4 bytes),
so that a s~:e S actually corresponds to S x 4 bytes.

Cross-interference misses (or conflict misses ) :
Self-interference misses (or capacity misses) :

Intrinsic misses (or compulsory misses)

an array element flushed by an element of another array.
an array element flushed by an element of the same array.
an array element loaded for the first time.
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Figure 2: Example of storage-by-row for a 3x 3 sparse

n2atr2x

DO I=l,N
DO J=l,N

Y(I) = Y(I
ENDDO

ENDDO

Figure 3: Example of dtstrtbutton of non-zero ele-

mewts wtthm fintte-element matrtces (matrix 1138
BIJS of the Harwell-Boeing suite).

DO 1=1.N
REG = Y(I)
DO J= D(I), D(I+l)-1

+A(I.J)*X(J) REG = REG + Matrix(J)* X( Index(J))
ENDDO
Y(I) = REG

ENDDO

Figure 4: Ortgtnal loop nest: storage b.y row.

Figure 5: Problem parameters
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2.1 Data locality 3 Modeling: understanding and quan-

A first step to understanding the behavior of Sp-

MxV on cache is to study the locality of the data

used by this primitive. Since there are Nnz references

to arrays X, Index and Matrix, and 2N references

to arrays Y and D, the total number of references is

3 * Nn: + 4 * N (cf. figure 5).

Arrays Y and D have very similar behaviors in

the sense that they both exhibit flawless spatial and

temporal locality. Most probably D(I) and D(I + 1)

will be stored in registers and therefore should not

provoke a reference to memory on each iteration of

loop J. % arrays Y and D (of size N) are mostly

responsible for mtrinszc misses, and therefore account

for a small share of total cache misses (since, in general

N < N..).

Arrays Matrix and Index have no temporal lo-

cality and again exhibit flawless spatial locality. These

two arrays account for 2Nn Z references, that is, a ma-

jor part of total references. Since no element is reused,

cache misses due to these arrays are only ~ntrvnszc

mtsses. Because of their size, they may also provoke

important cross-interferences with other arrays (i. e,

flush other arrays from cache).

Array X: Because of the indirect addressing

through array Index, array X exhibits a complex be-

havior. If a uniform distribution of non-zero elements

on a row within the band (of size lVB ) is assumed, then

the average distance between two columns with non-

zero elements is ~. Therefore, in most cases there is

some spatial locality if ~ is of the order of Ls. Ac-

tually, in usual fintte-eiement matrices, the non-zero

elements are sometimes grouped along specific diago-

nals, within the band (cf. [4] and figure 3). In that

case, the spatial locality may not be negligeable even

if ~ >>Ls.

.krray X is the only array which presents an un-

exploited temporal locality, and therefore from which

significant gains can be expected; however the tempo-

ral locality of .Y is nontrivial and therefore hard to an-

alyze and exploit. That, is why our efforts will mainly

focus on analyzing the behavior of array l_. Due to the

properties of sparse matrices (especially jintte-elem ent

ones), if there is approximately nnz non-zero elements

per row, there is also about nnz non-zero elements

per column. A first consequence of that observation

is that each element of .Y may theoretically be reused
n,,, times at best. Secondly, the average distance (in

terms of iterations of loop 1) between two reuses is

appro.xirnately ~. Meanwhile, about ~ x Snn, ele-

ments (from arrays S, Matrix and Inde.r ) are loaded

into cache and may flush the elements to be reused.

The conclusion of the previous observations on .\- is

that, whether temporal locality and spatial locality of

.1- are significant and can be exploited highly depends

on il”B, Cs, Ls and nnz.

tifying

From previous section, it appears that the main

source of cache misses are misses of Matrix and Index

which can be evaluated easily because they are intrin-

sic misses, and misses of X which are hard to estimate

because addressing to array X is indirect and irregu-

lar. The misses of .Y are mainlv cross-interference

or self-interference misses. First” of all, the ~imula-

tions done (cf. section 4) show that the role of cross-. ,
interference and self-interference phenomenons on X

is verv similar. Second. both of the two kinds of misses

can be modeled using techniques presented thereafter.

Third, because only main trends need to be identi-

fied, the purpose of our model is to provide a good

understandimz of the interactions between Parameters

rather than an accurate formula of the total num-

ber of cache misses. Therefore, for sake of simplicity,

only self-interference misses are precisely modeled and

quantified (cf. section 3.1).

3.1 Modeling self-interferences of array X

References to array .Y are highly irregular and con-

sequently cannot be investigated throu-gh classic de-

termtntst?c methods. Therefore, probabdistic model-

zng is being used. The main problem seems to choose

a distribution which matches that of non-zero ele-

ments on a row within the band. Thowzh it is for

the least possible to find an approximate &tribution

for find e-element matrices, this yields formulas which

are too complex to handle (cf. [12]). Therefore, though

most computations are conducted for any distribution

p(i, j) (probability that element (i, j) of A is non-zero),

unzforrn dzstrzbutzon (p(i, j) = p) is employed for final

calculi.

The object of section 3.1 is to build the model of ref-

erences to array .Y and compute the number of cache

misses. This part describing model elaboration can be

skipped, though it provides an insight on the behavior

of Sphlxv.

3.1.1 Simplifying expression of the original

problem

Let us consider original matrix .4. .411 non-zero

elements of A located on column j of this matrix breed

a reference to element j of X. Now, let us consider

the cth cache location. -ill elements j of X such that

j mod C’,$ c [c, c + LS – 1]are mapped to the same

cache line c. Therefore, all columns j of .4 such that
J modCs E [c, c + L5 – 1] breed references to elements

of .Y which are mapped to the same cache line.

Therefore, it is possible to di}-ide the problem into

~ sets of elements of A-, all elements within a set—..
being mapped to the same cache line. Similarly, A is

di~ided into ~ sets of columns, all breeding references- .-
to elements of .Y mapped to the same cache line (cf.

figure 6). Since, the cache is direct-mapped, none of

these sets interact, with each other.
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So, if the original problem can be formalized as fol-

lows

Problem P: Compute an approximation of N~~’j =

Nc~(P), the number of self-interference misses of array X

in the sparse matrix-vector multiplication. The dimension

of .Y is equal to N. A M an N x N matrix, and the cache

is direct-mapped and of size CS.

Then P, is now equivalent to CS subproblems

Pil(l < i < ~)
Lsl. Through simulations, it

is possible to check that, for distributions occur-

ing in finite-element matrices (non-zero elements are

grouped along three diagonals) and even more for u7Lz-

form distributions, it is a very fair approximation to

assume that all subproblems Pi are equivalent to sub-

problem P’.

Problem P’: Compute an approxtmat,on of Nc~(P’),

the number of self-interference misses of array X’. The

climension of X’ is equcd to N’ (where N’ = [-&J x LS

or N’ = ([*J + 1) x Ls). A’ is an N x N’ rnotrm, and

the cache is direct-mapped and of size L,s.
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Figure 6: Decomposition of subproblem P’

Now, A’ can be decomposed into sections of C,S

rows, which would all have the same shape as shown

on figure 6. Since, in general, C’s < N, there is a

great number of such sections in A’ (approximately

&). Through experiments, it can be observed that

the number of cache misses corresponding to the exe-

cution of each section becomes rapidly stable. There-

fore, it is possible to restrict the study to only one

section S’ of A’.

Let us do an ultimate simplification. The number

of columns in the sections clescribed above is not con-

stant, because of the banded shape of the matrix. In

order to ease the computations even more, a section S’

can be divided into two parts S: and S;, each with a

constant number of columns (cf. figure 6). The char-

acteristics of each subsection are the following ones:

s;
{

n; = [&j

n; = ~S ‘– \}7B mod CS

s;
{

n:=@j+l
~; == T>t7B ?710(/ ~s

Problem P“ can now be defined as follows:

Problem P“: Compute an appro~~mation Of

N.~, (P”), the number of self-interference misses of ar-

ra~ X“. The dimension of X“ is equal to N“ (where

N = n.). A“ is an nt x nc matrix, and the cache is

direct-mapped and of size LS.

3.1.2 Estimating the number of cache misses

Let us now formalize the ~?tion of “cache miss”

within the scope of problem P During execution of

SpMxV, elements of a subsection A“ of problem P“

~W,(i, j) the prob-are referenced row-wise. Let us call ~k

ability that element k of A’” be out of cache right be-

fore element (i, j) of the subsection is referenced. Let

us also call p(i, j) the probability that element (i, j) of

A“ be a non-zero element. Now, the probability that

element j of X“ is not in cache, right before element

(i, j) of A“ is being considered, is equal to &,(i, j).

Therefore, the probability for a cache miss to occur at

that moment is equal to p(i, j) x #OU~(i, j).

Then, the number of cache misses due to A“ is given

by the following expression:

nl n.

fvcnt(P”) & ~~7fJi1j) x p(ilj)
!=1 j=]

.hd, the total number of cache misses is equal to

(see [12] for more details):

A’Cm(P) E ~Nc”,(P’)
z:~ — x -K ATcm
LS es

(P;’ UP;)

= & x (Ncn, (P;’) +Nc,n(P;’))

\Wlen distribution is uniform p(i, j) = p and p

can be given as a function of problem parameters

p = 1–(1–*)LS (see [12] for more details).

For this distribution of probability, the total number

of self-interference misses on A“ is given by expression

of figure 7.

3.2 Number of cache misses

3.2.1 Self-interferences of array A“

EEL
Cs

I&
es

> 1: Since Nnz << V x WE when WB is suffi-

ciently large, it can be assumed that p << 1 and

that p = ~ x L,5. Therefore, a first order de-

velopment of expression in figure 7 gives (cf. [12]

for more details)

N,:z X CS
~r~~lf ~ ~T,L: _
. cm

2x NxLsx WB
(1)

< 1: In that case, there are no self-interferences

of array .Y because all active elements of .Y fit in

the cache, therefore
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Figure 7: Expression of the total number of self-interference misses on array X

3.2.2 Intrinsic misses

There are N references to D, Y and X, and N..

references to Matrix and lndez. Therefore, the total

number of intrinsic misses is given by:

Nint _ 3N + 2Nn.
cm —

L5
(2)

Since in general N.. >> N, arrays Matrix and

Index represent the main source of intrinsic misses.

4 Highlighting the role of the problem
parameters

Of course, all problem parameters have an impact

on SpMxV. However, through model analysis and ex-

periments, three coefficients (L5, w = &, d = &)

proved to have a major impact on the hit ratio, and

are sufficient to characterize most phenomenons. L5 is

a critical parameter, mainly because of its influence on

intrinsic masses, but also on cross-interference mzsses.

Parameter w = ~, called degree of interference, it in-

dicates how many elements of X conflict for the same

cache line (cf. section 3.1. 1), and therefore it reflects

quite well the degree of self-interferences occuring on

X. Finally, parameter d = ~, called density, corre-

sponds to the average distance between two non-zero

elements on a row and on a column of original matrix

A (cf. section 2). In other terms, it is a measure of the

degree of temporal and spatial locality of non-zero ele-

ments of matrix A, and consequently, of the references

to array X.

Basing our analysis on the model obtained in sec-

tion 3 and simulations, the role and importance of the

above parameters is discussed in the following sub-

sections. A small subsection is also devoted to dis-

cussing the difference between direct-mapped and set-

associative caches. For sake of simplicity, the simula-

tions, which were used to make the graphs of this sec-

tion, are mainly based on uniformly distributed matri-

ces, but account quite well for phenomenons occuring

in real sparse matrices.

4.1 Line size L,s

Influence of Ls on the intrinsic misses of Matrix

and Indez The expression of the number of intrin-

sic misses (2) shows that this number decreases hy-

perbolically with Ls (cf. figure 8). Therefore, a small

increase of LS brings important reductions of the num-

ber of intrinsic misses.
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Figure 8: Influence of LS on the total hat ratio and

the hit ratto of each array.

Influence of LS on self and cross-interference

misses Let us assume that & > 1. In the case

where non-zero elements are uniformly distributed

across the sparse matrix, the approximate number of

self-interference misses is given by (1). This expression

is a function of Ls: N&#j = cx – &.

Therefore, N~~~ grows with Ls, though this in-

crease is more or less moderate depending on ~. Oth-
2N; XLS

erwise, N~~sS = <s , therefore the number of

cross-interference misses grows linearly with L.s. Con-

sequently, an increase on L.s corresponds to an in-

crease on both the number of self-interference and

cross-interference misses (cf. figure 9).

The consequence of the previous observations is

that the hit ratio of all arrays but X increases very

quickly (hyperbolically) with Ls. On the other hand,

because of cross and self-interference misses, the hit

ratio of X increases much more moderately (or some-
times even decreases) when LS grows.

Therefore, for small values of L5 the mam cause of

cache mtsses are arrays Matrix and Index, while for
hagh values of L5, X accounts for the major part of

cache mtsses (cf. figure 10).

Consequently, devoting important efforts to benefit

from the temporal locality of X should be considered

only when LS is such that X becomes a major cause

of cache misses, otherwise little improvements of total

hit ratio can be expected (cf. figure 10).
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Figure 9: % of intrinsic misses and self + cross-

interference misses for dtfferent values of Ls.
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Proper values of -Ls for finite-element sparse

mat rices Due to the properties of mesh structures

(where each node has a relatively constant number\ .
of neighbors) and the use of renumbering algorithms

to minimize bandwidth, finite-element sparse matri-

ces exhibit a non-uniform distribution of non-zero el-

ements. They are grouped by packs of 2, 3, 4 or more

elements depending on the mesh type. This spatial

locality of non-zero elements induces a spatial local-

it y of references to array X. Therefore, LS = 2 or 4

is sufficient to make use of this locality, while little

improvement can be expected for higher values of Ls.

As it can be seen on figure 11, the reduction of

cache misses between L.s = 1 and Ls = 2 is impres-

sive, while it steps down after Ls = 4. This phe-

nomenon is characteristic of finite-element matrices.

It can be noted on figure 11 that an increase of L.s
breeds progressive instead of drastic improvements on

the hit” ratio of X, when the non-zero elements are

uniformly distributed within the sparse matrix. The

1
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0.3
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Figure 11: Influence of the distribution of non-zero

elements on the spatial locality of references to X

shape itself of finite-element sparse matrices (cf. fig-

ure 3) suggests a greater spatial and temporal local-

ity than of uniformly distributed matrices. However,

both uniform and finite-element distributions tend to

behave similarly for large enough cache line sizes, i.e

when the locality effect of finite-element sparse matri-

ces does not show anymore.

4.2 Degree of int erference w = &

1[ 1
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Figure 12: Irlfltlence of ~ on the total hzt rat~o and

the hat ratzo of each array.

Influence of w for self-interference misses The

effect of ~B and C.S cannot be dissociated. For

WB < C’s, the number of self-interference misses due

to X is equal to zero. This appears clearly when con-

sidering simplified problem P“: the number of columns

of .4”, i.e the number of interfering columns, is equal

to [~] or l%] + 1, that is, O or 1. Therefore, once

an elekent is loaded into a cache line, it cannot, be

flushed by another element. SO, for WB < CS, the

number of cache mwses due to -Y M opttmum. Now,
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for WB > Cs, model expression (1) shows that the

number of self-interference misses increases hyperbol-

ically with w: 11~~’f = cr — ~.

Now, if the previous expression is considered as a

function of w, and is differentiated it, then it appears

that the increase of N~&’f becomes small (i.e less than

10 %) whenever w > m.

So, three cases can occur. First w < 1, the num-

ber of self-interference misses is negligeable and it is

not useful to reduce WB. Second w ? 1, in this in-

terval the number of self-interference misses increases

hyperbolically with w, and therefore very significant

improvements can be obtained through slight band-

width reduction. Third w >> 1, and the number of

self-interference misses is close to maximum (nearly

no element of X is reused), and only a drastic band-

width reduction may bring improvements.

Cross-interference misses When w >>1 is suf%-..
ciently large, because of self-interferences only, there is

little reuse on X. Therefore, the effect of Alatriz and

Index, i.e cross-interferences, can only be redundant

with that of X.

When w < 1, there are no self-interference misses.

In that case, akve ( i.e currently used) elements of

X are located in an area of size WR within cache.

Now, Matrix and Index can be co~sidered as two

“trains” of references moving across the cache. There-

fore, the larger WB, the higher the probability that

these “trains” meet the area of alive elements of X, i.e

the higher the probability of cross-interferences. Still,

these cross-interference misses account for a relatively .
small share of total misses, unless Ls is large, i.e there

are few intrinsic masses (cf. figure 13).
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Figure 13: % of interference mzsses for dtfferent values

of~.

Current values of & Let us now try to see what

are the values of & currently found.

The size of numerical problems tends to grow, and

consequently WB grows accordingly. When band-

wzdth reduction renumbering algorithms are employed,

WE z @ or WE ~ N% or WB ~ $ according to the

problem type, while WB ~ N when mznimum-degree

renumbering algorithms are used. Large current prob-

lem sizes range from N =105 to N =106, therefore WB

generally varies between WD =.900 and WE =106.

For single-cache machines, C’s clearly tends to

grow. C’s values of more than 256 A%ytes can now be

found. So, if cache sizes increase fast enough ~ will
-0

soon be on the “safe zone” (i.e ~ << 1; 256 Kbytes

cache, N =1(15, WB = N+, ~ =0.01). ~;,i single-

cache machines equipped with current-size caches (i.e,

Cs = ,/192 or 1 d Kbyt es), a large third-dimensional

problem (i. e, N H105, WB E N; to WB = .V) ex-

hibits a ~ ratio of 0.5 to 3.5.

The increasing popularity of multi-level caches

makes small (primary) caches more frequent. The size

of such caches is currently of the order of ~ Kbytes.

What is more, N also tends to grow, and mznzmum

degree is a rather popular algorithm. So very large ra-

tios ~ may become more frequent (~ Kbyt es cache,

N =105, W’B = A’, ~ =100).

4.3 Density d = ~

Let us now consider parameter d = ~. d can be

considered as the “density” of non-zero elements on

one row of matrix .4. When d is very high matrix A
looks very much like a banded dense matrix, while the

matrix is “very sparse” when d is relatively small.

Depending on w, the density of non-zero elements

induces two different phenomenons.

If w <1, the smaller WE (i.e the larger d) the less

cross-interferences occur (cf. ~aramaph 4.2). Conse-

quently, it is possible to’ be~efit ~rorn the ‘temporal

locality of references to X (cf. graph LS = 1 of fig-

ure 14]. For the same reason, it is also possible to

benefit from sDatial localitv. Indeed. once an element
1 .

of .%” is loaded Ls — 1 consecutive elements of the same

arrav are also loaded. Though thev are not immedi-.
ately referenced, they are not flushed from cache (as

seen above), and therefore they stay into cache until

they are referenced. That is why array X also benefits

from spatial locality in this case, independently of the
distribution of non-zero elements (cf. paragraph 4.1

and figure 14).

Now it can be observed that, for a fixed value of

WE, when nnz M large there erists an tmportant po-

tentzal reuse on .Y. Since it is possible to benefit from

temporal locality when w < 1 , the higher nnz (i.e

the larger d) the higher the hit ratio of X (cf. fig-

ure 14). Nevertheless, a high value of 71n. slightly

worsens cache pollution, though nnZ must be quite

large for this phenomenon to counterbalance the ben-

efits from spatial and temporal locality (cf. figure 14).
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of X for% > 1.

When w >1, the behavior of X is not correlated to

d anymore because interferences (cross and self) oc-

cur so often that benefiting from temporal and spatial

locality becomes hypothetical (cf. figure 15).

Usual values of d For 2-dimensional finite-element

problems, the average number of non-zero elements

per row is of the order of 10, while it is of the or-

der of 100 for 3-dimensional problems. So essentially

.$dtmensionul problems are worth optzmizzng. As it

has been seen in paragraph 4.2, WB ranges from ~

(2-dimensional) or N+ (3-dimensional) to N. Typ-

ically, the density of a 3-dimensional problem may

range from 0,001 to 1.

4.4 Set-associative caches

Though the model presented in section 3 corre-
sponds to direct-mapped caches, it can be extended to

set-associative caches (cf. [12] ). Nevertheless, simula-

tions can already show that associativity brings little

1, 1
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Figure 16: Performance comparison of set-associative

and dzrect-mapped caches for different values of w

improvements on total hit ratio, and more particu-

larly on the hit, ratio of X. Basically associativity is

helpful when interferences occur. Now, when w < 1,

there are very few interferences, and when w > 1, in-

terferences are so numerous (at least w elements of

X conflict for the same cache location) that a 2-way

or 4-way associativity brings little or no improvement

(cf. figure 16).

5 Improving the behavior of SpMxV
In thi~ section-possible software optimi~ations are

discussed. Two different a~Droaches for software op-

timization of SpMxV are d;stinguisbed: an algorith-

mic approach which aims at reducing bandwidth us-

ing renumbering algorithms, and a software approach

based on particular blocking techniques.

5.1 Software optimization: Ban dwtdth reductton

Two main kinds of renumbering algorithms are

employed: ban dw?dth reductton algorithms which are

derivatives of that of Cuthill and McKee. and the

mintmum-degree algorithm. According to George [6],

reducing bandwidth is not closelv related to minimiz-

ing arit~metic operations and s~orage. On the other

hand. mantmurn-dearee al~orithm is efficient for find-.
iug low-fill orderings. Therefore, this second renum-

bering scheme tends to become popular. However, it

must be noted that, an effect of mznzntum degree is

to scatter non-zero elements across the matrix, while

bandwidth reduction algorithms are generally very ef-

ficient in grouping non-zero elements. So, if mini-

mum degree is more efficient for LU factorization as

shown by George, it is far less profitable for SpMxV

in terms of locality, because it widens considerably

matrix bandwidth.

Therefore, if SpMxV is used in a direct sparse code,

a tradeoff exist between optimizing SpMxV or LU fac-
torization. Now, in iterative codes, SpMxV is the most

frequently used primitive and matrix renumbering can

be chosen for SpMxV to behave most efficiently. Auy -
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way, it should be kept in mind, that renumbering

in order to minimize bandwidth is profitable in our

case, only if the degree of interference w can be made

smaller than 1.

5.2 Software optimization: Blocktng

5.2.1 Classic blocking

The reason why sparse codes do not work on caches

when matrix parameters are much larger than cache

parameters is the same as for dense codes: because

elements to be reused cannot be kept in cache. How-

ever, a solution valid for dense codes [2], i.e blocking,

is not valid for sparse codes, because each element is

not reused a sufficient number of times to override the

overhead of blocking.

Moreover, sparse codes exhibit an irregular Iocalitg

which cannot be foreseen at compile-time (i.e a priorz),

while dense codes exhibit regular localzty, which can be

exploited at compile-time.

When classic blocking is used, part of this irregular

locality cannot be used because of the average dis-

tance between two reuses (= ~ iterations). More-..=
over, large overhead data is required in order to locate

non-zero elements within each block. Only if the ma-

trix is nearly dense (d = 1), classic blocking is prof-

itable due to the important potential reuse per element

of X (cf. figure 17).

5.2.2 Blocking by diagonal
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0.2
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‘k,
storage by row + -.

7 ‘.

--- ......

0.15 1 J

O 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
d (nnz=80)

Figure 17: Effect of dzagonal blocking on the total miss

ratio.

It is clear that al y software optimization techniques

should take into account the specifics of SpMxV. First
of all, in opposition to most dense codes, it must be

assimilated that one computation corresponds to one

non-~ero element and not to any element of the ma-

trix. Therefore, any blocking technique should implic-

itly deal with blocks of non-zero elements rather than

blocks of matrrz elements.

Second of all, in dense matrices, the elements of

symmetry are columns and rows, which explain why

such matrices are blocked using rectangular shapes.

The elements of symmetry of banded sparse matrices

are dzagonals. Therefore, it seems natural to block

along diagonals, otherwise too many blocks would be

half-empty and would degrade the efficiency of the

blocking technique.

According to section 4.2, the original large band

should be split into several small bands, such that

their width is of the order of cache size. Now, these

blocks should be based on non-zero elements and not

on arbitrary geometric dissection. Moreover, having

the number of non-zero elements on each of the dif-

ferent diagonals constant (except for the first and last

diagonal blocks) would reduce the overhead data to be

kept, as seen in above paragraph.

For that purpose, nnZ the average number of non-

zero elements per row and the nu-mber of non-zero

elements on each diagonal of the original matrix must

be computed. Since the goal of the method is to ob-

tain a collection of banded matrices which bandwith

is smaller than cache size, the original matrix needs to

be split into approximately nB = [~1 submatrices.

In all these submatrices exceDt for ~~e first and last

one, the number of non-zero elements ought to be con-

stant, approximately equal to ~. Additional data is

necessary to store the number of non-zero elements on

the rows of the first and last diagonal block.

This blocking method is interesting only when X

is the major cause of cache misses, and the potential

reuse is high (cf. sections 4.1 and 4.3). Though it

increases the number of misses on Y (they are nearly

multiplied by n B ), it decreases the miss ratio of X,

so that the improvement of the total hit ratio may be

quite important (cf. figure 17). The main asset of the

method is to be applicable even when the density is

low, where other classic blocking methods would fail.

Moreover, the shape of certain types of matrices

such as finite-element matrices suggests that diagonal

blocking could be further enhanced. Indeed, in such

matrices, there are generally three diagonals along
which non-zero elements are grouped (cf. figure 3).

Therefore a first step to diagonal blocking would be to

find the diagonals of “highest density” and block non-

zero elements around them. Not only, nearly dense

blocks of non-zero elements would be obtained, but

the number of blocks itself (and the overhead) would

be considerably reduced in many cases, since it would

be fixed (and would not depend on WB and C~ ).

However, all blocking techniques introduce bounds

of their own. In our case, the number of blocks deter-
mine the maximum reuse per element of X. If there

are nB blocks and nn= non-zero elements per row, then

dzagon al blocking authorizes a maximum reuse of ~

per element of X, while the theoretical maximum ;s

11*Z.

5.2.3 ParaHelization

When a multiprocessor machine with local caches is

considered, it may appear that the most natural and

most commonly employed methods for blocking sparse
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matrices (e.g. blocking by rows) may not be the best

regarding communications between the different levels

of memory. For instance, the original storage-by-row

scheme already allows an easy parallelization of Sp-

MxV (cf. figure 5) on loop 1. However, analysis of

section 4 shows that a large bandwidth breeds an im-

portant miss ratio of X. Now, if SpMxV is blocked on

loop 1 and the bandwith of original matrix is large,

then the bandwidth of the resulting submatrices re-

mains the same. Therefore, the miss ratio of X on

each local cache may be high.

On the other hand, blocking by diagonal has sev-

eral assets which can be profitable to parallelization

and locality also, especially by improving data reuse

without bringing significant overheads. Since the orig-

inal problem (a banded sparse matrix) is split diag~

nally, the submatrices bandwidth is smaller than that

of original matrix (actually it is equal to that of orig-

inal matrix divided by the number of blocks). There-

fore, on each local cache the miss ratio of X may be

far smaller than when blocking by row. Consequently,

parallelizing this way naturally decreases the burden

on local caches by reducing the bandwidth, and con-

sequently the hit ratio.

6 Conclusions
This paper presents a methodology for modeling

the irregular references of sparse codes using proba-

bilistic methods. The model was shown to be very

accurate for uniformly distributed matrices, finzte-

element matrices renumbered with rninirnurn degree

algorithm, and still reflects quite well the behavior of

finite-element matrices renumbered with bandwadth re-

ductton algorithm.

The analysis of the model and simulations allowed

to identify three main parameters and their impact

on the behavior of SpMxV. First of all, cache size and

bandwidth are closely dependent. When bandwidth

is smaller than cache, spatial and temporal locality

of sparse matrices is well exploited and SpMxV needs

not be optimized. On the opposite, when bandwidth

is greater than cache size, self and cross-interferences

degrade the reuse of vector X which cannot exploit its

temporal and spatial locality. Moreover, in that case

little optimizations can be expected if the line size is

small because intrinsic misses are too numerous any-

way. However, when line size is sufficiently large, then

exploiting the potential locality of array .Y may yield

significant improvements of the total hit ratio, espe-

cially in 3-dimensional finzte-elern ent problems where

the potential reuse per element of X is important.

Little hardware or software techniques exist for

making use of locality within sparse problems. First,

Bandwidth reduction renumbering algorithms may sig-

nificantly improve the exploitation of locality within

SpMxV. Second, blocking methods are considered.
Classic rectangular blocking proves to be efficient only

when the matrix is nearly dense within its band, other-

wise the method breeds too much overhead. A block-

ing technique blocking by dtagonal that takes into ac-

count the specifics of sparse codes has been presented.

It is shown to efficiently exploit locality where other

blocking methods would fail, i.e when the matrix is

“very sparse”. Moreover, the parallel version of the

diagonally blocked algorithm on a multi-cache system

would naturally reduce the burden on local caches.
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