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ABSTRACT

This paper discusses development of physics-based models for bistatic scattering. We generalize parametric equa-
tions for monostatic scattering mechanisms in a plane to achieve analogous bistatic approximations. Combina-
tion of these mechanisms, as separable azimuth and elevation components, allows 3-D modelling of six scattering
primitives: sphere, tophat, trihedral, dihedral, cylinder, and flat plate. The responses of these scattering center
models are shown to compare favorably with results obtained from validated high-frequency simulations.
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1. INTRODUCTION

Synthetic aperture radar (SAR) is an invaluable tool in all-weather air-to-ground surveillance. Monostatic SAR
systems, which involve a single platform operating as transmitter and receiver, are historically cost effective,
straightforward to implement, and easy to deploy operationally. However, recent advancements in unmanned
aerial vehicle technology, as well as growing interest in both stealth and cooperative surveillance, have introduced
new interest in the field of bistatic SAR Ref. 1–3.

In bistatic Ref. 4 systems, the transmit and receive antennas are located on separate platforms. The receiver
may be of relatively low cost, and its passive nature allows it to safely operate at closer ranges to hostile territory.
One or more receivers may work cooperatively with a higher cost transmitting platform at a safe standoff distance,
or may make use of illuminators of opportunity such as local television and radio transmitters or even overpassing
satellites Ref. 5.

According to the geometric theory of diffraction (GTD) Ref. 6, the high-frequency scattering response from
a complex object is well-modelled by the sum of responses from individual scattering mechanisms. GTD-based
parametric models for monostatic SAR scatterers provide a physically relevant representation of an object’s scat-
tering behavior, and thus are potentially valuable tools for SAR image exploitation. Reliable feature extraction
may provide for image chip compression Ref. 7 and may serve as input to automatic target recognition (ATR)
processors. The authors of Ref. 8–12 propose attributed scattering center models for monostatic returns from
several canonical reflectors, including trihedrals, dihedrals, and tophats. These models have given promising
results when applied in ATR algorithms Ref. 8, 13–16. These algorithms operate by parametrically extracting
target features which then go on to feed Bayes-classification engines. Canonical scattering center models could
be similarly effective in bistatic SAR ATR.

As compared to the monostatic scattering community, there exists relatively little work in the open literature
regarding application of scattering center models to bistatic SAR imagery. Gabig Ref. 17 attempts to experi-
mentally validate monostatic to bistatic equivalence theorems, which have been proposed by many researchers
Ref. 18–20. Equivalence theorems principally apply monostatic models to bistatic scattering by using the bistatic
look angle in place of the monostatic look angle. These theorems are typically more concerned with the total
radar cross section of a complex target, rather than the returns of individual scatterers. Germond Ref. 21 derives
expressions for bistatic radar polarimetry from the classical monostatic theory. Akhter Ref. 22 develops several
electromagnetic models for bistatic scattering based on the geometric theory of diffraction. In this paper, we
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use the theory demonstrated in Ref. 22, and generalize the models found in Ref. 8, 11, 12, to develop parsimo-
nious physics-based models of bistatic scattering. The need to consider differing transmitter and receiver aspect
angles in the bistatic geometry necessarily adds to the complexity of the models, but intuitive modification of
monostatic formulas may sufficiently bridge the gaps in bistatic scattering theory left by the electromagnetics
community. To demonstrate application of this theory, we examine the inverse scattering problem of estimating
the parameters of scattering centers based on a synthetically-generated bistatic SAR image.

The remainder of this paper is organized as follows. Section II describes the process of bistatic SAR data
collection and image formation formation via matched filtering. Section III introduces three models for funda-
mental bistatic scattering mechanisms in a plane. Section IV shows how various combinations of these models
may be used to approximate the scattering behavior of six three-dimensional scattering primitives: trihedral,
tophat, sphere, dihedral, cylinder and plate. Lastly, Section VI summarizes our results and conclusions.

2. BISTATIC SAR

Consider the bistatic SAR geometry in Figure 1. A transmitter following a path rt(τ), where τ is time, interro-
gates a region centered at the origin. A receiver following a path rr(τ) measures backscattered energy from the
region. The slant ranges of the transmitter and receiver are Rt(τ) = ‖rt(τ)‖ and Rr(τ) = ‖rr(τ)‖, respectively,
and φt(τ) and φr(τ) (θt(τ) and θr(τ)) are the azimuth (elevation) angles of the transmitter and receiver at time
τ . Given these values, the transmitter location at a given time τ is

rt(τ) = [xt(τ) yt(τ) zt(τ)]T

= Rt(τ)[cos φt(τ) cos θt(τ) sin φt(τ) cos θt(τ) sin θt(τ)]T , (1)

and the receiver location is

rr(τ) = [xr(τ) yr(τ) zr(τ)]T

= Rr(τ)[cos φr(τ) cos θr(τ) sin φr(τ) cos θr(τ) sin θr(τ)]T . (2)

Measurements of the transmitter and receiver positions are subject to error, and these errors introduce slow time
dependent phase errors in the recorded data Ref. 23. Provided that the severity of these measurement errors is
limited, they may be corrected to within a linear phase term by post-processing techniques. For the remainder
of our discussion, we assume that all of the motion measurement errors in the system are strictly within our
ability to correct with autofocus algorithms Ref. 23–25.

At regular intervals during the data collection period τ ∈ [−T/2, T/2], the transmitting platform spotlights
the scene of interest with radiated energy. The projected energy is assumed to have uniform power over the
frequency range f ∈ [f0, f0 + B] and to have uniform power over the projected beam. The receiving platform
records the reflected responses without introducing any spectral distortions. High-frequency approximations
Ref. 6 allow the composite response from the scene to be modelled as the sum of responses from individual
scatters. Thus, we represent the returned signal as

S(f, τ) =
∑

m

AmSΓ(m)(f, φt(τ), φr(τ), θt(τ), θr(τ); θ(m))e−j 2πf
c ∆Rm(τ) + w(f, τ) (3)

where the response of the mth reflector in the scene is SΓ(m)(f, φt, φr, θt, θr; θ(m)). The variable Γ(m) indicates
the type of canonical scattering center, and therefore the equational form of SΓ(m)(f, φt, φr, θt, θr; θ(m)). In
Section IV, we propose six types of canonical scatterers such that Γ(m) ∈ {sphere, tophat, trihedral, dihedral,
cylinder, plate}. The vector θ(m) contains the physical parameters corresponding to a reflector of type Γ(m).
The return from each scatterer is time-delayed by the travel time from the transmitter to the scatterer to the
receiver. The receiver gates the recorded data at each point of observation such that scatterers at the origin
have zero time delay. In (3), ∆Rm(τ)/c is the time delay of the mth scatterer relative to the time delay of a
scatterer located at the origin, and Am is the reflector’s real-valued scattering coefficient. The speed of light is
represented by c, and w(f, τ) is white Gaussian measurement noise.
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Figure 1. Top view of a bistatic data collection geome-
try. The x-y plane is the ground plane.
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Figure 2. Bistatic SAR data collection manifold in 3-D
frequency space.

Assuming that the imaged scene is small relative to the platform ranges allows a far-field assumption to be
used to approximate the differential range ∆Rm(τ) Ref. 26, giving

∆Rm(τ) ≈ −xm (cos φt(τ) cos θt(τ) + cos φr(τ) cos θr(τ))
−ym (sin φt(τ) cos θt(τ) + sinφr(τ) cos θr(τ))
−zm (sin θt(τ) + sin θr(τ)) . (4)

Using equation (4), our expression for the recorded data (3) becomes

S(f, τ) ≈
∑

m

AmSΓ(m)(fx, fy, fz; θ(m))ej 4π
c (xmfx(f,τ)+ymfy(f,τ)+zmfz(f,τ)) + w(f, τ) (5)

where

fx(f, τ) =
f

2
(cos φt(τ) cos θt(τ) + cos φr(τ) cos θr(τ))

fy(f, τ) =
f

2
(sin φt(τ) cos θt(τ) + sin φr(τ) cos θr(τ))

fz(f, τ) =
f

2
(sin θt(τ) + sin θr(τ)) . (6)

The data collection manifold is thus defined in frequency space as the surface of points {(fx(f, τ), fy(f, τ), fz(f, τ))}
for f ∈ [f0, f0 + B] and τ ∈ [−T/2, T/2], as shown in Figure 2. This manifold may also be viewed as the surface
swept out by the bistatic line-of-sight, written in vector form as

vLOS(τ) =
1
2




cos φt(τ) cos θt(τ) + cos φr(τ) cos θr(τ)
sin φt(τ) cos θt(τ) + sin φr(τ) cos θr(τ)

sin θt(τ) + sin θr(τ)



 . (7)

Given a set of bistatic SAR phase history data {S(f, τ)} for f ∈ [f0, f0+B] and τ ∈ [−T/2, T/2], one typically
wishes to form an image defined by a uniformly spaced grid of sample points, or pixels, on a plane. By analyzing
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one pixel at a time, one may assume that a point scatterer (i.e., SΓ(m)(f, φt, φr, θt, θr; θ(m)) ≡ 1) is located at
each pixel’s grid location. Then, the value of that pixel is computed as the maximum likelihood estimate of the
complex reflection coefficient P (x, y, z) at that location, from the measurements {S(f, τ)}. Maximum likelihood
estimation of P (x, y, z) under the assumption of white Gaussian measurement errors in the phase history data
requires minimization of a least squares cost function written as

JP =
Nf∑

i=1

Nτ∑

k=1

∣∣∣S(fi, τk) − P (x, y, z)ej 4π
c (xfx(fi,τk)+yfy(fi,τk)+zfz(fi,τk))

∣∣∣
2

. (8)

Differentiating the cost function J with respect to the real and imaginary parts of P (x, y, z), and setting the
result equal to zero, allows one to solve for the least squares estimate of the pixel value, expressed as

P (x, y, z) =
1

NfNτ

Nf∑

i=1

Nτ∑

k=1

S(fi, τk)e−j 4π
c (xfx(fi,τk)+yfy(fi,τk)+zfz(fi,τk)). (9)

Equation (9) gives the matched filtering image formation algorithm Ref. 26 for each image pixel with location
(x, y, z).

3. PLANAR BISTATIC SCATTERING MECHANISMS

We now introduce three fundamental mechanisms for scattering in a plane. In planar scattering models, the
extents of a reflector out of the plane are assumed to be electrically large Ref. 22 (i.e., greater than λ), such
that the third dimension need not be considered. Combinations of these mechanisms can effectively model
the principal components of several canonical scattering centers in three dimensions. These models take a
separable form where fundamental scattering mechanisms are used to approximate the azimuthal and elevational
responses of canonical reflectors. However, the planar nature of bistatic SAR data collection will make capturing
the principal behaviors of a reflector in each angular direction sufficient for most applications.
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Figure 3. Circular scattering
mechanism has an isotropic re-
sponse that migrates around the
surface as the look angle changes.
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Figure 4. Flat scattering mecha-
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Figure 5. Right angle scattering
mechanism has an anisotropic re-
sponse that peaks when the trans-
mitter and receiver are at the same
aspect angle.

3.1. Circular

Figure 3 shows scattering from a circular surface. The circular mechanism has a response that is isotropic over
all look angles ψt, ψr ∈ [−π, π], and that is uniform over all frequencies f ∈ [f0, f0 + B]. Thus, we model its
bistatic response as

Scirc(f, ψt, ψr) = 1. (10)
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The location of the response does migrate along the surface of the reflector as the bistatic look angle ψb =
(ψt + ψr)/2 changes, such that the actual point of reflection is (x, y) = (dm cos ψb, dm sin ψb) where dm is the
radius of curvature. However, in narrowband bistatic SAR, this migration is typically negligible because of the
small angular span of the data collection. We can demonstrate this by considering the drift observed as a function
of crossrange image resolution. In Ref. 26, crossrange resolution is shown to be approximately

ρy =
c

4f0 sin
(

∆ψb

2

) (11)

where ∆ψb is the angular span swept through by the bistatic look angle ψb during data collection. Accordingly,
the crossrange migration of the reflection point is

∆y = 2dm sin
(

∆ψb

2

)
. (12)

Requiring this migration to be less than the width of a resolution cell gives

dm <
2ρ2

y

λ
, λ =

c

f0
. (13)

For a SAR system operating at f0 = 10 GHz, this limits the radius of curvature to 20 feet at 1-foot resolution but
limits it to 7 inches at 2-inch resolution. Thus, the effect of a migrating reflection point may become significant
in high-resolution or wide angle applications, which require data to be collected over a larger annular segment.

3.2. Flat Plate

Figure 4 shows scattering from a flat surface with length Lm and pose angle ψm, indicating the direction of the
surface normal with respect to the x-axis. The planar model for monostatic scattering from a flat surface is
Ref. 8, 11

S(f, ψt;Lm, ψm) =
(

j
f

fc

)1/2

sinc
(

2πf

c
Lm sin(ψt − ψm)

)
, ψt ∈

[
ψm − π

2
, ψm +

π

2

]
, (14)

which may also be written as

S(f, ψt;Lm, ψm) =
(

j
f

fc

)1/2
ej 4πf

c (Lm
2 sin(ψt−ψm)) − e−j 4πf

c (Lm
2 sin(ψt−ψm))

2πf
c Lm sin(ψt − ψm)

, ψt ∈
[
ψm − π

2
, ψm +

π

2

]
. (15)

One may view the numerator of (15) as the sum of the responses from two point scatterers, one located at each
end of the flat surface. Therefore, to accomodate bistatic scattering behavior, we modify (15) to represent the
sum of the bistatic returns from two point reflectors, written as

Sflat(f, ψt, ψr;Lm, ψm) =
(

j
f

fc

)1/2
e

2πf
c

Lm
2 (sin(ψt−ψm)+sin(ψr−ψm)) − e−

2πf
c

Lm
2 (sin(ψt−ψm)+sin(ψr−ψm))

πf
c Lm (sin(ψt − ψm) + sin(ψr − ψm))

,

ψt, ψr ∈
[
ψm − π

2
, ψm +

π

2

]
, (16)

or equivalently

Sflat(f, ψt, ψr;Lm, ψm) =
(

j
f

fc

)1/2

sinc
(

πf

c
Lm(sin(ψt − ψm) + sin(ψr − ψm))

)
,

ψt, ψr ∈
[
ψm − π

2
, ψm +

π

2

]
. (17)

Note that (17) achieves its peak response when the receiver observes the specular reflection from the flat surface
(i.e., when ψt − ψm = ψm − ψr).
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3.3. Right Angle

Figure 5 shows scattering from a right angle reflector, with sides of equal length hm. The variable ψm indicates
the angle measured counter-clockwise from the positive x-axis (so ψm > 0 in the figure). In Ref. 22, it is shown
that the dominant bistatic response of a right angle reflection is given by

Sright(f, ψt, ψr;hm, ψm) =
(

j
f

fc

)1/2

sin
(

ψt + ψr − 2ψm

2

)
·

sinc
[
4πfhm

c
sin

(
ψt + ψr − 2ψm

2

)
sin

(
ψt − ψr

2

)]

ψt, ψr ∈
[
ψm − π

4
, ψm +

π

4

]
(18)

provided ψt − ψr is small. The peak response of (18) is observed when the transmitter and receiver are at the
same aspect angle (i.e., ψt = ψr).

4. CANONICAL SCATTERING CENTER MODELS

Combinations of the scattering mechanisms described in the previous section may effectively model the responses
of three-dimensional scattering primitives. The basic circular, flat, and right angle responses approximate the
azimuthal and elevational responses of each of the canonical scatterers shown in Table 1. Thus, the product
of the approximate elevation and azimuth responses simulate the 3-D response of a scattering primitive. To
simplify the notation and intuition of the resulting formulas, we define the bistatic look angles in azimuth φb

and elevation θb as

φb =
φt + φr

2
and θb =

θt + θr

2
. (19)

Similarly, the bistatic angles in azimuth βφ and in elevation βθ are

βφ = φt − φr and βθ = θt − θr. (20)

We now explicitly consider each of the primitives shown in Table 1. In the following, we set the azimuth and
elevation pose angles, φm and θm, to zero. At the end of this section, we show how the response of rotated
scattering centers may be computed by implementing yaw, pitch, and roll transformations. Where appropriate,
we verify our models by fitting curves to Xpatchf Ref. 27 predictions of a scatterer’s radar cross section (RCS).

Table 1. Canonical scattering primitives.

Dihedral Cylinder Flat PlateTrihedral Tophat Sphere

4.1. Sphere

A sphere is composed of circular surfaces in both azimuth and elevation, giving it a symmetric and uniform
response from all aspect angles. This implies an RCS model of the form

Ssph(f, φt, φr, θt, θr) = Scirc(f, φt, φr)Scirc(f, θt, θr) = 1. (21)
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The only observable variation in a sphere’s response, as a function of look angle, is the location of the point of
reflection, which migrates around the surface of the sphere as a function of the transmitter (φt, θt) and receiver
(φr, θr) aspect angles. The point of reflection is positioned on the surface of the sphere at the point corresponding
to the bistatic look angle in azimuth φb and in elevation θb. As mentioned earlier, in narrowband systems that
involve small angular spans in their data collections, the reflection point migration can often be neglected.
Toward the goal of simple, parsimonious modelling, we thus neglect this location migration.

4.2. Tophat

The surface of a tophat is a circular mechanism in azimuth, making its response uniform with respect to the
azimuth angles of the transmitter and receiver, but is a right angle mechanism in elevation, making its elevational
response highly sensitive to any difference between the elevation angles of the transmitter and receiver. We model
the scattering behavior of the tophat as

Stop(f, φt, φr, θt, θr;hm) = Scirc(f, φt, φr)Sright(f, θt, θr;hm, θm = 0)

=
(

j
f

fc

)1/2

sin
(

θt + θr

2

)
· sinc

[
4πfhm

c
sin

(
θt + θr

2

)
sin

(
θt − θr

2

)]
,

θt, θr ∈
[
0,

π

2

]

=
(

j
f

fc

)1/2

sin θbsinc
[
4πfhm

c
sin θb sin

(
βθ

2

)]
,

θt, θr ∈
[
0,

π

2

]
(22)

where hm is the height of the tophat.

Figure 8 compares the Xpatchf simulated RCS of a tophat to the modelled RCS, at f = 9.5 GHz. The tophat
has a height of hm = 5 meters, a base radius of 7 meters, and cylinder radius of 2 meters. The transmitter
elevation angle is θt = 20◦, and the receiver elevation angle is varied from θr = 0◦ to θr = 90◦. Equation (22)
predicts the angle and width of the peak RCS with reasonable accuracy, as shown in Figure 8. However, the side
lobes of the tophat RCS are not well modelled below -15dB. This can be attributed to the fact that equation
(18) is based on scattering from a dihedral with rectangular edges, which may give significantly different RCS
variation than the circular edges of a tophat, and more importantly, (18) is derived by assuming βθ to be small.

4.3. Trihedral

A trihedral scattering primitive has right angle scattering mechanisms in both azimuth and elevation. We model
the response of a trihedral reflector as

Stri(f, φt, φr, θt, θr;hm) = Sright(f, φt, φr;hm, φm = 0)Sright(f, θt, θr;hm, θm = 0)

=
(

j
f

fc

)
sin

(
φt + φr

2

)
· sinc

[
4πfhm

c
sin

(
φt + φr

2

)
sin

(
φt − φr

2

)]
·

sin
(

θt + θr

2

)
· sinc

[
4πfhm

c
sin

(
θt + θr

2

)
sin

(
θt − θr

2

)]

=
(

j
f

fc

)
sin φbsinc

[
4πfhm

c
sinφb sin

(
βφ

2

)]
·

sin θbsinc
[
4πfhm

c
sin θb sin

(
βθ

2

)]
, θt, θr ∈

[
0,

π

2

]
, φt, φr ∈

[
0,

π

2

]
(23)

where the length of the trihedral along each edge is assumed to be equal to hm.

Figures 6 and 7 compare the Xpatchf simulated RCS of a trihedral to the modelled RCS, at f = 10 GHz.
The trihedral has height, width, and depth all defined to be hm = 2 meters. In each, the transmitter aspect is
constant at (φt, θt) = (−30◦, 30◦). In Figure 6, the receiver azimuth angle varies from φr = −90◦ to φr = 0◦, and
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in Figure 7, the receiver elevation angle varies from θr = 0◦ to θr = 90◦. In both figures, equation (23) accurately
predicts the angle and width of the peak RCS. In Figure 6, the principal side lobe roll-off behavior is reasonably
modelled, but in Figure 7, the elevational side lobes are not as well matched. Similar to the tophat model, this
can be attributed to the fact that equation (18) is based on scattering from a dihedral with rectangular sides,
which is more respresentative of a trihedral in azimuth than in elevation, and again, (18) requires βφ and βθ to
be small.
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Figure 6. RCS of a trihedral as a func-
tion of receiver azimuth angle. The
transmitter aspect angles are (φt, θt) =
(−30◦, 30◦).
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Figure 7. RCS of a trihedral as a func-
tion of receiver elevation angle. The
transmitter aspect angles are (φt, θt) =
(−30◦, 30◦).
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Figure 8. RCS of a tophat as a func-
tion of receiver elevation angle. The
transmitter elevation angle is θt = 20◦.

4.4. Dihedral

A dihedral consists of a flat scattering mechanism in azimuth and a right angle scattering mechanism in elevation.
We model the response of a dihedral reflector as

Sdih(f, φt, φr, θt, θr;Lm, hm) = Sflat(f, φt, φr;Lm, φm = 0)Sright(f, θt, θr;hm, θm = 0)

=
(

j
f

fc

)
sinc

(
πf

c
Lm(sin φt cos θt + sinφr cos θr)

)
·

sin
(

θt + θr

2

)
· sinc

[
4πfhm

c
sin

(
θt + θr

2

)
sin

(
θt − θr

2

)]

=
(

j
f

fc

)
sinc

(
2πfyLm

c

)
· sin θbsinc

[
4πfhm

c
sin θb sin

(
βθ

2

)]

θt, θr ∈
[
0,

π

2

]
, φt, φr ∈

[
−π

2
,
π

2

]
(24)

where Lm is the length of the dihedral, and hm is equal to the height and depth of its sides. Note that we
have modified the flat scattering mechanism by multiplying sinφt with cos θt and by multiplying sinφr with
cos θr. This adaptation is necessary to allow for the convergence of lines of longitude (corresponding to angles
in azimuth) as elevation angles approach ±90◦.

Figures 9, 10, and 11 compare the Xpatchf simulated RCS of a dihedral to the modelled RCS, at f = 10
GHz. The dihedral has length Lm = 5 meters and has height and depth hm = 2 meters. In Figures 9 and 11,
the transmitter aspect is constant at (φt, θt) = (0◦, 10◦), and in Figure 10, the tranmitter aspect is (φt, θt) =
(30◦, 10◦). The receiver azimuth angle varies from φr = −30◦ to φr = 30◦ in Figures 9 and 10. In Figure 11,
the receiver elevation angle varies from θr = 0◦ to θr = 90◦. In Figure 9, equation (24) is shown to be most
accurate in predicting the peak and side lobe responses of the dihedral, when the transmitting aspect is parallel
to the dihedral normal. In Figure 10, (24) accurately models in azimuth the principal side lobe behavior, and the
modelled peak width and location match the simulation. Figure 11 shows that equation (24) accurately places
the peak response in elevation and captures the principal side lobe behavior. From these figures, it is apparent
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that the accuracy of our models breaks down as βφ and βθ become large and as the platform azimuth angles
move away from φt = φr = 0◦.
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Figure 9. RCS of a dihedral as a function of receiver az-
imuth angle. The transmitter aspect angles are (φt, θt) =
(0◦, 10◦).
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Figure 10. RCS of a dihedral as a function of re-
ceiver azimuth angle. The transmitter aspect angles are
(φt, θt) = (30◦, 10◦).
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Figure 11. RCS of a dihedral as a function of re-
ceiver elevation angle. The transmitter aspect angles are
(φt, θt) = (0◦, 10◦).
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Figure 12. RCS of a clyinder as a function of re-
ceiver azimuth angle. The transmitter aspect angles are
(φt, θt) = (20◦, 0◦).

4.5. Cylinder
The bistatic response from a cylinder is modelled in azimuth as a flat scattering mechanism and in elevation as
a circular mechanism. Thus, we write our scattering model for a cylinder as

Scyl(f, φt, φr, θt, θr;Lm) = Sflat(f, φt, φr;Lm, φm = 0)Scirc(f, θt, θr)

=
(

j
f

fc

)1/2

sinc
(

πf

c
Lm(sin φt cos θt + sin φr cos θr)

)
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φt, φr ∈
[
−π

2
,
π

2

]
(25)

where Lm is the length of the cylinder.

Figure 12 compares the Xpatchf simulated RCS of a cylinder to the modelled RCS, at f = 10 GHz. The
cylinder has length Lm = 4 meters and radius 1 meter. The transmitter aspect is (φt, θt) = (20◦, 0◦). The receiver
azimuth angle varies from φr = −90◦ to φr = 90◦. Equation (25) accurately places the specular response from
the cylinder at −20◦ azimuth, and the principal side lobe behavior is matched reasonably well.

4.6. Plate

The plate scattering primitive is composed of flat scattering mechanisms in azimuth and in elevation. We
therefore model its response as

Splate(f, φt, φr, θt, θr;Lm, hm) = Sflat(f, φt, φr;Lm, φm = 0)Sflat(f, θt, θr;hm, θm = 0)

=
(

j
f

fc

)
· sinc

(
πf

c
Lm(sin φt cos θt + sin φr cos θr)

)
·

sinc
(

πf

c
hm(sin θt + sin θr)

)

φt, φr ∈
[
−π

2
,
π

2

]
, θt, θr ∈

[
−π

2
,
π

2

]
(26)

where Lm and hm are the dimensions of the plate in azimuth and elevation, respectively. Note that the cos θt and
cos θr terms are needed in the first sinc(·) function, due to the aformentioned convergence of lines of longitude,
but cos φt and cos φr terms are not needed in the second sinc(·) function.

Figures 13 and 14 compare the Xpatchf simulated RCS of a flat plate to the modelled RCS, at 9 GHz. The
plate has width Lm = 2 meters and has height hm = 2 meters. The transmitter aspect angles are (φt, θt) =
(0◦, 10◦). The receiver azimuth angle varies from φr = −90◦ to φr = 90◦ in Figure 13, and the receiver elevation
angle varies from θr = −90◦ to θr = 90◦ in Figure 14. Equation (26) matches the simulated RCS very well in
both azimuth and elevation. Figure 14 shows a slightly worse match because, as with the earlier examples, the
flat scattering mechanism model breaks down as the transmitter and receiver aspect angles separate and move
away from broadside.
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Figure 13. RCS of a flat plate as a function of re-
ceiver azimuth angle. The transmitter aspect angles are
(φt, θt) = (0◦, 10◦).
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Figure 14. RCS of a flat plate as a function of re-
ceiver elevation angle. The transmitter aspect angles are
(φt, θt) = (0◦, 10◦).
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4.7. Rotated Scattering Mechanisms

To obtain the response for a scattering mechanism that has undergone rotation transformations, one must apply
the opposite rotations to the transmitter and receiver position vectors, to obtain the platform aspects in the
object’s rotated coordinate system. The resulting transmitter and receiver look angles, (φ̂t, θ̂t) and (φ̂r, θ̂r), may
then be input to the model equations of the previous subsections. If a scattering center has roll γ, pitch β, and
yaw α, its rotation transformation is given by

R(α, β, γ) =




cos α − sin α 0
sinα cos α 0

0 0 1








cos β 0 sinβ

0 1 0
− sin β 0 cos β








1 0 0
0 cos γ − sin γ
0 sin γ cos γ



 . (27)

Thus, if the transmitting platform has aspect (φt, θt), its coordinates with respect to the rotated object are then
given by 


x̂t

ŷt

ẑt



 = R(−α,−β,−γ)




cos φt cos θt

sin φt cos θt

sin θt



 . (28)

One may then compute the relative transmitter azimuth and elevation angles as

φ̂t = arctan
(

ŷt

x̂t

)
and θ̂t = arctan

(
ẑt√

x̂2
t + ŷ2

t

)
. (29)

The rotated receiver aspect angles (φ̂r, θ̂r) are found analogously. The response of the rotated scatterer is
obtained from SΓ(m)(f, φt, φr, θt, θr; θ(m)).

5. CONCLUSIONS

This paper introduced GTD-based models for bistatic scattering from canonical scattering centers. We presented
three fundamental mechanisms for scattering in a plane: circular, flat, and right angle. These mechanisms were
combined to form high-frequency separable models for the bistatic 3-D response from six scattering primitives:
sphere, tophat, trihedral, dihedral, cylinder, and flat plate. A coupled model would likely be more correct
electromagnetically in many cases, but based on comparisons of our proposed models to simulated RCS curves,
the accuracy achieved is sufficient to allow one to estimate an object’s physical parameters from a bistatic SAR
image.
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