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Abstract

We formulate a prior about observables in a vector autoregression
(VAR) and then solve the deconvolution problem for the implied prior
about VAR parameters. Formulating a prior about observables is more
intuitive than formulating a prior about VAR parameters directly, be-
cause VAR parameters are hard to interpret. Our numerical algorithm
for approximating the implied prior about parameters works well even
in high-dimensional problems and can be applied also for models other
than VARs. In the empirical application we formulate a prior about
growth rates of the observables in a VAR model of the United States
economy. We find that this prior makes a big difference for the es-
timated persistence of output responses to monetary policy shocks,
compared with the results of standard priors for VARs.
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1 Introduction

Vector autoregressions (VAR) are frequently estimated using the Bayesian
approach. Formulating convincing priors for VARs is crucial, because in
practice the sample is often small in relation to the number of estimated
parameters and priors matter a lot for the results. However, formulating
priors about VAR parameters is difficult because VAR parameters are hard
to interpret.

We use a more intuitive approach to formulating the prior: we formulate
the prior about observables. The contribution of this paper is twofold. First,
we design a numerical algorithm that makes estimation with such priors
feasible in VARs. Second, we present an empirical application where our
approach allows us to interpret empirical evidence on the effect of monetary
policy shocks.

The numerical algorithm that we introduce in this paper solves the fol-
lowing problem. When we formulate a prior about observables, a technical
difficulty arises, because to use this prior in the estimation we need to first
convert it into a prior about parameters. This involves solving a deconvolu-
tion problem, a Fredholm equation of the first kind. The existing methods
for solving such problems are not applicable in large-scale problems, such as
a typical VAR. Therefore, we design a new efficient numerical algorithm for
solving this deconvolution problem. Our algorithm is applicable even when
the prior about parameters has hundreds of parameters, like in VARs, and
can be used also in models other than VARs.

In the empirical part of this paper we study the effects of monetary pol-
icy shocks in the U.S. with a VAR. We use a prior about growth rates of
the variables in our VAR. With this prior we find that the effect of mone-
tary policy on output is transitory, although more persistent than according
to the Ordinary Least Squares (OLS) estimates. The fact that our prior is
intuitive is crucial in this application. This is because when we use three
most common versions of standard VAR priors (with default settings from
the literature and econometric software) we find widely disparate results in
this application. One of these priors produces similar results as ours, but
the other two imply that the effect of monetary policy on output is per-
manent, and thus inconsistent with long-run neutrality of money present in
most standard economic theories. Since these standard priors are statements
about uninterpretable VAR coefficients, there is no way of assessing their
plausibility. Thus, without a resort to our intuitive prior, it is difficult to
make sense of these empirical results. There are two conclusions from this
exercise. First, our results are consistent with long-run neutrality of money
and discount the evidence against it. Second, this exercise shows that it is
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useful and important in practice to formulate priors that can be interpreted
and defended or criticized.

Related literature. In the existing Bayesian literature it is rare to
formulate priors in terms of observables. An important early paper in this
line of research is Kadane et al. (1980) who propose the ‘predictive approach’
to prior elicitation: formulating priors as predictive densities of observables.
Kadane et al. (1996) apply this approach in a time series context. They
use one period ahead forecasts and a univariate time series model. Their
approach to solving the deconvolution problem is difficult to generalize to
multiperiod distributions of observables in multivariate models, like VARs.
A comprehensive theoretical discussion of using marginal densities of the
observables to inform priors is in Berger (1985, Ch.3.5) but he discusses no
algorithms for solving the deconvolution problem. The difficulty of solving
the deconvolution problem in practice is a big obstacle to using priors about
observables in applied work. The numerical algorithm that we propose in
this paper is very general and can be used in all these cases in the literature.

Numerical approaches to solving inverse problems, including deconvolu-
tion problems, are surveyed in Carrasco et al. (2007). The techniques used in
this literature and those used in calculus to solve Fredholm equations are usu-
ally designed to obtain very accurate solutions to relatively low-dimensional
problems. They often involve solving non-linear systems of equations with
gradient methods that would be unfeasible for our purpose since standard
VARs involve very high-dimensional problems.

This paper is the first one, to our knowledge, that formulates and uses
a prior about observables in a VAR. Some priors for VARs in the literature
may appear to be priors about observables, while in fact they are priors about
parameters. The popular Minnesota prior and dummy observation priors for
VARs of Doan et al. (1984), Sims and Zha (1998) and others are examples of
such priors. Another example is Villani (2009) who reparameterizes a VAR
(assumed to be stationary) in terms of the steady state of the observables
and formulates a prior about this steady state. Priors in all these approaches
are stated about parameters and not as a prior density of observables, as in
the present paper.

2 Finding the prior about parameters implied

by a prior about observables

This section first states the implications of a prior about observables for
the prior about parameters and then proposes a numerical algorithm for
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approximating the implied prior about parameters.

2.1 The prior about observables and the implied de-
convolution problem

Consider a model summarized in the density pY |θ that relates the distribution
of the observable data Y to unknown parameters θ. To find the Bayesian
posterior of θ we need to first formulate a prior pθ. Formulating a subjective
pθ directly is difficult when θ lacks intuitive interpretation. Researchers of-
ten have much better intuition about the observable data Y than about the
parameters θ. Therefore, in this paper we assume that the researcher formu-
lates a prior density of the observables pY . The uncertainty represented in
pY is a combination of the researcher’s uncertainty about the actual values
of parameters θ and the error terms of the model in pY |θ.

Let Y be the space of possible values for Y and let Θ be the space of
possible values of θ. It is clear that knowledge of pY |θ and pY places the
following restriction on the marginal density of the parameters pθ:∫

Θ

pY |θ(Y ; ·) pθ = pY (Y ) for almost all Y ∈ Y (1)

This equation says that the joint density of observables Y and parameters
θ, integrated over the parameters, has to equal the marginal density of Y as
specified by the prior pY . Our task will be, given the known densities pY
and pY |θ, to find the prior density pθ that satisfies the functional equation
(1). Deconvolution problems of this type are known in calculus as Fredholm
equations of the first kind and in statistics as inverse problems.

The above problem may not have any solution for some pairs of pY and
pY |θ. Obviously, some beliefs about the observables conveyed in pY can be
incompatible with the model pY |θ. However, as long as the density pY is at
least approximately compatible with the model one will find a prior for pa-
rameters that approximately delivers the desired distribution pY . Therefore,
nonexistence of an exact solution needs not be a problem in practice.

Another possibility is that the above problem has multiple solutions. This
is likely to be the case e.g. when the dimension of θ is larger than the
dimension of Y . In this case equation (1) delivers only a restriction on the
prior. Then the researcher needs to complete the prior with a density of the
parameters in the so far unrestricted directions. Therefore, multiplicity of
solutions needs not be a problem in practice.
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2.2 Fixed point formulation

We now reformulate the problem of finding a prior about parameters implied
by a prior about observables as the solution to a fixed point problem. This
formulation suggests a practical algorithm to find an approximate prior by
successive iterations.

Let g : Θ→ R+ be any density on θ. Define the functional FpY as

FpY (g)(θ) ≡
∫
Y

pY |θ(Y ; θ) g(θ)∫
Θ
pY |θ(Y ; ·) g

pY (Y ) dY for all θ ∈ Θ (2)

Clearly FpY (g) : Θ → R+ is itself a density, hence FpY maps the space of
densities of θ into itself. FpY (g) has the following interpretation: the term

pgθ|Y (θ|Y ) ≡
pY |θ(Y ; θ) g(θ)∫

Θ
pY |θ(Y ; ·) g

(3)

is the posterior obtained when the prior on parameters is g and when the
data realization Y is observed. Therefore, FpY (g) is a mixture of posteriors
for different realizations Y , each weighted by its probability pY (Y ).

The following proposition gives the relationship between the fixed point
of FpY and problem (1):

Proposition 1. If pθ satisfies (1), then pθ is a fixed point of FpY .

Proof. We show if pθ solves (1) then FpY (pθ) = pθ. We have for all θ ∈ Θ

FpY (pθ)(θ) =

∫
Y
pY |θ(Y ; θ) pθ(θ) dY = pθ(θ)

∫
pY |θ(·; θ) = pθ(θ)

The first equality holds from the definition of F and (1), the second equality
takes pθ(θ) before the integral since it does not depend on Y . The last
equality holds because pY |θ is a density so it integrates to 1 over Y .

2.3 Approximate fixed point iteration with priors of a
given functional form

Proposition 1 suggests a practical algorithm for solving the deconvolution
(1): start with some density g0(θ) and repeatedly apply mapping FpY , until
the resulting density g(θ) stops changing. Proposition 1 states that this fixed
point density is a good candidate solution of (1). However, iteration on the
mapping FpY is difficult because the densities g along the iteration do not in
general have closed forms. Therefore, we implement an approximate iteration
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in which at each step we restrict the density of the parameters g(θ) to be of
a given convenient functional form. We place no restriction on the density
pY except that it must be possible to generate draws of realizations from this
distribution on a computer.

We first introduce some notation and definitions. Let G be a class of
densities of θ of a given functional form. Let h(θ) be some function h : Θ→
Rm, such that the moments Ep(h(θ)) suffice to pin down the parameters of
a density p(θ) ∈ G.1

Now we describe one approximate iteration. In this iteration, indexed
by i, we take the density gi−1 ∈ G obtained in the preceding iteration and
construct the density gi ∈ G that approximates FpY (gi−1). The iteration
consists of two steps.

Step 1. We compute the moments EFpY (gi−1)(h(θ)) by Monte Carlo, based
on the following result.

Result 1. Given any g, for any function h : Θ→ Rm we have

EFpY (g)(h(θ)) = EpY
[
Epg(·|Y )(h(θ))

]
(4)

Proof. 2

EF(g)(h(θ)) =

∫
B
h(θ)

(∫
Y
pgθ|Y (θ|Y ) pY (Y ) dY

)
dθ

=

∫
Y

(∫
Θ

h(θ) pg(θ|·) dθ
)
pY = EpY

(
Epg(·|Y )(h(θ))

)
(5)

where the first equality follows by definition of FpY (g), the second by Fubini
and the third by definition of EpY . This proves (4).

This result immediately suggests the following Monte Carlo procedure to
compute the moments EFpY (gi−1)(h(θ)): a) Draw M realizations of Y from

pY . b) For each draw Y compute the posterior moments of θ, Epgi−1 (·|Y )(h(θ)).
Here the choice of G matters for the speed of the algorithm. When G is
conjugate for pY |θ, then these moments will typically be available in closed
form. When G is not conjugate then a separate Monte Carlo procedure is
needed for each draw Y in order to evaluate the moments. c) Approximate

1For example, if G is the class of gaussian densities then h(θ) consisting of the identity
function θ → θ and the quadratic function θ → θθ′ is a valid choice of h, because the first
and the second moment suffice to pin down the parameters a gaussian density.

2Note that this result does not follow from the law of iterated expectations. The law
of iterated expectations can only be invoked in the fixed point. Outside the fixed point,
FpY (g) is not the marginal density of θ consistent with pY and pgθ|Y .
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EpY by averaging the posterior moments obtained in step b) over the M
draws.

Step 2. We approximate the density FpY (gi−1) by a density gi ∈ G that
has moments EFpY (gi−1)(h(θ)).

This completes one approximate iteration.
After performing the iterations we need to check how well g obtained with

these iterations satisfies (1). We do it by comparing a sample of draws from
the left-hand-side density of (1) with a sample of draws from the right-hand-
side of (1). Generating a draw from the left-hand-side density is straightfor-
ward: we draw a realization of parameter values θ from the density g, and
then we draw Y from p(Y |θ). Generating a draw from the right-hand-side
density is possible by assumption. The samples can be arbitrarily large and
therefore the comparison of the underlying distributions can be arbitrarily
precise.

2.4 Performance of the approximate iteration: a small
Monte Carlo experiment

We do a small Monte Carlo experiment to check how the approximate iter-
ation algorithm performs in a large-scale problem. We use the setup where
problem (1) has a unique solution pθ and we have a chance to uncover this
solution with our algorithm, because we use the right functional form G, i.e.
such that pθ ∈ G. We know the solution pθ by the design of the experiment,
but we proceed as if we only knew pY and pY |θ, as in a real-life situation. We
ask two questions. First, how difficult is it to find starting values for which
the algorithm converges to the solution pθ? Second, how precise and how
fast is the algorithm?

The design of the Monte Carlo experiment is the following. We assume
that the observables Y consist of 7 variables observed over 32 periods. We
assume that these observables are generated by a pY |θ coming from a VAR
model with 4 lags. We assume that the marginal density of the parameters pθ
is Normal-Inverted Wishart conjugate with the VAR model. The dimension
of θ is 224 and a Normal-Inverted Wishart density of θ has 667 parameters.
The marginal density of the data, pY is consistent with pY |θ and pθ (according
to (1)).

The results of the Monte Carlo experiment are promising. Using only the
knowledge of pY we generate 100 random starting points for the algorithm
and for each of these 100 starting values our algorithm converges. Each time
it recovers the 667 parameters of pθ with great precision in under 5 minutes.
We provide all the details of this Monte Carlo experiment in Appendix B.
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To our knowledge, our algorithm is not only robust and fast, but it is also
the only feasible approach to finding these 667 parameters. For example, it
would be impossible to find them by numerical optimization with gradient
methods because the dimension of 667 is prohibitively large for such methods.

3 Empirical Application

In this section we study with a VAR the effects of monetary policy shocks on
the U.S. economy. We first show the results obtained with standard priors
for VARs used in the literature. Then we explain our prior formulated about
observables, the prior about initial growth rates. Finally, we discuss the
posterior results obtained with our prior.

The empirical exercise is the following. We reconsider the estimation of
the effects of a monetary shocks in Christiano et al. (1999). They estimate a
VAR with output, prices, commodity prices, federal funds rate, total reserves,
nonborrowed reserves and money, using quarterly data from 1965 to 1995.3

They orthogonalize the residuals with the Choleski decomposition of the
variance of innovations with the above variable ordering. The monetary
policy shock is the one corresponding to the federal funds rate. We follow
Christiano et al. (1999) and deviate from them in only one aspect of the
analysis, namely in that we use the Bayesian approach instead of their OLS
estimation of the VAR.

The VAR model for the N × 1 vector of observables yt is

yt =
P∑
i=1

Bi yt−i + γ + ut, ut ∼ N (0,Σ), t = 1, ..., T. (6)

N denotes the normal density. The parameters of the VAR are θ = (B,Σ),
where B is a K × N matrix defined as B = (B1, ..., BP , γ)′, K = NP + 1,
and Σ is an N ×N symmetric positive definite matrix. As is common in the
VAR literature we assume that the P initial values of the process are known
and fixed at (yo−P+1, ..., y

o
0), where superscript o denotes ‘observed data’.

3.1 Results obtained with standard priors for VARs

We compute the posteriors with four alternative priors. First, we use the
standard noninformative prior p(B,Σ) ∝ |Σ|−N+1

2 (see e.g. Zellner, 1971,
Ch.8). With this prior, the posterior mean of the VAR parameters is equal

3See Christiano et al. (1999) for details. We downloaded these data from Christiano’s
webpage.
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to the OLS estimate of Christiano et al. (1999). Next, we use three standard
informative priors for VARs that are commonly used in applications. These
three informative priors have Normal-Inverted Wishart form, i.e. they satisfy

p(vecB|Σ) = N (vecM,Q⊗ Σ), (7)

p(Σ) = IW(S, v), (8)

where IW denotes the Inverted Wishart density and M,Q, S, v are prior
parameters of appropriate dimensions. We now turn to the specification of
these prior parameters.

The standard informative priors for VARs are centered at the Random
Walk model for each variable. In terms of (7) this means that the matrix
M has the value of 1 in the positions corresponding to the first own lag of
each variable and the value of 0 everywhere else (we denote this value of
M by M̄). Such priors are commonly used in VARs following Doan et al.
(1984). The motivation is that the Random Walk model is both parsimonious
(it corresponds to many VAR coefficients equal to zero) and persistent (it
has a unit root). By pushing the posterior towards a parsimonious model
we alleviate the well-known problem that VARs have too many parameters
compared with the typical sample size in macroeconomics. By pushing the
posterior towards a persistent model we alleviate the well-known problem
that VARs estimated by OLS exhibit unreasonably little persistence (see e.g.
Sims, 2000). Most researchers find this motivation convincing and there is
little controversy around the choice of M .

The main challenge is to formulate the uncertainty about the Random
Walk prior, i.e. the parameters Q,S, v. Formulating the uncertainty is chal-
lenging because VAR parameters lack intuitive interpretation. For example,
we cannot tell if the value B(1, 2) = 0.2 is reasonable or not. To help applied
researchers, the standard informative priors for VARs offer rules of thumb
for setting parameters Q,S, v. We follow these rules of thumb. Therefore,
first we set the parameters S, v in (8) to values S̄, v̄ obtained in an ‘empirical
Bayes’ fashion.4 Then we set the parameter Q by building it from a few scalar
hyperparameters. Although it is easier to specify a few scalar hyperparame-
ters than to specify a potentially large matrix Q directly, ultimately there is
little intuitive guidance on the choice of these hyperparameters. Therefore,

4We use our dataset to estimate univariate autoregressive models with P lags for each
of the variables in the VAR. Then we set S and v such that E(Σ) is a diagonal matrix
with error variances of the univariate autoregressions on the diagonal. We set the degree
of freedom parameter v = 10. Our posteriors of the error variances of the univariate
autoregression have the degree of freedom of 116, but we follow the common practice and
use a value of v much lower than 116 in order to produce a rather loose prior.
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we scan the literature and the documentation of popular econometric soft-
ware and find three alternative recommendations for hyperparameter values.
These three alternative hyperparameter values produce three versions of the
parameter Q, denoted Q̄1, Q̄2 and Q̄3. Q̄1 corresponds to a version of the
Minnesota prior close to Litterman (1986) and to baseline recommendations
in the RATS manual (Doan, 2000). Q̄2 uses the Minnesota prior together
with the ‘dummy observations prior’ and takes hyperparameter values from
Sims and Zha (1998), which is the main academic reference for these priors.
Q̄3 uses the Minnesota prior together with the ‘dummy observations prior’
and takes hyperparameter values used e.g. in Sims (2002) and implemented
as the default in the Dynare package (Adjemian et al., 2011).5

Panels A, B and C of Figure 1 show the responses of output to a monetary
policy shock estimated with the above priors. For brevity, we focus on the
response of output. Responses of the remaining variables are reported in
Appendix A. We plot quantiles 0.05, 0.5 and 0.95 of the posterior distribution
of the impulse response. To facilitate comparisons we display the posterior
obtained with the noninformative prior as a shaded region in all plots.

Figure 1 illustrates the main point of this subsection: persistence of the ef-
fect of monetary policy on output differs dramatically depending on the prior
used. The noninformative prior produces a short-lived effect that disappears
within about 16 quarters. The ‘Minnesota’ prior (M̄, Q̄1, S̄, v̄) in panel A
produces similar persistence as the noninformative prior. The ‘Sims and Zha
(1998)’ prior (M̄, Q̄2, S̄, v̄) in panel B and the ‘Dynare’ prior (M̄, Q̄3, S̄, v̄) in
panel C produce permanent responses of output (and, in panel C, a quite high
probability of an explosive response). The permanent responses in panels B
and C are inconsistent with the long-run neutrality of money and thus they
pose a challenge to most standard economic theories, which almost always
imply long-run neutrality of money.

In the face of the disparate results presented in Figure 1 it is crucial to
understand which of these four priors is the most reasonable, and then attach
most weight to its implications. However, assessing these priors about VAR
parameters is difficult because VAR parameters lack intuitive interpretation.

3.2 Prior about initial growth rates

We now formulate our prior about the observables pY : a prior about initial
growth rates. This prior combines two elements: it is also a Random Walk

5In terms of Sims and Zha (1998) notation, Q̄1 is constructed using λ1 = 0.2, λ2 = 1,
λ3 = 1, λ4 = 105, µ5 = 0, µ6 = 0; Q̄2 is constructed using λ1 = 0.2, λ2 = 1, λ3 = 1,
λ4 = 1, µ5 = 1, µ6 = 1; and Q̄3 is constructed using λ1 = 0.33, λ2 = 1, λ3 = 0.5, λ4 = 105,
µ5 = 2, µ6 = 5.
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Figure 1 – Impulse response of output to a monetary shock: quantiles 0.05,
0.5 and 0.95 of the posteriors obtained with alternative priors. Gray area:
quantiles 0.05 to 0.95 of the posterior obtained with the noninformative prior.

prior and it substitutes for the initial condition in an autoregressive model.
Our prior is a density of growth rates of the observables in periods 1 to

P conditional on the observed pre-sample data

p(∆y1, ...,∆yP |yo−P+1, ...y
o
0) = f, (9)

where f is a P ×N -dimensional density that we specify below. Note that the
density of growth rates (9), coupled with the known value yo0 is, obviously,
equivalent to a density of the levels of the observables

p(y1, ..., yP |yo−P+1, ...y
o
0) = f ′. (10)

First, our prior is a Random Walk prior. The Random Walk model
implies that growth rates of the variables are independent and identically
distributed in time and this is what our f conveys. We need to specify a prior
distribution of the growth rate for each variable. This prior distribution can
be subjective, but in this application we follow an Empirical Bayes approach
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and use the sample to calibrate our prior. Namely, we estimate an auxiliary
model ∆yn,t = αn+εn,t, εn,t ∼ N (0, σ2

n) for each variable n = 1...N and use as
our f the density of the observables implied by the posteriors of αn, σ

2
n. This

Empirical Bayes prior conveys the assumption that the first P observations
behave, in terms of growth rates, similarly as the rest of the sample, which is
a reasonable assumption in this application. Means and standard deviations
of growth rates of the variables in the sample are reported in Table 1.

We are aware that the Empirical Bayes approach can be criticized for
making the prior dependent on the data, but, in addition to its simplicity,
we see three arguments for using it. First, the U.S. macroeconomic data
studied here are very well known to researchers and it is virtually impossible
to specify a truly data-independent subjective prior here, so we prefer to be
explicit about the form of data-dependence. Second, the data inform our
prior only through the very restricted auxiliary model. Third, the standard
informative priors for VARs have Empirical Bayes elements anyway (in the
specification of S), so our approach is in line with this literature.

Second, our prior substitutes for the initial condition in an autoregressive
model. It is well known that the treatment of the initial values in autore-
gressive models is crucial in the Bayesian (as well as classical) criticism of
the OLS estimator (see e.g. Sims, 2000). The common approach is to specify
the likelihood function conditional on the initial P observations yo−P+1, ...y

o
0

and disregard the interdependence between these observations and model pa-
rameters. The alternative approach is to specify the ‘exact’ likelihood that
includes also terms coming from the P × N dimensional density relating
yo−P+1, ...y

o
0 and model parameters.6 However, as is well known, specifying

these terms is difficult when the model is potentially nonstationary. Our
prior (9) is an elegant alternative way of specifying the P × N dimensional
density relating yo−P+1, ...y

o
0 and model parameters.

We complement the above prior about observables with an additional
restriction: that the marginal prior about Σ is the same as in the standard
VAR priors, i.e. IW(S̄, v̄). Without this restriction we find many different
densities of (B,Σ) that are approximately consistent with (9), but put a lot
of probability mass on small values of Σ, compensated by the large variance
of B. We find these priors not to be reasonable and we believe more in the
standard prior about Σ, p(Σ) = IW(S̄, v̄).
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Table 1 – Annualized growth rates of the variables: mean (standard deviation).

1965-1995 1965-1985 1985-1995 1958-1964

Output 2.7 2.8 2.6 4.3
(3.6) (4.2) (2.1) (3.3)

Prices 5.0 5.9 3.1 1.8
(2.5) (2.4) (1.1) (1.3)

Commodity prices 0.0 0.0 0.2 0.0
(2.1) (2.2) (1.8) (0.7)

Fed funds rate 0.1 0.2 -0.2 0.2
(4.8) (5.6) (2.1) (1.3)

Non-borrowed reserves 5.3 4.3 7.4 1.5
(9.1) (8.8) (9.3) (5.8)

Total reserves 5.2 4.3 7.2 1.4
(6.6) (4.7) (9.0) (4.2)

Money (M1) 6.5 6.3 6.9 2.7
(4.0) (3.1) (5.5) (2.3)

3.3 Results with the prior about initial growth rates

We implement the algorithm from section 2.3 assuming that F is a class of
Normal-Inverted Wishart densities (7)-(8). We keep the parameters S and
v fixed at S̄ and v̄ respectively, and only iterate on M and Q. We generate
300 random starting points g0 for the algorithm. To generate a starting
point we draw one realization of the observables from (10) and compute the
posterior density of the parameters based on this realization, using as a the
prior a randomly scaled-up Random Walk prior. That is, the prior is Normal-
Inverted Wishart with parameters M̄, Q̄1 × 10c, S̄, v̄, where c is drawn from
the uniform distribution on the interval (0, 6). This posterior is used as the
starting point g0. About 90% of the starting points converge to fixed points
that match quite well the desired prior about the observables.

Figure 2 reports quantiles 0.05 and 0.95 of various densities of the observ-
ables yt in periods t = 1, 2, 3, 4. The continuous line shows the quantiles of
the prior density (10). The dashed line shows the quantiles implied by one
of the approximate fixed points. The dashed lines are quite similar to the
continuous lines. This illustrates that the approximate fixed point approach
delivers a density of observables that is reasonable and close to the prior in

6See e.g. Zellner (1971, Ch.7.1), Schotman and Van Dijk (1991a,b), Uhlig (1994) or
Lubrano (1995).
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Figure 2 – Density of the observables implied by alternative priors. Quantiles
0.05 and 0.95 of the distribution in periods 1 to 4.

spite of the restrictions that we impose on the fixed point (namely, that it
is a Normal-Inverted Wishart density with parameters S̄, v̄). The remain-
ing lines show the quantiles implied by the standard informative priors for
VARs. All these remaining lines quickly diverge towards very extreme val-
ues. This illustrates that the standard informative priors for VARs put much
probability on unreasonable behavior of the observables in the first periods.

Our prior about observables (10) does not define a unique prior about
parameters. Consequently, we find many different fixed-points that have ba-
sically the same implications for the observables in the first P periods. There-
fore, to characterize their implications for the impulse response of output we
plot two extreme cases in panel D of Figure 1. First, with the continuous
line we plot the fixed point that produces the highest marginal likelihood in
the analyzed sample.7 Second, with the dashed line we plot the least infor-
mative fixed point - the fixed point with the highest entropy.8 A researcher
who wants to use the VAR model that delivers the best out-of-sample fore-

7The marginal likelihood is defined as
∫
p(y|θ)p(θ)dθ. The log marginal likelihood of

this prior is approximately 2780, compared with 2694, 2790 and 2783 respectively for the
three standard informative priors in panels A, B and C.

8Entropy, defined as as
∫
θ

log p(θ)dp(θ) measures the amount of information carried by
a distribution. We derive the analytical expression for the entropy of the Normal-Inverted
Wishart density using the results of Gupta and Srivastava (2010). The log entropy of this
fixed point equals -456, compared with -517, -779 and -664 respectively for the standard
VAR priors in panels A, B and C.
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casts would pick the fixed point with the highest marginal likelihood. A
researcher who wants to impose as little prior knowledge as possible, beyond
the restriction in (10), would pick the fixed point with the maximum en-
tropy. Both of these impulse responses of output are more persistent than
the responses obtained with the flat prior: output takes about 24 quarters
to recover, instead of about 16 quarters with the flat prior. However, both of
these impulse responses of output are mean-reverting, consistently with the
long-run neutrality of money.

-1

-0.5

 0

 0  8  16  24

a. Growth rates 1958-1964

-1

-0.5

 0

 0  8  16  24

b. Growth rates 1965-1985

-1

-0.5

 0

 0  8  16  24

c. Prior about 2 periods

-1

-0.5

 0

 0  8  16  24

d. Prior about 8 periods

Figure 3 – Impulse response of output to a monetary shock: quantiles 0.05, 0.5
and 0.95 of the posteriors obtained with alternative priors about initial growth
rates. Continuous lines: the fixed point with the highest marginal likelihood.
Dashed lines: the fixed point with the highest entropy. Gray area: quantiles
0.05 to 0.95 of the posterior obtained with the noninformative prior.

Figure 3 reports the sensitivity of the posterior impulse responses of out-
put to different specifications of the prior about the initial growth rates. In
panel a. we calibrate the prior about growth rates, as well as the parameter
S̄, based on the data from the years 1958-1964, i.e. preceding the estimation
sample 1965-1995. Thus, this prior uses no information from the estimation
sample. As shown in panel a., when we use this prior, the response of output
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is weaker and less persistent than in the baseline case (prior calibrated on the
estimation sample).9 In panel b. we calibrate the prior about growth rates
based on the data from the years 1965-1985. In this case output response is
more persistent than in the baseline case. In the next two experiments we
deviate from the rule that our prior carries as much information as an initial
condition in an autoregressive model. In panel c. we specify the prior about
the first two growth rates only, ∆y1 and ∆y2. In this case output response is
less persistent. In panel d. we specify the prior about the first 8 growth rates,
∆y1 up to ∆y8. In this case output response is more persistent but still it is
not permanent, as with standard informative priors for VARs. The results
hardly differ from the baseline (and we do not report them here for brevity)
when we change the shape of f : when we use the empirical distribution of
growth rates as our f (assuming that growth rates are independent across
time and variables) or when we use as f a normal density. When we assume
that the prior parameter v is 25 instead of 10, then the match of the density
of the observables in the fixed point and the prior density of the observables
f ′ becomes perfect, but the results (unreported here) hardly differ from the
baseline.

Overall, we find that a range of reasonable priors about initial growth
rates supports the main conclusion: that the response of output to a mone-
tary policy shock is consistent with long-run neutrality of money and not as
persistent as some standard priors for VARs imply.

4 Conclusions

We have proposed a numerical algorithm for approximating the prior about
parameters implied by a given prior about observables. This algorithm works
even in high-dimensional problems like VARs. This algorithm makes it fea-
sible and easy in practice to estimate VARs after formulating a prior about
observables. This is useful, because priors about observables are easier to
defend or criticise than priors about uninterpretable VAR parameters.

We have applied this approach to formulating priors in the study of the
effects of monetary policy in the U.S. We have formulated a prior about
initial growth rates of the observables in the VAR of Christiano et al. (1999).

9Growth rates in 1958-1964 were much less volatile than in the estimation sample 1965-
1995 (see Table 1). Results are very similar to those in panel a. (we do not report them
for brevity) also when we calibrate the prior using only post-1985 data. In the post-1985
period (called ‘Great Moderation’) output, prices and Fed funds rate are less volatile than
in the main sample, while the monetary variables are more volatile than in the main sample
(see Table 1).
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Our posterior estimates are consistent with long-run neutrality of money and
discount the evidence against neutrality implied by some popular VAR priors.
This exercise shows the importance of using priors that can be interpreted
and defended, or criticized.

Appendices

A Additional results for the monetary VAR
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Figure 4 – Impulse responses of all variables to a monetary policy shock, quan-
tiles 0.05, 0.5 and 0.95 of the posteriors obtained with alternative priors. Gray
area: quantiles 0.05 to 0.95 of the posterior obtained with the noninformative
prior.
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B A Monte Carlo experiment with the ap-

proximate iterations

In this section we study by Monte Carlo the reliability of our algorithm
for finding a prior about parameters given a prior about observables. We
ask two questions of concern for a researcher who wants to implement our
approximate iterations in practice: First, is it difficult to find starting values
for which the algorithm converges to the solution of (1)? Second, how precise
and how fast is the algorithm given a promising starting value? The results of
the Monte Carlo experiment are promising. We generate 100 starting values,
each obtained in a natural way from a random draw of Y from pY . We find
that for each of these 100 starting values our algorithm recovers the 667 true
parameters of ptθ with great precision in under 5 minutes.

B.1 The design of the experiment

The design of the experiment is based on the empirical application in section
3. We assume that the density of the data conditional on parameters pY |θ is
given by the same VAR model with gaussian shocks,

yt =
P∑
i=1

Bi yt−i + γ + ut, ut ∼ N(0,Σ), t = 1, ..., T. (B.1)

We assume that the P initial values of the process are known and fixed at
(y−P+1, ..., y0), and starting from y1 the process follows (B.1). The param-
eters of the VAR are θ = (B,Σ), where B is a K × N matrix defined as
B = (B1, ..., BP , γ)′, K = NP + 1, and Σ is an N × N symmetric positive
definite matrix. We assume that the ‘true’ marginal density of the parameters
ptθ is Normal-Inverted Wishart, i.e. it satisfies

p(vecB|Σ) = N (vecM,Q⊗ Σ), (B.2)

p(Σ) = IW(S, v), (B.3)

where N denotes the normal density, IW denotes the Inverted Wishart den-
sity and M,Q, S, v are prior parameters of appropriate dimensions.10 The
density of (B,Σ) given in (B.2)-(B.3), model (B.1) and the initial value
(y−P+1, ...y−1, y0) together determine pY - the density of yt in t = 1...T .
We would like to use values of (M,Q, S, v) and (y−P+1, ..., y0) that are ‘rea-
sonable’ and representative for potential real-life situations. Therefore, in

10We parameterize the Inverted Wishart density so that E(Σ) = S/(v −N − 1).
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this experiment we use the values of (yo−P+1, ..., y
o
0) taken from the dataset

of Christiano et al. (1999) (superscript o indicates ‘observed data’) and the
values of M,Q, S, v that we found estimating model (B.1) on this dataset
using the standard noninformative prior p(B,Σ) = |Σ|−(N+1)/2.11 There are
N = 7 variables and P = 4 lags in this VAR. We set T , the number of
periods in p(Y ), to 32. Note that if the dimension of the density p(Y ) is
smaller than the dimension of p(θ) that we want to uncover, the uniqueness
of the solution for p(θ) cannot be guaranteed. Setting T = 32 equalizes the
two dimensions, since the dimension of Y is TN = 224, and the dimension
of (B,Σ) (without counting the repeated entries in the symmetric matrix Σ)
is also KN +N(N + 1)/2 = 224.

B.2 Implementation of the approximate iterations

We set G to be the class of Normal-Inverted Wishart densities which are
conjugate for the model (B.1), i.e. such that the posterior pgθ|Y is also Normal-

Inverted Wishart. Our h(θ) consists of the identity function θ → θ and the
quadratic function θ → θθ′. Therefore, in Step 1 Epg

θ|Y
(h(θ)) is a vector of

first and second moments of a Normal-Inverted Wishart density, which are
available analytically. We average these moments over the M = 1000 draws
to obtain the moments EFpY (g)(h(θ)). In Step 2 we match the moments
EFpY (g)(h(θ)) as well as possible with a Normal-Inverted Wishart density. Of
course, a Normal-Inverted Wishart density cannot have arbitrary first and
second moments because of its intrinsic restrictions, such as the Kronecker
structure of the variance of B, so in general we cannot match EFpY (g)(h(θ))
exactly. Therefore, we just pick a subset of the first and second moments that
results in convenient computations. We experimented with fitting a Normal-
Inverted Wishart density to different sets of moments and we found many
sets of moments that lead to similarly good convergence of the iterations in
our application.

We run the algorithm 100 times. At each run we construct a random g0

with the following procedure. We draw from p(Y ) a realization Y . Then
we compute the posterior of the parameters B,Σ conditional on Y . This
posterior belongs to G and we use the parametersM , Q and S of this posterior
as the starting point. When computing the posterior we cannot use the
noninformative prior because with only 32 observations the posterior would

11Specifically, define Y CEE to be the TCEE × N matrix collecting the observations
on yt from period 1 to TCEE and define XCEE to be the TCEE × K matrix with the
corresponding regressors: the lagged values of yt and a column of 1s reflecting the constant
term. Then we set M = (XCEE′XCEE)−1XCEE′Y CEE , Q = (XCEE′XCEE)−1, S =
(Y CEE −XCEEM)′(Y CEE −XCEEM) and v = TCEE −K −N − 1.
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be improper. Therefore, we use the standard Minnesota prior of Doan et al.
(1984) cast as a Normal-Inverted Wishart prior (as e.g. in Kadiyala and
Karlsson (1997)) and, to make it less informative, we blow up its standard
deviation by 10c where c is a random draw from a uniform distribution on
(0,3). To introduce additional variation in the starting points, we draw v
randomly from a uniform distribution between 10 and 200 (the ‘true’ v equals
81).

B.3 Results on the convergence of the iterations

The algorithm converges towards ptθ from each of the 100 starting points. To
illustrate this, Figure 5 plots the evolution of gi along the iterations for each
starting point g0. The first four panels show respectively the first element of
M , the log determinant of Q, the log determinant of S and v. The values
of these (functions of) gi parameters are plotted against i with continuous
lines. The ‘true’ values of these (functions of) parameters of ptθ are indicated
with dashed horizontal lines. We see that in all plots the 100 continuous
lines concentrate in the vicinity of the dashed line as iterations progress. We
conclude that it is easy, in this application, to find good starting points for
the algorithm based on the knowledge of pY alone. We also experimented
with other starting points. For example, the algorithm also converges to ptθ
when we start at the standard Minnesota prior or when we set M to a matrix
of zeros. However, the algorithm runs into numerical problems or appears to
stabilize away from ptθ when we change our good starting points selectively in
only some dimensions, e.g. set a very tight density for the constant term γ in
the VAR, or scale Q and S in opposite directions by factors of more than 100.
The precision of the algorithm is very good. We report the precision in terms
of the observables Y and not in terms of the parameters θ, because discrepan-
cies of parameters from the ‘true’ values are hard to interpret. To illustrate
the precision, the last panel shows the evolution of the Kullback-Leibler di-
vergence between p(Y ) and

∫
Θ
p(Y |θ) gi(θ)dθ12 estimated from a sample of

1000 draws from each density. This plot suggests that already after about 20
iterations the discrepancies of giθ from ptθ are negligible according to our esti-
mator of Kullback-Leibler divergence. But what does this mean in practice?
To illustrate the match of the distributions of the observables implied by giθ
and ptθ, Figure 6 plots the quantiles 0.05 and 0.95 of yt against t for the 32
periods for which we specified pY . The continuous line shows the percentiles

12We use p(Y ) as the weighting function in Kullback-Leibler divergence, i.e. we estimate∫
Y p(Y ) log

(
p(Y ) /

∫
Θ
p(Y |θ) gi(θ)dθ

)
dY . We use the nearest-neighbor estimator the

Kullback-Leibler divergence proposed by Wang et al. (2009) and implemented in the TIM
package for matlab Rutanen (2011).
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Figure 5 – Parameters of gi along the iterations. Last plot: the estimated
Kullback-Leibler divergence between p(Y ) and

∫
Θ p(Y |θ) g

i(θ)dθ along the
iterations.
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Figure 6 – Quantiles 0.05 and 0.95 of p(Y ) (continuous line) and∫
Θ p(Y |θ) g

200(θ)dθ (dashed line) plotted against time.

of yt generated from pY while the dashed lines show the percentiles of yt gen-
erated from the distribution implied by g200,

∫
Θ
p(Y |θ) g200(θ)dθ in the run

of the algorithm witch achieved the largest Kullback-Leibler divergence from
the target. We used 10,000 draws to reestimate the Kullback-Leibler diver-
gences at the 200th iteration and to estimate the plotted quantiles. We see
that the quantiles 0.05 and 0.95 of both distributions of Y basically coincide.

We conclude that the algorithm is extremely efficient compared to al-
ternative approaches to such deconvolutions. In the current problem 200
iterations take under 5 minutes with matlab on a standard PC. Note that for
a 7-variable VAR with 4 lags the dimension of M,Q, S, v (without counting
the repeated entries in symmetric matrices) is KN +K(K + 1)/2 +N(N +
1)/2 + 1 = 667. To our knowledge, there are no other feasible approaches
to finding these 667 parameters. For example, it would be impossible to
numerically minimize an objective function (such as the Kullback-Leibler
divergence between the left-hand-side and the right-hand-side of (1)) with
gradient methods because the dimension of 667 is prohibitively large for
such methods.
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