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Abstract—This paper describes the study of synthetic cylindrical
array beam-forming for narrowband signals, under the influence
of antenna elements position-error. The required side-lobe level
and the physical dimensions of the array are presumed based on
the requirements and limitations to evaluate a RF semi-anechoic
chamber. Dolph-Chebyshev algorithm is used for beam-forming
because of its optimal beam-width for a predefined uniform side-
lobe level. Monte-Carlo simulations reveal the sensitivity of the
beam-pattern side-lobe level to the elements position-error.

Index Terms—Beam-forming, beam-width, synthetic cylindri-
cal array, Davies transformation, Dolph-Chebyshev, Monte-Carlo,
semi-anechoic chamber, side-lobe, super-directivity

I. INTRODUCTION

The rapid emergence of electromagnetic (EM) equipments has
forced us to carefully conduct the electromagnetic compatibility
(EMC) testing, to avoid the possibility of interference. Ideally,
EMC testing is conducted in an open-area test site (OATS), an
obstacle-free environment. However, it is inconvenient due to the
high dependency on the changing factors of the environment. As
a result, EMC test is conducted inside a semi-anechoic chamber
(SAC): a room having walls and a ceiling equipped with EM
absorbers, and a metallic ground. To simulate an OATS, SAC
should be free from scattering waves other than the ground-
reflected wave. However, in reality, the imperfect absorbers,
corners, junctions, etc., may cause the SAC discrepancy from
an ideal OATS. Therefore, evaluation of SAC is required.

Standardized validation methods to evaluate the SAC have
been developed by CISPR/A [1]. The validation is established
by finding the Site VSWR (SVSWR) of the SAC. Standing
waves voltages are measured at discrete locations of receiving
antenna, to vary the phase between the direct and scattering
(unwanted) waves. SVSWR is the ratio of the maximum voltage
to the minimum voltage. For SAC of 1-18 GHz, the SVSWR

at each frequency of at least 50 MHz steps should be less
than 2:1 (in linear scale) or 6 dB (in logarithmic scale). The
disadvantage of this method is the inability to identify the
reasons behind the SAC discrepancy from an ideal OATS. This
is because the obtained output is only the SVSWR with no other
information about the source(s) of the scattering waves. Thus,
the performance of SAC cannot be improved. Another limitation
is that the frequency selective scattering may not be captured by
this method due to the discretized sampling.

This paper proposes the utilization of beam-forming for SAC
evaluation. This method require a similar measurement system

with that of the standard Site VSWR method. However, different
measurement positions will be used as a synthetic array antenna.
This method offers an ability to identify the sources of SAC
discrepancy by estimating the Angle-of-Arrival (AoA) of the
detected signals. The frequency dependent scattering signals due
to the frequency dependent reflections can also be detected. In
this method, some assumptions are taken:

1) The chamber discrepancy occurs due to some scattering
waves that are caused by discrete points inside the SAC.
Each of these points is modeled as an independent signal
source, to be identified by beam-forming.

2) The distance between receiving array antenna center and
the scattering point(s) are far enough, so that the plane
wave approximation can be applied. The near-field anal-
ysis will be incorporated by using the spherical-wave
radiation in the future.

3) The estimated AoA information of each detected signal
path will be enough to determine the origins of each
scattering wave.

The final goal of this research is to design the applicable
beam-forming methodology for SAC evaluation. In this study, a
synthetic cylindrical array antenna will be used. The low side-
lobe requirement for SAC evaluation is realized by using Dolph-
Chebyshev algorithm. Monte-Carlo simulations were conducted
to find the optimal array parameters that can produce minimum
side-lobe level at reasonable beam-width, under the presumed
antenna elements position-error.

II. BEAMFORMING

The proposed SAC evaluation consists of a data measurement
and a data analysis (beam-forming). The measurement apparatus
is shown in Fig. 1. Only a single antenna element will be
installed at each port of the vector network analyzer (VNA).
A synthetic cylindrical aperture will be realized by moving
the antenna at the receiver side, using a turn table and a
step z-positioner. At each position, the transfer function within
the frequency range of interest will be obtained from VNA.
However, in the data analysis, each of the frequency transfer
function will be separately analyzed. Note that the positioning
error of the turn table and step z-positioner will cause some
errors in the resultant synthetic cylindrical array due to the
incorrect position of each antenna element.

Fig. 2 shows the geometry of a cylindrical array. In the figure,
θ express the co-elevation angle, the angular deviation from
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Fig. 1. Measurement Set-Up for SAC Evaluation

Fig. 2. Geometry of Cylindrical Array Antenna

the z-axis, whereas φ express the azimuth angle, the angular
deviation from the x-axis at xy-plane. As can be seen from the
figure, the array is composed of a uniform circular array (UCA)
of N elements and uniform linear array (ULA) of M elements.
Using the principle of pattern multiplication, the total pattern of
the cylindrical array antenna is expressed as:

A(θ, φ) = AULA(θ)AUCA(θ, φ)F (θ, φ), (1)
where:

AULA(θ) =
M ′∑

m=−M ′

wm exp(jkmdL cos θ), (2)

AUCA(θ, φ) =
N∑

n=1

wn exp(−jkrC sin θ cos(φ− φn)), (3)

and F (θ, φ) is the antenna element pattern, assuming that it is
unchanged due to the rotation. In the equations, k = 2π/λ is
the wave-number of the incident wave, rC is the UCA radius, N
is the number of UCA elements, M = 2M ′ + 1 is the number
of ULA elements, dC is the circular interelement spacing, and
dL is the linear interelement spacing. The terms wn and wm

express the weighting for the nth element of UCA and that for
the mth element of ULA respectively.

Dolph-Chebyshev is a well known algorithm to design uni-
form side-lobe beam-patterns, with the narrowest beam-width
for a predefined side-lobe level [3]. In its original format, it
is only applicable to uniform linear array (ULA). To find the
weighting for uniform circular array (UCA) of N elements, a
preprocessing technique to transform its array manifold into a
virtual ULA of size NV = 2H + 1 is required. The method
is called Davies Transformation, which was first proposed by
Davies in [4], and has been described briefly in [5]. A method to
synthesize low side-lobe beam-patterns by adapting the Dolph-
Chebyshev approach for a UCA is presented in [6] and [7]. The

TABLE I
SIMULATION VARIABLES
Variable Value

signal frequency f [1, 6] GHz
std of linear error δdL 1 mm

std of angular error δφ 0.1◦

array height l (M − 1)dL
array radius rC (NdC)/(2π)

interelement spacing dL, dC ≤ 0.5λ
defined side-lobe level DSLL −40 dB

transformation from UCA array manifold, a(φ), to a virtual ULA
array manifold, aV(φ), can be expressed as:

aV(φ) = DTa(φ) = [exp(−jHφ), ..., 1, ..., exp(jHφ)]T (4)
where the elements of T are:

Tvn = exp(j2πnh/N), (5)
n = 1, ..., N , v = 1, ... NV, and h = -H , ..., 0, ..., H; and D is
the normalizer diagonal matrix with elements:

Dv =
(
NjhJh(krC)

)−1
, (6)

where Jh(·) is the hth order Bessel function of the first kind.
The chosen of H has been described in [5] and [7] as:

H = max
H

{
H

∣∣∣∣H ≤ N − 1

2
,
JH−N (krC)

JH(krC)
< ε

}
(7)

for some predetermined ε, which should be small enough (it
was chosen as 0.05 in [7]) so that the obtained side-lobe level
is equal to that determined in the Chebyshev polynomials).

III. SIMULATIONS AND DISCUSSION

Monte Carlo simulations, each of 10000 trials, were per-
formed to find the mean MSLL under the influence of antenna
elements position-error. The obtained mean MSLL at different
array parameters (under the limitation of maximum array dimen-
sions) were used to design the optimal parameters of synthetic
cylindrical array with minimum MSLL at reasonable half-power
beam-width (HPBW).

Table I shows the variables utilized in the simulation. The
signal frequency ranges from 1 to 6 GHz. The antenna elements
position-error were assumed as Gaussian-distributed random
errors with standard deviation of 1 mm and 0.1◦ in linear and
circular, respectively. To get the sufficient samplings of continu-
ous antenna aperture, the maximum interelement spacings both
in linear and circular, dL and dC, are limited to 0.5λ. Since the
target specification of MSLL is −40 dB, the defined side-lobe
level (DSLL) in Chebyshev polynomials was set to be −40 dB.

In the simulation, the investigation for elevation and azimuth
beam patterns was separately conducted. The beam pattern
in elevation mainly depends on the array factor of ULA (2)
and antenna element pattern (assumed as ideal vertical dipole,
F (θ) = sin θ), whereas that in azimuth plane, i.e. sin θ = 1,
merely depends on the array factor of UCA (3).

A. Uniform Linear Array

The first simulations were conducted to observe the elevation
mean MSLL, µMSLL, in various linear interelement spacings, dL,
and number of elements, M , within the maximum physical array
height of l = 2 m. The relation between elevation MSLL and dL
under the influence of antenna elements position error and their
corresponding HPBW for f = 1 GHz and 6 GHz can be seen on
Fig. 3 and Fig. 5. It is shown that the minimum achievable MSLL
in f = 1 GHz is −36.8 dB (at dL = 0.5λ = 15 cm, l = 1.8 m,
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and M = 13). In f = 6 GHz, −24.7 dB of minimum MSLL is
obtained at dL = 0.5λ = 2.5 cm, l = 0.3 m, and M = 13. The
different trends of MSLL with respect to dL in Fig. 5 occur due
to the different aperture size of the array.
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Fig. 3. Elevation Performance vs. dL (f = 1 GHz, l ' 2 m)
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Fig. 4. Elevation MSLL and HPBW vs. dL in f = 6 GHz at l ' 2 m
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Fig. 5. Elevation MSLL vs. dL (f = 6 GHz, Various l)

Based on these results, the optimal measurement sampling
for the linear array at each frequency is: 13 points, with dL =
0.5λ. However, this scheme requires continuous measurement
sampling as shown in blue dotted-line in Fig. 6. To save the
calculation time, the measurement will be discretized. Sampling
steps is determined by the highest frequency of 6 GHz, dL = 2.5
cm; whereas the total array height is determined by the lowest
frequency of 1 GHz, l = (M − 1)dL = 1.8 m. Thus, the linear
aperture should be measured by 73 points, each 2.5 cm apart.
At each point, all frequency transfer function of interest will be
obtained.

In the data analysis, decimation technique will be applied. For
each frequency of f = [1, 6] GHz with 10 MHz steps, only 13
samples are taken with the corresponding linear spacings, dL,
shown in the green line in Fig. 6. Note that by implementing
this scheme, the linear aperture l is electronically varied with
respect to frequency. The expected performance in elevation for
several frequencies of f = [1, 6] GHz are shown in Fig. 7. It is
shown that the range of elevation MSLL is [−36.8,−24.7] dB,
where higher MSLL is obtained at higher frequency, due to the
linear error that are electronically larger. The elevation HPBW
varied in the range of 11◦, 20.4◦] due to the different electronic
aperture size, l (λ). HPBW is inversely proportional to l (λ) (as
shown in Fig. 8), as expected.
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Fig. 6. Frequency vs. Linear Interelement Spacings
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Fig. 7. Elevation MSLL and HPBW at f = [1, 6] GHz

B. Uniform Circular Array

These simulations were conducted to observe the azimuth
mean MSLL, µMSLL, in various circular interelement spacings,
dC, and number of elements, N , within the maximum physical
array dimension of rC = 0.5 m. The relation between azimuth
MSLL and dC under the influence of antenna elements angular
position-error for f = 1 GHz and 6 GHz can be seen on Table II
and Table III. It was obtained that the minimum azimuth MSLL
in f = 1 and 6 GHz are obtained by using a UCA of rC = 0.5
m with N = 314 and N = 215 respectively.

These two best measurement schemes are then compared in
Fig. 9. The figure shows that the azimuth MSLL fluctuates in the
range of [−38.43,−0.9] dB for N = 251, and [−38.62,−10.26]
dB for N = 314. The occurrence of these fluctuations is related
to the Davies transformation. The range of azimuth HPBW for
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Fig. 8. The Inverse Proportionality of Elevation HPBW and ULA Electronic
Aperture l (λ) at f = [1, 6] GHz

TABLE II
SIMULATION RESULTS FOR UCA IN 1 GHZ FREQUENCY

dC N NV rC HPBW µMSLL

(λ) (cm) (cm) (degree) (dB)
0.03 1 314 27 49.97 16.6 -38.6
0.04 1.25 251 27 49.93 16.6 -38.5
0.05 1.5 210 27 50.13 16.6 -38.4
0.1 3 106 27 50.61 16.6 -37.9
0.2 6 53 27 50.61 16.6 -37.1
0.3 9 35 27 50.13 16.6 -36.4
0.4 12 26 21 49.66 21.4 -34.4
0.5 15 21 13 50.13 35 -33.9
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TABLE III
SIMULATION RESULTS FOR UCA IN 6 GHZ FREQUENCY

dC N NV rC HPBW µMSLL

(λ) (cm) (cm) (degree) (dB)
0.2 1 314 137 49.97 3 -20.1
0.25 1.25 251 137 49.93 3.1 -26.4
0.3 1.5 209 137 49.89 3.1 -10
0.35 1.75 179 137 49.86 3.1 -0.3
0.4 2 157 137 49.97 3.1 -17.1
0.45 2.25 139 137 49.78 3.1 -21
0.5 2.5 125 119 49.74 3.54 -18
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Fig. 9. Azimuth MSLL and HPBW at N = 251 and N = 314

both parameters is [3.26◦, 19.4◦]. Narrower HPBW is observed
in the higher frequency due to larger electronic aperture.

From these results, the circular aperture of rC = 0.5 m
should be measured in 314 points, each 1 cm apart. All samples
will be used for the data analysis (beam-forming) with the
corresponding NV(f), so that JH(krC) ≥ 0.1.

The fluctuations observed in Fig. 9 occured due to the
Davies transformation. It was shown in (6) that the normalizer
diagonal matrix is composed of Bessel functions of the first
kind, Jh(krC), as the denominator. The order h is related to the
number of virtual array elements, where h = -H , ..., 0, ..., H ,
and H = NV−1

2 . The argument krC is a function of frequency
and array radius, which is relatively fixed at rC ' 0.5 m.
Thus, in a fixed frequency, Bessel function argument is relatively
fixed at around krC = 10π/3 for f = 1 GHz, and around
krC = 20π for f = 6 GHz. For a fixed argument, the Bessel
function of the first kind fluctuates and will asymptotically goes
to zero with the increase of its order. When Jh(krC) ' 0, the
weighting value will go to infinity, i.e. super-directivity. In the
simulation, NV was chosen such that JH(krC) ≥ 0.1. However,
due to the fluctuation characteristic of Bessel Function, at certain
frequencies and certain h, Jh(krC) ' 0. Fig. 10 shows that
azimuth MSLL peaks occur when Jh(krC) ' 0.

In the case of ULA, the physical height, l, can be decreased
by taking fewer samples of the total measurements. However,
different from ULA, the physical radius of UCA, rC, cannot be
decreased. The reason is because one same measurement scheme
is required for all measurement frequencies of f = [1, 6] GHz,
and at f = 1 GHz, maximum aperture is preferred to obtain a
reasonable HPBW.

IV. CONCLUSIONS AND FUTURE WORK

The SAC evaluation by a synthetic cylindrical array beam-
forming is proposed. The influence of elements position-error on
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Fig. 10. Fluctuation of Azimuth MSLL and the Values of Jh(krC)

the performance of the array antenna was investigated by beam-
forming simulations. It was found that the optimal geometry
of synthetic cylindrical array antenna measurement for SAC
evaluation is 1.8 m height and 1 m diameter, with 2.5 cm (linear)
and 1 cm (circular) interelement spacings.

In the data analysis, each frequency will be separately ana-
lyzed by using 13 linear samples with a corresponding dL(f),
and all circular samples with a corresponding NV(f). Utilizing
this scheme, the expected array performance under the influence
of Gaussian elements position-error with standard deviation of
1 mm (linear) and 0.1◦ (circular) are:

• Elevation MSLL = [−36.8,−24.7] dB at HPBW =
[11◦, 20.4◦].

• Azimuth MSLL = [−38.6,−10.3] dB at HPBW =
[3.3◦, 19.4◦].

The overall simulation results reveal the trade-off between
MSLL (sensitivity) and HPBW (resolution), as well as the trade-
off between HPBW and aperture size.

In the future, the fluctuation in azimuth MSLL may be
compensated by taking additional samplings at a smaller radius,
to be used at the higher frequency. However, this will results in a
longer measurement time and widening of HPBW. The far-field
assumption taken in this study should also be justified by using
spherical-wave propagation, since the relative size of the SAC
and that of the array may not satisfy this assumption.
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