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A rigid rectangular foundation, embedded in an elastic half space, is subjected to a 
plane, transient, horizontally polarized shear (SH) wave. Embedment depth of the foun
dation and the angle of the incidence of the plane wave are assumed to be arbitrary. The 
problem considered is of the antiplane-strain type. The Laplace and Kontorovich-Lebe-
dev transforms are employed to derive the equation of motion for the foundation during 
the period of time required for an SH-wave to traverse the base width of the obstacle 
twice. Therefore this solution includes the process of multiple diffractions at the corners 
of the foundation. 

Introduction 

The problems of soil structure interaction have been attracting 
many researchers lately. However, for the case of buried founda
tions there are still only few theoretical results available. A de
tailed review of these results is given in reference [l].3 

Thau and Umek [2] derived a transient response of a rigid rec
tangular foundation embedded in an elastic half space and subject
ed to an incident plane SH-wave. However, the response calculat
ed in [2] was exact only within the first unit of time. In other 
words, the process of multiple diffractions at the corners of the 
foundation has been neglected. (A unit of time is defined as the in-
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terval of time required for a SH-wave to traverse the base of the 
foundation once.) A question arose as to whether the solution of [2] 
can be used as an approximate one beyond the time where it is 
exact. This question is the topic discussed in this paper. 

In the subsequent analysis one could distinguish two types of so
lutions: a solution that was exact from zero up to one unit of time, 
called the zeroth-order solution, and a solution that was exact 
from zero up to two units of time, called the first-order solution. 
The difference between these two was found to be relatively small. 
Both solutions approached the predictable long-time limits for the 
incident wave field in the form of the Dirac delta function and the 
Heaviside step function. Therefore, by neglecting the multiple dif
fractions of elastic waves at the corners of the foundation it was 
found that the corresponding error for the response was relatively 
small. 

Throughout the analysis, the method of integral transforms was 
employed. In particular, ;the Laplace transform and the Kontoro-
vich-Lebedev (K-L) transform [3, 4] were used. 

Statement of Problem 
The problem model, shown in Fig. 1, consists of a rigid founda

tion bloc'k which extends to infinity along the z-axis. It is embed
ded in a homogenous isotropic elastic half space. An incident plane 
SH-wave, which propagates at an angle a with respect to positive 
x-axis, strikes the foundation and causes it to move. The problem 
just presented is of the antiplane-strain type in which the displace
ment field is given by ux = uy = 0 and uz - w(x, y, t). The incident 
wave field is expressed as 
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Fig. 1 Problem geometry 

u(;) = 1/2 -f(t - X cos a-y sin a); 0 < a < ir/2, (1) 

where / is a causal function. 
After the introduction of dimensionless variables, wave motions 

in the half space are governed by 

V2w - w = 0, V2 = d2/dx2 + a2/ay2 
(2) 

where w(x, y, t) represents the total displacement field in the z-
direction, which consists of incident and scattered wave fields, i.e., 
w = wM + iw<s). The nonvanishing stress field is given by axz = 
awl ax, ayz = aw/ay. Since the surface of the half space is stress-
free, this implies aw(x, h, t)/ay = 0. Along the interface between 
the foundation and elastic media one requires perfect bonding, i.e., 
w = W(t), where W is the resultant rigid-body motion of the foun
dation caused by the incident wave. The initial conditions are 
given by u/ s ) (x, y, 0) = f«(s' (x, y, 0) = 0. To insure the unique so
lution, it is required that the scattered wave field w^ represents 
outward traveling waves and that the displacement field w remains 
finite at the corners of the foundation. It was shown in reference 
[2] that the foregoing problem can be simplified by introducing an 
equivalent, full-space model. This is accomplished by adding its 
mirror picture to the original model, Fig. 1, about y = h. 

So lut ion of P r o b l e m 
Throughout the analysis, a method used by Thau will be fol

lowed [5]. He showed that the problem of scattering of elastic 
waves by a rigid obstacle can be separated in two physically mean
ingful subproblems: 

1 The radiation of waves by the foundation vibrating as a rigid 
body with W(t). 

2 The diffraction of incident waves by an immobile founda
tion. 
Therefore, the boundary condition in the radiation subproblem 
becomes w(ri = W(t) along the foundation boundary, where w^'1 

represents outgoing waves. In the diffraction subproblem the 
boundary condition along the foundation is given by «;'"' + u;'1'' + 
a>(<f) = 0, where the prime denotes the image incident wave in the 
equivalent problem model and iti<d) again represents outgoing 
waves. The total solution of the original problem is given as a sum 
w(i) + w(i') + WM + w(d) 

In order to solve the problem, the Laplace transform in time is 
applied first to the governing equations defined by 

f(s) f " f{t)e~stdt. (3) 

Then, the K-L transform is applied to the variable r of the plane 
polar coordinate system (r, 0) according to 

]*(v)= ("° r^f(r)K,„(sr)dr. 
Jo 

The inverse K-L transform is given by 

(4a) 

W"' — /w" 

Fig. 2 Primary and secondary waves at corner 2 

m- 2ir~2 ("* v sinh (wp)f*(i>)Ki„(sr)diJ, (4b) 

where K",„(sr) is the Macdonald function. A useful integral repre
sentation of this function for applying and inverting the K-L 
transform is given by 

K"(sr)= So e~SrC i vzdz. (5) 

Several results from reference [2] will be used in an analysis of 
the first-order response. They are listed as follows: Primary cylin
drical SH-waves (created originally at the corners of the founda
tion) at corner 1 are given by 

w(r,0)' = -A(\)W(s) sinh (xX/4) sech (3TTX/4) 

fsinh\(0i - i r /2 ) 
X 

I sinh X(2ir - 9i) 
for TT/2 < <?i < IT and 3ir/2 < fli < 2ir, respectively; 

u,W.o)* = f{s)A{\) sinh (TTX/2) csch (3irX/2) 

fsinh X(« + ir/2) sinh X(fli - ir/2) 

sinh X(ir — a) sinh X(2TT — 6{) 

(6) 

(7) 

for vr/2 < #i < 7r — a and 2ir — a < 0i < 2ir, respectively, where the 
superscripts r and d denote radiation and diffraction subproblems, 
respectively; B\ is specified in Fig. 2 and 

A(X) = TTX"1 csch (irX); (8) 

the force due to the primary cylindrical waves and the plane waves 
in radiation subproblem is given by 

p(r.o) = (K-Cs)W(s); C=l + 2h, (9a) 

where K is the known constant; furthermore, the force due to the 
primary cylindrical and plane waves in diffraction subproblem is 
given by 

jrtd.o) = ; ( s ) [gl(a) + e- ag2(ot) +e «g3(«)], (10) 

whereg,(«) are known. 
To insure that no primary cylindrical wave from one corner ar

rives at an adjacent corner before time t = 1, it was assumed that 
embedment depth h > %. 

In order to find the first-order solution to the problem, one must 
consider a phenomenon of rediffraction of primary cylindrical 
waves at the corners of the foundation. Indeed, when a primary cy
lindrical wave from one corner strikes another corner, a new wave, 
which is denoted as a secondary one, is created. Therefore, one 
needs the relations between the primary and secondary cylindrical 
waves. It is sufficient to consider a primary cylindrical wave u/0 ' 
from corner 1 which strikes corner 2, thus causing a secondary cy
lindrical wave u/1 ' to emanate from corner 2. Within the interval 
of time 1 < t < 2, the situation is presented in Fig. 2. Then, for a 
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total wave field w(r, 9) the following conditions should be satisfied: 

w(r, 0 +) = w(r, 0 - ) (11a) 

aw(r, 0+)/al = aw(r, 0-)/al, (lift) 

where 

w(r, 0+) = wl»(r, 0) (12a) 

w(r, 0 - ) = u><l>(r, 0) + w<®{n, 2jr). (12b) 

In the foregoing equations, (n , flt) and (r, fl) represent plane polar 
coordinate systems placed at corners 1 and 2, respectively, while I 
is a unit vector tangent to both primary and secondary cylindrical 
waves. 

Radia t ion S u b p r o b l e m 
In the radiation subproblem, one encounters the phenomenon of 

diffraction of elastic waves as follows: Due to the motion of the 
foundation a primary cylindrical SH-wave, together with two plane 
SH-waves, will emanate from each corner of the foundation. At time 
t = 1, the primary cylindrical SH-wave will first strike an adjacent 
corner and rediffract a secondary cylindrical SH-wave. Owing to the 
symmetry of the radiation subproblem it is sufficient to consider the 
case shown in Fig. 2. Thus the objective is to determine the secondary 
cylindrical SH-wave at corner 2. 

It can be seen from (6) that a primary cylindrical wave satisfies 
homogenous boundary conditions along the foundation sides #i = 
ir/2 and fli = 2-ir. The nonhomogenous part of the boundary condi
tion is taken care of by the plane waves. Therefore, the secondary 
cylindrical wave at corner 2 has to satisfy the homogenous bound
ary conditions w^-1^ = 0 along 8 - ir/2 and 6 = —IT (see Fig. 2). Fur
thermore, it satisfies the wave equation (2) which in the Laplace-

K-L domain becomes WBO' (r,l)« _ „2,7,(r,l)« 0, where (•)« = a(-)/aB. 
Thus one can assume the equation of the secondary cylindrical 
SH-wave at corner 2, due to the primary cylindrical SH-wave from 
corner 1, to be 

0)W = AMW(s) f EM sinh K(IT/2 -S) sinh (*•«) 

M sinh i/(x + 6) sinh (W2) 
(13) 

for 0 < 0 < ir/2 and — ir < 8 < 0, respectively. Here A(-) is defined 
by (8), while E and F are functions yet to be determined. By sub
stituting (13) and (6) into condition (11a) one obtains 

EM = FM- (14) 

From condition (lib) it follows then 

w^r^ (r, 0+) - W ' 1 * (r, 0 - ) = r(r + l ) - 1 w , ^ (r + 1, 2ir). (15) 

By employing the equations of primary and secondary cylindrical 
SH-waves (6) and (13), together with the result (14) and the in
verse K-L transform, the last equation implies 

X' EM sinh (3TTI//2) Ku,(sr)dv 

= r(r + I ) " 1 f X sinh (TTX/4) 

Xsech(37rA/4)i<:;„(s(r+ l))dX. (16) 

Denoting the RHS of (16) as fi(r) and writing 

EM sinh (3W2) = 2ir~2 EM sinh (iw), (17) 

it follows from (16) that the unknown function EM is given by 

EM = -fi*M. (18) 
Thus, by taking the K-L transform of the RHS of (16) and using 
(5), (17), and (18), it follows that the unknown function EM is 
given by 

Therefore, from the aforementioned equation, together with (13) 
and (14), the equation of the secondary cylindrical SH-wave at cor
ner 2 caused by rediffraction of the primary cylindrical SH-wave 
(6) is known. 

In order to obtain the force at corner 2, due to the secondary cy
lindrical waves, it is necessary to integrate the stress field, corre
sponding to the displacement field (13), along the sides of the 
foundation, Fig. 2. However, by introducing an infinite wedge in
stead of finite one at corner 2, one can see that the integration of 
the stress field would yield an exact value for the force only for the 
period of time up to t = 2. For time t > 2, the expression for the 
force would not be exact anymore, but, in any case, the solution 
which is under consideration is exact up to t = 2. Now,, the force at 
corner 2 due to the secondary wave (9) can be expressed as 

j?<< •» = j " " r'1 [ W - 1 ' (r ,- ir) - W - 1 ' (r, ir/2)}dr. (20) 

By substituting (15) and (10) into (9) and then applying the in
verse K-L transform, it follows from the last equation 

pO-.D : zG0(z)R(z)dz, (21) 

where Go and R are defined by 

G0(z) = sinh (2z/3)/[l + 2 cosh (4z/3)] (22a) 

R{z) = tanh (z/3) [5 + 6 cosh (2z/3)]/[l + 2 cosh (2z/3)]. 
(226) 

However, in the process of calculating the force due to the primary 
radiated cylindrical waves, the same method of introducing infi
nite wedges for calculation of the force has been used in reference 
[2]. This means that the force due to the primary radiated cylindri
cal waves calculated in [2] is exact only up to t = 1. In order to use 
these results in the current analysis of the first-order response, a 
correction to the force due to the primary cylindrical SH-waves 
has to be introduced to make all quantities exact at least up to t = 
2. To explain the process in more detail, it is sufficient to consider 
the situation of a primary radiated cylindrical wave at corner 1 
that strikes corner 2, thus creating a new, secondary cylindrical 
wave, Fig. 2. The primary wave contributes to the force on the 
foundation, only while traveling the distance from corner 1 to cor
ner 2, and so it does not contribute to the force exerted on the 
foundation any further. In calculating the force due to the primary 
cylindrical wave, an infinite wedge has been introduced in [2]. So, 
by following the example in Fig. 2, one can see that the integration 
of the stress along the base of the foundation yields the zeroth-
order force in [2] for time t > 1 as if the base were of infinite width. 
Therefore, the correction along the base, which it is necessary to 
subtract from the zeroth-order force, is given by 

•* <*nrr j n 1 wei
ir 

°> (ri , 2ir)o>i. (23a) 

Using the equation of primary cylindrical waves (6), together with 
(5), and the inverse K-L transform (46), the foregoing equation 
implies 

Fcorr(r) = - 8 W X 3 T T ) - 1 ( e - s c o s h 2 tanhz-G 0 (z)dz, (236) 
Jo 

where Go has been defined by (22a). It was found convenient to 
combine the correction force (236) together with the force due to 
the secondary cylindrical wave (21) to obtain 

64W(97r) 
Jo (24a) 

EM = -2 (3« ' )~ 1 csch (3ITK, /2)So •• sin (vz) sech (2z/3 - iir/G)dz. (19) 
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Table 1 Secondary cylindrical waves at corners 1 and 2 

Corner 

1 

2 

w(d,o) 

From 
corner 

1' 
2 
1' 

1 
1 
2' 

Caused by 

win 
win 
w(0 

w(0 
w(0 
win 

«,(".') 

At time 

2/2 
cos a + 1 
1h (sin a + 1) 

1 
2h (sin a + 1) 
cos a + 2/i 

Event 

^ 2 

C2 

Similarly, the force due to the secondary cylindrical SH-wave at 
corner 2 caused by rediffraction of the primary cylindrical SH-
wave from corner 2' (mirror corner of 2), combined with the corre
sponding correction along the vertical wall, is given by 

F / 7C'U = 64H/(97r)-1 C°° e~s2hm'h*G0
2(z)dz. (246) 

By adding J*/'1"-1' to F/; ( r '1 ) , one obtains the total force at corner 2, 
due to the secondary cylindrical SH-waves which is exact up to 
time t = 2. Owing to the symmetry involved in this subproblem, 
the same force would apply to the corners 1, 1', and 2'. Therefore, 
the force due to the secondary cylindrical waves (with correction to 
the force due to the primary cylindrical waves) in the radiation 
subproblem for the actual model is given by 

j7tot(<M> = 2(F/<<M> + F//<<M>). (25) 

Dif frac t ion S u b p r o b l e m 
As defined previously, in the diffraction subproblem the inci

dent wave field tu(,) strikes at the immobile foundation. Due to the 
symmetry involved in the equivalent model, Fig. 1, the problem 
can be reduced to more fundamental ones. First of all, it is neces
sary to take into account all the secondary cylindrical SH-waves. 
This is presented in Table 1 for corners 1 and 2 only. It turns out 
that all problems for the secondary cylindrical waves in the prob
lem under consideration can be solved if the solutions for events 
A 2 and Bi in Table 1 are known. These will be denoted as the fun
damental events. For fundamental event A2, the equation of the 
primary cylindrical wave is given by (7). Therefore one can assume 
the equation of the secondary cylindrical wave at corner 2, Fig. 2, 
in the form 

a,^* = ?AM\EMs'mh"M2-e)smhM (26) 
l ^ i M sinh V(T + 0) sinh (W2) 

for 0 < 8 < ir/2 a and —K < 8 < 0, respectively, with Ei(v) and F\(v) 
yet to be determined. It follows from condition (11a) that 

EM=Fx(v). (27) 

Condition (116) implies formally the relation (15), with super
script (r) replaced by (d). Following the procedure outlined in the 
radiation subproblem, it follows that 

Ex(v) = 2&'2TV)-1 csch (3W2) 

X f e-a'coabzGi(z, v -a) sin (vz)dz, (28a) 
Jo 

where it is temporarily assumed that the width of the foundation is 
set to be equal to "a" (instead of unity) to avoid a repetition of cal
culations for different events of Table 1. In the foregoing equation, 
Gi is defined by 

G 1,2(2, /?) = [sinh (4z/3) sin (2(3/3) =F sinh (2z/3) sin (4 (3/3)] 

X [cosh (2z) =F cos (2f3)}~\ (286) 

Then the force due to the secondary cylindrical wave in event A 2 is 
given by 

298 / JUNE 1976 

FAU'lHa, a) = 4/(33/27r)-1 P " e-°° c° s h *Gl (z, -K - a)Ri(z), 
Jo 

(29a) 
where Ri(z) is defined by 

Ri(z) = [cosh (2z) + cosh2 z-2 cosh (4z/3)[ csch (2z). (296) 

For the same reason as in the radiation subproblem, it is necessary 
to introduce a correction to the force due to the primary cylindri
cal wave for event A 2, which turns out to be 

FA„co"(a,a) = 2/(31/2 TT)-1 

X f e - Q s c o s h 2 t a n h z - G i ( z , vr - a)dz. (30) 
Jo 

A similar procedure yields the force due to the secondary cylin
drical wave for event £2 and the corresponding correction force as 

FB2
U'-1) (a, a) = 4/(33/27r)~1 

X C e'asco3hz-G2(z,Tr/2 - a)R1(z)dz (31a) 

F B 2
c o r r (a ,a ) = 2 / (3 1 / M" 1 

X f e~as cosh 2 tanh z • G2(z, T/2 - <x)dz, (316) 

where G2 has been defined by (286). Again, as in the radiation sub-
problem, it was found convenient to combine the force due to the 
secondary cylindrical wave with the correction force. Therefore for 
event A\ one associates a pair of forces 

FAl = FAW'» (2h, ir/2 -a)- FM°°™ (2h, ir/2 - a). (32a) 

Similarly, for the events Bj and Ci, it follows that 

FBl = e~s cos" [PA^d-l) (1,7T - a) - FM
cotr (1, TT - a)] (326) 

FCl = e~s2h 8i" « [FAW'» \2h, TT/2 + a) 

-FA™r(2htit/2 + a)}. (32c) 

Therefore, the total corrected force at corner 1 due to the secon
dary cylindrical SH-waves is given as a sum 

Fjd»=FAl + FBl + FCi. (33) 

Analogously, the total first-order force at corner 2 is given as 

F^^FAZ + FBZ + FCZ, (34) 

where 

PA2 = FAa»(l,ol)-FA!r"(l,a) 
FB2 = e-s2h sin " [FB2

(d-1) (1, a) - FB2
C°" (1, a)] 

FC2 = e~s c o s" [FB2
(d'1) (2h, TT/2 - a) 

-FB2
corT(2h,ir/2-a)]. (35) 

Owing to the symmetry involved in the diffraction subproblem, it 
is sufficient to know Fii-d'1'1 and P2

<|:''1) in order to find the total 
force due to the secondary cylindrical waves 

p(d,i) = p^d.i) + p2(d,i) ( 3 6 ) 

When all the forces in diffraction and radiation subproblems are 
known, one can proceed with the formulation of the equation of 
motion, which is obtained by equating the total force exerted on 
the foundation, given as a sum of (23), (9a), (36), and (10), to its 
intertia force. Therefore, in the Laplace transform domain 

(ms2 + Cs + K- W ' 1 ' ) W = (5f<d'°> + ?W-1')?, (37) 

where J7 is normalized force (with respect W or / ) . Therefore, the 
first-order response of the foundation is given by 

firfi) = Jv<o) + pW.D § 1 ( s ) + grfd.o) gr(M)g2(s)]7, (38) 

where qt = (ms2 + Cs + K)~\ q2 = qx
2, and W(0> = 3^°> qif. 
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Fig. 3(a) Delta-function response 

Fig. 3(fc) Step-function response 

Fig. 3 Responses of foundation 

Hence, the first-order solution W'1 ' is given as a sum of the zeroth-
order solution IV(0) and the terms that account for the process of 
rediffraction at the corners of the foundation. 

Numerical Results 
Based on the inverse Laplace transform of (38), numerical re

sults are evaluated for mass m = 0.5, a = TT/2 and h = 0.5. For a 
more extensive numerical evaluation see [1]. Pig. (3a) represents 
the delta-function response (f(t) = 5(f)). The dashed line repre
sents the zeroth-order solution, while the solid line denotes the 
first-order response. One can see that the difference between those 
two is relatively small. In addition, both solutions approach the 

physically predictable long time limit, i.e., zero. This suggests the 
zeroth-order solution as a very good approximation of the first-
order response. 

The step-function response (/(£) = H(t)) of the results of (38) 
are presented in Fig. 3(b). Again, the difference between the first 
and the zeroth-order response is very small. By application of the 
Tauberian theorem [4], one can compute the exact value of the 
long time limits for the zeroth and the first-order responses. It was 
found that lim^WH™ (t) = 1.107 and^im^VvV1' (£) = 1.065, where 
the exact value of the physically predictable long time limit should 
be equal to one. Thus, although the first-order solution yields a 
better approximation than the zeroth-order one, the much simpler 
analysis involved in the latter one should be taken into account. 

Conclusions 
The results obtained for the response of the buried foundation 

to an incident plane SH-wave are exact up to two units of time. It 
turns out that the solution is an approximate one beyond t = 2. In
deed, the first-order response, as well as the zeroth-order response, 
approaches the physically predictable long time limits. For exam
ple, in the case of the step function response, the incident wave 
field (1) will cause the entire half space, together with the founda
tion, to move with unit displacement as a rigid body as t —- <». Or if 
one associates the step-function response with velocity, then it fol
lows that the whole half space will move with unit velocity as a 
rigid body as £ —• °>. This implies that the corresponding delta-
function response, or acceleration, will tend to zero as t —• °°. The 
small difference demonstrated between the zeroth and the first-
order response suggests the zeroth-order response as an approxi
mation of the exact solution, thus reducing the complexity of the 
analysis greatly. Once the delta-function response is known, one 
can use it as a Green's function to obtain the response for an arbi
trary profile of the incident wave field (1). 
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