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Abstract: In this article, we introduce and study I-convergent sequence spaces  I
(f ), 


I
0(f ), and  I

∞
(f ) with the help of compact operator T on the real space ℝ and a modu-

lus function f . We study some topological and algebraic properties, and prove some 
inclusion relations on these spaces.
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1. Introduction and preliminaries
Let ℕ, ℝ, and ℂ be the sets of all natural, real, and complex numbers, respectively. We denote

the space of all real or complex sequences.

� = {x = (xk) : xk ∈ ℝ orℂ}
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Let �
∞

, c, and c0 be denote the Banach spaces of bounded, convergent, and null sequences of  
reals, respectively with norm

Any subspace � of � is called a sequence space. A sequence space � with linear topology is called a 
K-space provided each of maps pi → ℂ defined by pi(x) = xi is continuous, for all i ∈ ℕ. A space � is 
called an FK-space provided � is complete linear metric space. An FK-space whose topology is nor-
mable is called a BK-space.

Definition 1.1  Let X and Y be two normed linear spaces and T :(T) → Y be a linear operator, where 
(T) ⊂ X. Then, the operator T is said to be bounded, if there exists a positive real k such that

The set of all bounded linear operators (X, Y) is a normed linear space normed by (see Kreyszig, 1978)

and (X, Y) is a Banach space if Y is Banach space.

Definition 1.2  Let X and Y be two normed linear spaces. An operator T :X → Y is said to be a com-
pact linear operator (or completely continuous linear operator), if

(1) � T is linear,

(2) � T maps every bounded sequence (xk) in X onto a sequence T(xk) in Y which has a convergent 
subsequence.

The set of all compact linear operators (X, Y) is closed subspace of (X, Y) and (X, Y) is a Banach 
space if Y is Banach space.

Following Basar and Altay (2003) and Sengönül (2009), we introduce the sequence spaces  and 0 
with the help of compact operator T on the real space ℝ as follows.

and

Definition 1.3  A function f : [0, ∞) ⟶ [0,∞) is called a modulus if

(1) � f (t) = 0 if and only if t = 0,

(2) � f (t + u) ≤ f (t) + f (u) for all t, u ≥ 0,

(3) � f  is increasing, and

(4) � f  is continuous from the right at zero.

For any modulus function f , we have the inequalities

and

A modulus function f  is said to satisfy Δ2 − Condition for all values of u if there exists a constant 
K > 0 such that f (Lu) ≤ KLf (u) for all values of L > 1.

‖x‖ = sup
k

∣ xk ∣

∥ Tx ∥≤ k ∥ x ∥, for all x ∈ (T)

∥ T ∥= sup
x∈X,∥x∥=1

∥ Tx ∥

 =
{
x = (xk) ∈ �

∞
: T(x) ∈ c

}

0 =
{
x = (xk) ∈ �

∞
: T(x) ∈ c0

}

∣ f (x) − f (y) ∣≤ f (∣ x − y ∣)

f (nx) ≤ nf (x), for all x, y ∈ [0, ∞]
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The idea of modulus was introduced by Nakano (1953).

Ruckle (1967, 1968, 1973) used the idea of a modulus function f  to construct the sequence space

This space is an FK-space and Ruckle (1967, 1968, 1973) proved that the intersection of all such X(f ) 
spaces is �, the space of all finite sequences.

The space X(f ) is closely related to the space �1 which is an X(f ) space with f (x) = x for all real x ≥ 0. 
Thus Ruckle (1967, 1968, 1973) proved that, for any modulus f .

where

Spaces of the type X(f ) are a special case of the spaces structured by Gramsch (1967). From the point 
of view of local convexity, spaces of the type X(f ) are quite pathological. Symmetric sequence spaces, 
which are locally convex have been frequently studied by Garling (1966), Köthe (1970), and Ruckle 
(1967, 1968, 1973).

The sequence spaces by the use of modulus function was further investigated by Maddox (1969,   
1986), Khan (2005, 2006), Bhardwaj (2003), and many others.

As a generalization of usual convergence, the concept of statistical convergent was first introduced 
by Fast (1951) and also independently by Buck (1953) and Schoenberg (1959) for real and complex 
sequences. Later on, it was further investigated from sequence space point of view and linked with 
the Summability Theory by Fridy (1985), Šalát (1980), Tripathy (1998), Khan (2007), Khan and Sabiha 
(2012), Khan, Shafiq, and Rababah (2015), and many others.

Definition 1.4  A sequence x = (xk) ∈ � is said to be statistically convergent to a limit L ∈ ℂ if for 
every 𝜀 > 0, we have

where vertical lines denote the cardinality of the enclosed set. 

That is, if �(A(�)) = 0, where

The notation of ideal convergence (I-convergence) was introduced and studied by Kostyrko, Mačaj, 
Salǎt, and Wilczyński (2000). Later on, it was studied by Šalát, Tripathy, and Ziman (2004, 2005), 
Tripathy and Hazarika (2009, 2011), Khan and Ebadullah (2011), Khan, Ebadullah, Esi, and Shafiq 
(2013), and many others.

Now, we recall the following definitions:

Definition 1.5  Let ℕ be a non-empty set. Then a family of sets I ⊆ 2ℕ (power set of ℕ) is said to be 
an ideal if

(1) � I is additive i.e ∀A,B ∈ I ⇒ A ∪ B ∈ I

(2) � I is hereditary i.e ∀A ∈ I andB ⊆ A ⇒ B ∈ I.

X(f ) =

{
x = (xk):

∞∑

k=1

f (|xk|) < ∞

}

X(f ) ⊂ �1 and X(f )𝛼 = �
∞

X(f )𝛼 =

{
y = (yk) ∈ 𝜔:

∞∑

k=1

f (|ykxk|) < ∞

}

lim
k→∞

1

k
|
{
n ∈ ℕ : |xn − L| ≥ �,n ≤ k

}
| = 0

A(�) =
{
k ∈ ℕ : ∣ xk − L ∣≥ �

}
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Definition 1.6  A non-empty family of sets £(I) ⊆ 2ℕ is said to be filter on ℕ if and only if

(1) � Φ ∉ £(I),

(2) � ∀A, B ∈ £(I) we have A ∩ B ∈ £(I),

(3) � ∀A ∈ £(I) and A ⊆ B⇒ B ∈ £(I).

Definition 1.7  An Ideal I ⊆ 2ℕ is called non-trivial if I ≠ 2ℕ.

Definition 1.8  A non-trivial ideal I ⊆ 2ℕ is called admissible if

Definition 1.9  A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal J ≠ I contain-
ing I as a subset.

Remark 1.10  For each ideal I, there is a filter £(I) corresponding to I. i.e £(I) = {K ⊆ ℕ :Kc ∈ I}, where 
Kc = ℕ ⧵ K.

Definition 1.11  A sequence x = (xk) ∈ � is said to be I-convergent to a number L if for every 𝜀 > 0, 
the set {k ∈ ℕ : |xk − L| ≥ �} ∈ I. 

In this case, we write I − lim xk = L.

Definition 1.12  A sequence x = (xk) ∈ � is said to be I-null if L = 0. In this case, we write I − lim xk = 0.

Definition 1.13  A sequence x = (xk) ∈ � is said to be I-Cauchy if for every 𝜀 > 0 there exists a num-
ber m = m(�) such that {k ∈ ℕ : |xk − xm| ≥ �} ∈ I.

Definition 1.14  A sequence x = (xk) ∈ � is said to be I-bounded if there exists some M > 0 such that 
{k ∈ ℕ : |xk| ≥ M} ∈ I.

Definition 1.15  A sequence space E is said to be solid (normal) if (�kxk) ∈ E whenever (xk) ∈ E and for 
any sequence (�k) of scalars with ∣ �k ∣≤ 1, for all k ∈ ℕ.

Definition 1.16  A sequence space E is said to be symmetric if (x
�(k)) ∈ E whenever xk ∈ E. where � is 

a permutation on ℕ.

Definition 1.17  A sequence space E is said to be sequence algebra if (xk) ∗ (yk) = (xk.yk) ∈ E when-
ever (xk), (yk) ∈ E.

Definition 1.18  A sequence space E is said to be convergence free if (yk) ∈ E whenever (xk) ∈ E and 
xk = 0 implies yk = 0, for all k.

Definition 1.19  Let K = {k1 < k2 < k3 < k4 < k5…} ⊂ ℕ and E be a Sequence space. A K-step space of 
E is a sequence space �EK = {(xkn

) ∈ � : (xk) ∈ E}.

Definition 1.20  A canonical pre-image of a sequence (xkn ) ∈ �
E
K is a sequence (yk) ∈ � defined by

A canonical preimage of a step space �EK is a set of preimages all elements in �EK. i.e. y is in the canoni-
cal preimage of �EK iff y is the canonical preimage of some x ∈ �

E
K .

Definition 1.21  A sequence space E is said to be monotone if it contains the canonical preimages 
of its step space.

{{x} : x ∈ ℕ} ⊆ I

yk =

{
xk, if k ∈ K,

0, otherwise
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Definition 1.22  (see, Khan et al., 2015; Kostyrko et al., 2000). If I = If, the class of all finite subsets of v. 
Then, I is an admissible ideal in v and If convergence coincides with the usual convergence.

Definition 1.23  (see, Khan et al., 2015; Kostyrko et al., 2000). If I = I
𝛿
= {A ⊆ ℕ : 𝛿(A) = 0}. Then, I is 

an admissible ideal in ℕ and we call the I
�
-convergence as the logarithmic statistical convergence.

Definition 1.24  (see, Khan et al., 2015; Kostyrko et al., 2000). If I = Id = {A ⊆ ℕ :d(A) = 0}. Then, I is 
an admissible ideal in ℕ and we call the Id-convergence as the asymptotic statistical convergence.

Remark 1.25  If I
�
− lim xk = l, then Id − lim xk = l

Definition 1.26  A map ℏ defined on a domain D ⊂ X i.e � :D ⊂ X → ℝ is said to satisfy Lipschitz con-
dition if |ℏ(x) − ℏ(y)| ≤ K|x − y| where K is known as the Lipschitz constant. The class of K-Lipschitz 
functions defined on D is denoted by ℏ ∈ (D,K).

Definition 1.27  A convergence field of I-covergence is a set

The convergence field F(I) is a closed linear subspace of l
∞

 with respect to the supremum norm, 
F(I) = l

∞
∩ cI (see Šalát et al., 2004, 2005).

Definition 1.28  Let X be a linear space. A function g :X ⟶ R is called paranorm, if for all x, y ∈ X,

(P1) g(x) = 0 if x = �,

(P2) g(−x) = g(x),
(P3) g(x + y) ≤ g(x) + g(y),
(P4) If (�n) is a sequence of scalars with �n → �   (n→ ∞) and xn, a ∈ X with xn → a   (n→ ∞) in the 
sense that g(xn − a) → 0   (n→ ∞) , then g(�nxn − �a) → 0  (n→ ∞).

The notation of paranorm sequence spaces was studied at the initial stage by Nakano (1953). 
Later on, it was further investigated by Maddox (1969), Tripathy and Hazarika (2009), Khan et al. 
(2013), and the references therein.

Throughout the article, we use the same techniques as used in Tripathy and Hazarika (2009, 2011).

We used the following lemmas for establishing some results of this article.

Lemma 1  (see, Tripathy & Hazarika, 2009, 2011). Every solid space is monotone.

Lemma 2  (see, Tripathy & Hazarika, 2009, 2011). If I ⊆ 2N and M ⊆ N. If M ∉ I, then M ∩ N ∉ I.

Lemma 3  (see, Tripathy & Hazarika, 2009, 2011). Let K ∈ £(I) and M ⊆ N. If M ∉ I, then M ∩ K ∉ I.

Throughout the article,  I,  I
0, 

I
∞

, I

, and I


◦

 represent the I-convergent, I-null, I-Bounded , 
bounded I-convergent, and bounded I-null Sequences spaces defined by a compact operator T on 
the real space ℝ, respectively.

2. Main results
In this article, we introduce the following classes of sequences.

F(I) = {x = (xk) ∈ l∞ : there exists I − lim x ∈ ℝ}

(2.1)
I
(f ) =

{
x = (xk) ∈ �

∞
: {k ∈ ℕ : f

(
∣ T(xk) − L ∣

)
≥ �} ∈ I, for some L ∈ ℂ

}

(2.2)
I
0(f ) =

{
x = (xk) ∈ �

∞
: {k ∈ ℕ : f

(
∣ (Txk) ∣

)
≥ �} ∈ I

}
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where f  is a modulus function. 

We also denote

Theorem 2.1  Let f  be a modulus function. Then, the classes of sequences  I
(f ),  I

0(f ), 
I

(f ), and 


I

◦

(f ) are linear spaces.

Proof  We shall prove the result for  I
(f ). The proof for the other spaces will follow similarly.  

For, let x = (xk), y = (yk) ∈ 
I
(f ) and �, � be scalars. Then, for a given 𝜖 > 0, we have

Let

be such that Ac1,A
c
2 ∈ I. 

Since f  is a modulus function, we have

Therefore,

implies that A3 ∈ £(I). Thus, Ac3 = A
c
1 ∪ A

c
2 ∈ I. Therefore, �xk + �yk ∈ 

I
(f ), for all scalars �, �, and 

(xk), (yk) ∈ 
I
(f ). 

(2.3)
I
∞
(f ) =

{
x = (xk) ∈ �

∞
: {k ∈ ℕ :∃K < 0 such that f

(
∣ T(xk) ∣

)
≥ K} ∈ I

}

(2.4)
∞
(f ) =

{
x = (xk) ∈ �

∞
: sup

k

f
(
∣ T(xk) ∣

)
< ∞

}


I

(f ) = 

∞
(f ) ∩ 

I
(f )andI


◦

(f ) = 
∞
(f ) ∩ 

I
0(f )

(2.5)
{
k ∈ ℕ : f

(
∣ T(xk) − L1 ∣

)
≥

�

2
, for some L1 ∈ ℂ

}
∈ I

(2.6)
{
k ∈ ℕ : f

(
∣ T(xk) − L2 ∣

)
≥

�

2
, for some L1 ∈ ℂ

}
∈ I

(2.7)A1 =

{
k ∈ ℕ : f

(
|T(xk) − L1|

)
<

𝜖

2
, for some L1 ∈ ℂ

}
∈ (I)

(2.8)A2 =

{
k ∈ ℕ : f

(
|T(yk) − L2|

)
<

𝜖

2
, for some L2 ∈ ℂ

}
∈ (I)

A3 =

{
k ∈ ℕ : f

(
|(𝛼T(xk) + 𝛽T(yk) − (𝛼L1 + 𝛽L2)|

)
< 𝜖

}

⊇

[{
k ∈ ℕ : f

(
|𝛼||T(xk) − L1|

)
<

𝜖

2

}

∩

{
k ∈ ℕ : f

(
|𝛽||T(yk) − L2|

)
<

𝜖

2

}]

⊇

[{
k ∈ ℕ : f

(
|T(xk) − L1|

)
<

𝜖

2

}

∩

{
k ∈ ℕ : f

(
|T(yk) − L2|

)
<

𝜖

2

}]

(2.9)

A3 =

{
k ∈ ℕ : f

(
|(𝛼T(xk) + 𝛽T(yk) − (𝛼L1 + 𝛽L2)|

)
< 𝜖

}

⊇

[{
k ∈ ℕ : f

(
|T(xk) − L1|

)
<

𝜖

2

}

∩

{
k ∈ ℕ : f

(
|T(yk) − L2|

)
<

𝜖

2

}]
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Hence,  I
(f ) is a linear space.

Theorem 2.2  The classes of sequences I

(f ) and I


◦

(f ) are paranormed spaces, paranormed by

Proof  Let x = (xk), y = (yk) ∈ 
I

(f ).

(P1) It is clear that g(x) = 0 if x = �, a zero vector.
(P2) g(x) = g(−x) is obvious.
(P3) For x = (xk), y = (yk) ∈ 

I

(f ), we have 

 Therefore, g(x + y) ≤ g(x) + g(y)
(P4) Let (�k) be a sequence of scalars with (�k) → � (k → ∞) and (xk), L ∈ 

I

(f ) such that 

 in the sense that 

 Then, since the inequality 

 holds by subadditivity of g, the sequence {g(xk)} is bounded.

Therefore,

as (k→ ∞). That is to say that scalar multiplication is continuous. Hence, I

(f ) is a paranormed 

space. 

For I

◦

(f ), the result is similar.

Theorem 2.3  A sequence x = (xk) ∈ �
∞

 I-converges if and only if for every 𝜖 > 0, there exists N
�
∈ ℕ 

such that

Proof  Let x = (xk) ∈ �
∞
. 

Suppose that L = I − lim x. Then, the set

Fix an N
�
∈ B

�
. Then we have,

g(x) = g(xk) = sup
k

f
(
|T(xk)|

)

g(x + y) = g(xk + yk) = sup
k

f
(
|T(xk + yk)|

)

= sup
k

f
(
|T(xk) + T(yk)|

)
≤ sup

k

f
(
|T(xk)|

)

+ sup
k

f
(
|T(yk)

)
| = g(x) + g(y)

xk → L (k → ∞)

g(xk − L) → 0 (k → ∞)

g(xk) ≤ g(xk − L) + g(L)

g
[
(�kxk − �L)

]
= g

[
(�kxk − �xk + �xk − �L)

]

= g
[
(�k − �)xk + �(xk − L)

]

≤ g
[
(�k − �)xk] + g

[
�(xk − L)

]

≤∣ (�k − �) ∣ g(xk)+ ∣ � ∣ g(xk − L) → 0

(2.10)
{
k ∈ ℕ : f

(
∣ T(xk) − T(xN

𝜖

) ∣

)
< 𝜖

}
∈ £(I)

B
𝜖
=

{
k ∈ ℕ : f

(
∣ T(xk) − L ∣

)
<

𝜖

2

}
∈ £(I) for all 𝜖 < 0
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which holds for all k ∈ B
�
. Hence 

{
k ∈ ℕ : f

(
∣ T(xk) − T(xN

𝜖

) ∣

)
< 𝜖

}
∈ £(I) Conversely, suppose that

That is 
{
k ∈ ℕ: ∣ f

(
|T(xk)|

)
− f

(
|T(xN

𝜖

) ∣

)
∣< 𝜖

}
∈ £(I), for all 𝜖 > 0. Then, the set

Let J
�
=

[
f
(
|T(xN

�

)
)
− �, f

(
|T(xN

�

)
)
+ �

]
. If we fix an 𝜖 > 0 then we have C

�
∈ £(I) as well as C �

2

∈ £(I). 

Hence C
�
∩ C �

2

∈ £(I). This implies that

That is

That is

where the diam of J denotes the length of interval J. 

In this way, by induction, we get the sequence of closed intervals

with the property that diamIk ≤
1

2
diamIk−1 for (k = 2, 3, 4,…) and {k ∈ ℕ : f

(
|T(xk)|

)
∈ Ik} ∈ £(I) for 

(k = 1, 2, 3, 4,…). Then, there exists a � ∈ ∩Ik where k ∈ ℕ such that � = I − lim f
(
|T(xk)|

)
 showing  

that x = (xk) ∈ �
∞

 is I-convergent. Hence the result.

Theorem 2.4  Let f1 and f2 be two modulus functions and satisfying Δ2 − Condition, then

(a)  (f2) ⊆ (f1f2),

(b)  (f1) ∩ (f2) ⊆ (f1 + f2) 

for =  I,  I
◦
, I


 and I


◦

.

Proof  (a) Let x = (xk) ∈ 
I
◦
(f2) be any arbitrary element. Then, the set 

Let 𝜖 > 0 and choose � with 0 < 𝛿 < 1 such that f1(t) < 𝜖, 0 ≤ t ≤ 𝛿. 

Let us denote 

and consider 

f
(
∣ T(xk) − T(xN

𝜖

) ∣

)
≤ f

(
∣ T(xk) − L ∣

)
+ f

(
∣ T(xN

𝜖

) − L ∣
)
<

𝜖

2
+

𝜖

2
= 𝜖

{
k ∈ ℕ:f

(
∣ T(xk) − T(xN

𝜖

) ∣

)
< 𝜖

}
∈ £(I)

C
𝜖
=

{
k ∈ ℕ : f

(
|T(xk)|

)
∈ [f ≤ (|T(xN

𝜖

) ∣
)
− 𝜖, f

(
|T(xN

𝜖

) ∣
)
+ 𝜖]

}
∈ £(I) for all 𝜖 < 0

J = J
�
∩ J �

2

≠ �

{k ∈ ℕ : f
(
|T(xk)|

)
∈ J} ∈ £(I)

diamJ ≤ diamJ
�

J
𝜖
= I0 ⊇ I1 ⊇ … ⊇ Ik ⊇ …

(2.11)
{
k ∈ ℕ : f2

(
∣ T(xk) ∣

)
≥ �

}
∈ I

yk = f2

(
∣ T(xk) ∣

)

lim
k
f1
(
yk
)
= lim

yk≤𝛿,k∈ℕ
f1
(
yk
)
+ lim

yk>𝛿,k∈ℕ
f1
(
yk
)



Page 9 of 13

Khan et al., Cogent Mathematics (2015), 2: 1036509
http://dx.doi.org/10.1080/23311835.2015.1036509

Now, since f1 is an modulus function, we have 

For yk > 𝛿, we have 

Now, since f1 is non-decreasing and modulus, it follows that 

Again, since f1 satisfies Δ2 − Condition, we have 

Thus, f1
(
yk
)
< K

(yk)

𝛿

f1
(
2
)
 Hence, 

Therefore, from Equations 2.11–2.13, we have (xk) ∈ 
I
◦
(f1f2) Thus, 

I
◦
(f2) ⊆ 

I
◦
(f1f2). Hence, 

(f2) ⊆ (f1f2) for =  I
◦
. For =  I, I


, and I


◦

 the inclusions can be established similarly.

(b) Let x = (xk) ∈ 
I
◦
(f1) ∩ 

I
◦
(f2). Let 𝜖 > 0 be given. Then, the sets 

 and 

Therefore, from Equations 2.14 and 2.15 the set 

 Thus, x = (xk) ∈ 
I
◦
(f1 + f2). Hence,  I

◦
(f1) ∩ 

I
◦
(f2) ⊆ 

I
◦
(f1 + f2). For =  I, I


, and I


◦

 the inclusions 
are similar.

For f2(x) = x and f1(x) = f (x), ∀x ∈ [0,∞), we have the following corollary.

Corollary 2.5   ⊆ (f ) for =  I,  I
◦
, I


 and I


◦

Theorem 2.6  For any modulus function f , the spaces  I
◦
(f ) and I


◦

(f ) are solid and monotone.

Proof  we prove the result for the space  I
◦
(f ). For I


◦

(f ), the proof can be obtained similarly. 

For, let (xk) ∈ 
I
◦
(f ) be any arbitrary element. Then, the set

Let (�k) be a sequence of scalars such that

(2.12)lim
yk≤�,k∈ℕ

f1
(
yk
)
≤ f1

(
2
)
lim

yk≤�,k∈ℕ
(yk)

yk <
yk
𝛿

< 1 +
yk
𝛿

f1(yk) < f1

(
1 +

yk
𝛿

)
<

1

2
f1(2) +

1

2
f1

(
2yk
𝛿

)

f1
(
yk
)
<

1

2
K
(yk)

𝛿

f1
(
2
)
+
1

2
K
(yk)

𝛿

f1(2)

(2.13)lim
yk>𝛿,k∈ℕ

f1
(
yk
)
≤ max{1,K𝛿−1f1

(
2
)
lim

yk>𝛿,k∈ℕ
(yk)

(2.14)
{
k ∈ ℕ : f1

(
∣ T(xk) ∣

)
≥ �

}
∈ I

(2.15)
{
k ∈ ℕ : f2

(
∣ T(xk) ∣

)
≥ �

}
∈ I

{
k ∈ ℕ : (f1 + f2)

(
∣ T(xk) ∣

)
≥ �

}
∈ I

(2.16){k ∈ ℕ : f
(
∣ T(xk) ∣

)
≥ �} ∈ I
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Then the result follows from Equation 2.16 and the following inequality.

That the space  I
◦
(f ) is monotone follows from the Lemma (I). Hence  I

◦
(f ) is solid and monotone.

Theorem 2.7  The spaces  I
(f ) and I


(f ) are not neither solid nor monotone.

Proof  Here we give a counter example for the proof of this result. 

Counter example. Let I = If  and f (x) = x for all x ∈ [0,∞). Consider the K-step K of  defined as  
follows. 

Let (xk) ∈  and let (yk) ∈ K be such that

Consider the sequence (xk) defined as by xk = 1 for all k ∈ ℕ. Then (xk) ∈ 
I
(f ) and I


(f ) but its K-step 

preimage does not belong to  I
(f ) and I


(f ). Thus,  I

(f ) and I

(f ) are not monotone. Hence,  I

(f ) 
and I


(f ) are not solid by Lemma(I).

Theorem 2.8  If (x = xk) and (y = yk) be two sequences with T(x ⋅ y) = T(x)T(y). Then, the spaces  I
(f ) 

and  I
◦
(f ) are sequence algebra.

Proof  Let (x = xk) and (y = yk) be two elements of  I
◦
(f ) with T(x ⋅ y) = T(x)T(y).

Then, the sets

and

Therefore,

Thus, (xk).(yk) ∈ 
I
◦
(f ). 

Hence,  I
◦
(f )is sequence algebra. For  I

(f ), the result can be proved similarly.

Theorem 2.9  Let f  be a modulus function. Then,  I
◦
(f ) ⊂ 

I
(f ) ⊂ 

I
∞
(f ).

Proof  The inclusion  I
◦
(f ) ⊂ 

I
(f ) is obvious. 

Next, let (xk) ∈ 
I
(f ). Then there exists some L such that

∣ �k ∣≤ 1, for all k ∈ ℕ

f

(
∣ T(�kxk) ∣

)
= f

(
∣ �kT(xk) ∣

)
≤∣ �k ∣ f

(
∣ T(xk) ∣

)
≤ f

(
∣ T(xk) ∣

)
, for all k ∈ ℕ

yk =

{
xk, if k is even,

0, otherwise

(2.17)
{
k ∈ ℕ : f

(
∣ T(xk) ∣

)
≥ �

}
∈ I

(2.18)
{
k ∈ ℕ:f

(
∣ T(yk) ∣

)
≥ �

}
∈ I

{
k ∈ ℕ : f

(
∣ T(xk).T(yk) ∣

)
≥ �

}
∈ I

{
k ∈ ℕ : f

(
∣ T(xk) − L ∣

)
≥ �

}
∈ I
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We have

Taking supremum over k on both sides, we get (xk) ∈ 
I
∞
(f ) 

Hence,  I
◦
(f ) ⊂ 

I
(f ) ⊂ 

I
∞
(f )

Theorem 2.10  If f (x) = x for all x ∈ [0,∞]. Then, the function ℏ :I

(f ) → ℝ defined by 

ℏ(x) = I − lim f (∣ T(xk) ∣), where I

(f ) = 

∞
(f ) ∩ 

I
(f ) is a Lipschitz function and hence uniformly  

continuous.

Proof  Clearly, the function ℏ is well defined. Let x = (xk), y = (yk) ∈ 
I

(f ), x ≠ y. 

Then, the sets

where

Thus, the sets

Hence, B = Bx ∩ By ∈ £(I), so that B ≠ ∅ Now, taking k ∈ B, we have

Therefore, ℏ is Lipschitz function and hence uniformly continuous.

Theorem 2.11  If f (x) = x for all x ∈ [0,∞] and if x = (xk), y = (yk) ∈ 
I

(f ) with T(x ⋅ y) = T(x)T(y). 

Then (x ⋅ y) ∈ 
I

(f ) and ℏ(xy) = ℏ(x)ℏ(y) where ℏ :I


(f ) → ℝ is defined by ℏ(x) = I − lim f (∣ T(xk) ∣).

Proof  For 𝜖 > 0, the sets

where ∥ x − y ∥
∗
= � 

Now,

As I

(f ) ⊆ 

∞
(f ), there exists an M ∈ ℝ such that |T(xk)| < M and |�(y)| < M.

Therefore, from Equations 2.19–2.21, we have

f
(
∣ T(xk) ∣

)
≤
1

2
f
(
∣ T(xk) − L ∣

)
+ f

(1
2
∣ L ∣

)

Ax =
{
k ∈ ℕ : f

(
∣ T(x) − ℏ(x) ∣

)
≥∥ x − y ∥

∗

}
∈ I

Ay =
{
k ∈ ℕ : f

(
∣ T(y) − ℏ(y) ∣

)
≥∥ x − y ∥

∗

}
∈ I

∥ x − y ∥
∗
= sup

k

f
(
∣ T(xk) − T(yk) ∣

)

Bx =
{
k ∈ ℕ : ∣ T(x) − �(x) ∣<∥ x − y ∥

∗

}
∈ £(I)

By =
{
k ∈ ℕ : ∣ T(y) − �(y) ∣<∥ x − y ∥

∗

}
∈ £(I)

∣ ℏ(x) − ℏ(y) ∣≤∣ ℏ(x) − T(xk) ∣ + ∣ T(xk) − T(yk) ∣ + ∣ T(yk) − ℏ(y) ∣≤ 3 ∥ x − y ∥
∗

(2.19)Bx = {k ∈ ℕ :|T(xk) − �(x)| < 𝜖} ∈ £(I)

(2.20)By = {k ∈ ℕ :|T(yk) − �(y)| < 𝜖} ∈ £(I)

(2.21)
|T(xkyk) − ℏ(x)ℏ(y)| = |T(xk)T(yk) − T(xk)ℏ(y) + T(xk)ℏ(y) − ℏ(x)ℏ(y)|

≤ |T(xk)||yk − ℏ(y)| + |ℏ(y)||xk − ℏ(x)|

|T(xkyk) − ℏ(x)ℏ(y)| ≤ M� +M� = 2M�
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for all k ∈ Bx ∩ By ∈ £(I). 

Hence (x ⋅ y) ∈ 
I

(f ) and ℏ(xy) = ℏ(x)ℏ(y).
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