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Abstract

By the Choquet theorem, distributions of random
closed sets can be characterized by a certain class
of set functions called capacity functionals. In this
paper a generalization to the multivariate case is pre-
sented, that is, it is proved that the joint distribution
of finitely many random sets can be characterized by a
set function fulfilling certain properties. Furthermore,
we use this result to formulate an existence theorem
for set-valued stochastic processes.
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1 Introduction

Random sets, or set-valued maps, can be used to
model uncertainty. They can be interpreted as im-
precise observations of random variables ([10]) which
assign to each element of the underlying probability
space a set instead of a single value. These sets
(called focal sets) are supposed to contain the true
value of the variable.

We will consider random closed sets, that is, random
maps whose values are closed subsets of a topological
space E, since they have favorable properties. The
family of all closed subsets of E will be denoted by
F which can in turn be topologized by the so-called
Fell topology ([1]). Random closed sets can then
be seen as random elements with values in F and
classical probability theory can be applied. As
already mentioned, they can also be interpreted as
imprecise observations of random variables ([10]).
In this case, one is more interested in events from
the Borel-σ-algebra B(E), than from B(F) and
non-additive set functions (so-called lower and upper
probabilities, see [4]) are introduced to measure if
the focal elements hit or miss a certain set from
B(E). The link between these two interpretations

is given by the so-called Choquet theorem (also
referred to as the Choquet-Matheron-Kendall the-
orem, see [13, 15, 17]), which states a one-to-one
correspondence between probability distributions
on B(F) and a certain class of non-additive set
functions, called capacity functionals, on B(E).

The goal of this paper is to present characterizations
of the joint distribution of finitely many random sets.
More precisely, given n random sets we will link their
joint distribution defined on the product-σ-algebra
B(F)⊗n to set functions defined on the compacts of
the co-product E × {1, . . . , n} or a certain class of
subsets of En.

The plan of the paper is as follows. In Section 2
we review the most important facts on random sets
and their distributions including the classical Cho-
quet theorem. The main part of the paper is Section
3 where joint distributions of random sets are consid-
ered and characterized by multivariate capacities. In
Section 4 the latter is used to formulate a Daniell-
Kolmogorov existence theorem ([5, 7]) for set-valued
stochastic processes. Furthermore, we consider Brow-
nian motion as an example.

2 Random closed sets and Choquet
theorem

In this section we review the most important facts
about random closed sets. As already mentioned in
the introduction we consider maps whose values are
closed subsets of some topological space E. Through-
out the paper, G, F , K will denote the families of
open, closed, compact subsets of E, respectively. Fur-
thermore, we will use the following notation

FA = {F ∈ F : F ∩A ̸= ∅}
FA = {F ∈ F : F ∩A = ∅}

FA
A1,...,Ak

= FA ∩FA1
∩ · · · ∩FAk
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for arbitrary subsets A,A1, . . . , Ak of E. The family
F is endowed with the Fell topology ([1]). Recall that
the latter has as a sub-base {FG}G∈G ∪ {FK}K∈K,
that is, sets of the form FK

G1,...,Gk
(K ∈ K, Gi ∈ G)

constitute a base. We shall always assume that E is a
locally compact Hausdorff second countable (LCHS)
space. In this case, F together with the Fell topology
becomes a compact Hausdorff second countable space
([1]). In addition, we introduce on F the so-called
Effros-σ-algebra B(F) which is generated by the sets
{FG}G∈G . By virtue of the LCHS property of E, the
Effros-σ-algebra is also generated by {FK}K∈K and is
the Borel-σ-algebra with respect to the Fell topology.
For details and further information about topologies
on F the reader is referred to the monograph [1].

A map X : Ω → F on a probability space (Ω,Σ, P )
will be called Effros-measurable if

X−(G) = {ω : X(ω) ∩G ̸= ∅} = X−1(FG) ∈ Σ

for allG ∈ G whereasX will be called random (closed)
set if it is strongly measurable ([18]), i.e., X−(B) ∈ Σ
for all B ∈ B(E). Note that in general the two condi-
tions are not equivalent unless (Ω,Σ, P ) is complete
(see [2, 8]). The distribution of an Effros-measurable
map X is then the image measure PX of P on B(F).
For the generating sets FK (K ∈ K) of B(F) the prob-
abilities PX(FK) = P (X−(K)) can be expressed by
a set function φ : K → [0, 1],K 7→ PX(FK). This
set function corresponds to the upper probability of a
random set introduced by Dempster and Shafer ([4])
and has (among others) the following properties:

(CF1) 0 ≤ φ ≤ 1 and φ(∅) = 0,

(CF2) For K,K1, . . . ,Kn ∈ K, n ≥ 0, the probabil-
ities PX(FK

K1,...,Kn
) can be written in terms of φ

as

PX(FK
K1,...,Kn

) = ∆nφ(K;K1, . . . ,Kn)

where ∆0φ(K) = 1− φ(K) and for n ≥ 1

∆nφ(K;K1, . . . ,Kn)

= ∆n−1φ(K;K1, . . . ,Kn−1)

−∆n−1φ(K ∪Kn;K1, . . . ,Kn−1).

Thus, ∆nφ ≥ 0 for n ≥ 0.

(CF3) φ is continuous from above, that is, for a
decreasing sequence {Kn}n∈N with limit K =∩

n∈NKn it holds that φ(Kn) ↘ φ(K).

Note that a set function fulfilling Condition (CF2) is
called completely alternating. Furthermore, for n ≥ 1

the successive differences can be expressed as follows:

∆nφ(K;K1, . . . ,Kn)

= −
∑

I⊆{1,...,n}

(−1)|I| φ
(
K ∪

∪
i∈I

Ki

)
(1)

where the union over ∅ is set to ∅. A set function on K
fulfilling these three properties is called capacity func-
tional. The following theorem known as the Choquet
theorem (see [13, 15, 17]) says that there is a one-to-
one correspondence between capacity functionals and
probability measures on B(F).

Theorem 1. Let E be an LCHS space and let φ :
K → [0, 1] be a capacity functional. Then there exists
a unique probability measure Π on B(F) such that
φ(K) = Π(FK) for all K ∈ K.

For later reference we give a sketch of the proof ([13]):
First, note that a capacity functional φ can be ex-
tended to the power set P of E by setting

φ∗(G)=sup{φ(K) : K ⊆ G,K ∈ K} if G ∈ G,
φ∗(A) = inf{φ∗(G) : G ⊇ A,G ∈ G} if A ∈ P.

(2)
The extension φ∗ is a completely alternating Choquet-
K-capacity, that is, φ∗ is continuous from above on
K and continuous from below on P ([3, 14]). Fur-
thermore, the extension is consistent, i.e., on K the
extension yields the same results as if φ is directly
applied. To obtain the desired probability measure
on B(F) the set function φ∗ is considered on V =
{G ∪K : G ∈ G,K ∈ K} and a set function Π is de-
fined on H = {FV

V1,...,Vk
: V, Vj ∈ V, k ≥ 0, 1 ≤ j ≤ k}

by Π(FV
V1,...,Vk

) = ∆kφ
∗(V ;V1, . . . , Vk). Π is proved

to be (finitely) additive and extended to a measure
on B(F) (which is generated by H) by using [16,
Prop. I.6.2] and continuity properties of φ∗. More-
over, one can show (cf. [6], Appendix, 2, Satz 2) that
for all B ∈ B(E) it holds that FB ∈ B(F)0 and
φ∗(B) = Π0(FB) where (F ,B(F)0,Π0) denotes the
completed probability space with respect to Π.

3 The multivariate case

Let n ≥ 2 and Ei be LCHS spaces with Gi, Fi, Ki

denoting the families of open, closed, compact subsets
of Ei, respectively, 1 ≤ i ≤ n. As already outlined in
the introduction the goal is to characterize probability
measures on the Borel sets of

Fn = F1 × · · · ×Fn = {(F1, . . . , Fn) : Fi ∈ Fi}

by set functions. Fn will be endowed with the product
Fell topology which is generated by the cylindrical sets

FK1

G11,...,G1k1
× · · · ×FKn

Gn1,...,Gnkn



where Giji ∈ Gi, Ki ∈ Ki. From the one-dimensional
case one can infer that the product-Effros-σ-algebra
B(Fn) = B(Fi)⊗n = B(F1) ⊗ · · · ⊗ B(Fn) is generated
by the sets

FK1
× · · · ×FKn

where Ki ∈ Ki. For n Effros-measurable maps (ran-
dom sets)Xi : Ω →Fi on a probability space (Ω,Σ, P )
their joint distribution is then given by

PX1,...,Xn(FK1
× · · · ×FKn

)

= P ({ω : (X1(ω), . . . , Xn(ω)) ∈ FK1
× · · · ×FKn

})
= P ({ω : X1(ω) ∩K1 ̸= ∅, . . . , Xn(ω) ∩Kn ̸= ∅})

= P
( n∩

i=1

X−
i (Ki)

)
. (3)

The latter can be expressed by using K1 × · · · ×Kn

which is a subset of En = E1 × · · · × En:

PX1,...,Xn(FK1
× · · · ×FKn

)

= P ({ω : X1(ω)×· · ·×Xn(ω)∩K1×· · ·×Kn ̸= ∅})
(4)

Motivated by this, we use the following notation for
arbitrary V, V1, . . . , Vk ⊆ En

nFV = {(F1, . . . , Fn) ∈ Fn : F1 × · · · × Fn ∩ V ̸= ∅}
nFV = {(F1, . . . , Fn) ∈ Fn : F1 × · · · × Fn ∩ V = ∅}

nFV
V1,...,Vk

= nFV ∩ nFV1
∩ · · · ∩ nFVk

which implies FK1
× · · · × FKn

= nFK1×···×Kn
. The

event (X1, . . . , Xn)
−1(nFV ) corresponds to the event

that the set-valued map

X : ω 7→ X1(ω)× · · · ×Xn(ω) (5)

hits V . Note that the values of X are closed sub-
sets of En, more precisely closed cylindrical sets, and
not elements of Fn. One can prove ([19]) that X
is Effros-measurable by using selections and the so-
called Fundamental measurability theorem for multi-
functions ([2, 8]). Consequently, the map

K 7→ P (X−(K))

is a capacity functional on the compact subsets of
En denoted by K(En). One could thus think of
characterizing joint distributions of n random sets
by capacity functionals on K(En). But applying the
Choquet theorem leads to a probability measure on
the Borel sets of F(En) denoting the family of closed
subsets of En. The latter is clearly different from
Fn which can only be identified with the cylindrical
closed subsets of En, that is, {F1 × · · ·×Fn : Fi ∈ Fi}
which is a proper subset of F(En).

Hence, there is the need for a different concept. In
the following, we will consider the co-product of the
spaces Ei, that is,

En
⨿ =

n∪
i=1

Ei × {i}

which is a union of nmutually disjoint sets. We endow
En
⨿ with the sum topology, that is, we take

Gn
⨿ =

n∩
i=1

{G ⊆ En
⨿ : ι−1

i (G) ∈ Gi}

as the family of open sets. The latter is the small-
est topology on En

⨿ such that the canonical injections
ιi : Ei → En

⨿, x 7→ (x, i) are continuous. Moreover,
Gn
⨿ = {

∪n
i=1Gi × {i} : Gi ∈ Gi} and the analogous

relations hold for the families of closed, compact and
Borel subsets of En

⨿, respectively. It easy is to see that
all topological properties of the Ei carry over to the
co-product and so En

⨿ is an LCHS space, too.

The question is how the co-product can be used
to characterize probability distributions on B(Fn).
Obviously, each subset A of En

⨿ can be written in
the form A = ⨿Ai =

∪n
i=1Ai × {i} where the Ai are

the sections of A, i.e. Ai = {x ∈ Ei : (x, i) ∈ A},
and consequently A can be identified with the tuple
(A1, . . . , An). Hence, we have a one-to-one corre-
spondence between subsets of the co-product En

⨿ and
tuples of subsets of the Ei. But this means that we
have a one-to-one correspondence between Fn

⨿ and
Fn and similarly between Kn

⨿ and Kn = K1×· · ·×Kn.

Consequently, each set function φ on Kn
⨿ is related to

a set function ψ on Kn by

φ(⨿Ki) = ψ(K1, . . . ,Kn). (6)

The following lemma shows that φ is a capacity func-
tional if and only if ψ is completely alternating and
continuous from above in each component. From now
on a set function on Kn fulfilling Conditions (MCF1)
- (MCF3) of the following lemma shall be called mul-
tivariate capacity functional.

Lemma 1. Let φ : Kn
⨿ → [0, 1] and ψ : Kn → [0, 1]

satisfying Equation (6) for all (K1, . . . ,Kn) ∈ Kn.
Then φ is a capacity functional if and only if ψ fulfills
the following conditions:

(MCF1) ψ(∅, . . . , ∅) = 0

(MCF2) For all k ≥ 0, 1 ≤ j ≤ k, K =
(K1, . . . ,Kn), K

j = (Kj
1 , . . . ,K

j
n) ∈ Kn it holds

that
∆kψ(K;K1, . . . ,Kk) ≥ 0



where ∆0ψ(K) = 1− ψ(K1, . . . ,Kn),

∆kψ(K;K1, . . . ,Kk)

= ∆k−1ψ(K;K1, . . . ,Kk−1)

−∆k−1ψ(K ∪Kk;K1, . . . ,Kk−1)

and K ∪Kk = (K1 ∪Kk
1 , . . . ,Kn ∪Kk

n).

(MCF3) For all decreasing sequences {Kk
i }k∈N ⊆

Ki, 1 ≤ i ≤ n, it holds that ψ(Kk
1 , . . . ,K

k
n) ↘

ψ(K1, . . . ,Kn) for k → ∞ where Ki =
∩

k∈NK
k
i .

Proof. The equivalence follows from the relation
φ(

∪n
i=1Ki × {i}) = ψ(K1, . . . ,Kn). Indeed, we get

ψ(∅, . . . , ∅) = φ(
∪n

i=1 ∅ × {i}) = φ(∅). Furthermore,
by Formula (1) we have

∆kψ(K;K1, . . . ,Kk)

= −
∑

J⊆{1,...,k}

(−1)|J|ψ
(
K ∪

∪
j∈J

Kj
)

= −
∑

J⊆{1,...,k}

(−1)|J|ψ
(
K1∪

∪
j∈J

Kj
1 , . . . ,Kn∪

∪
j∈J

Kj
n

)

= −
∑

J⊆{1,...,k}

(−1)|J|φ
( n∪

i=1

(
Ki ∪

∪
j∈J

Kj
i

)
× {i}

)
= −

∑
J⊆{1,...,k}

(−1)|J|φ
((

⨿Ki

)
∪

∪
j∈J

(
⨿Kj

i

))
= ∆kφ

(
⨿Ki;⨿K1

i , . . . ,⨿Kk
i

)
.

The equivalence of (MCF3) and (CF3) follows from
the fact that Kk

i ↘ Ki for all 1 ≤ i ≤ n if and only if
⨿Kk

i =
∪n

i=1K
k
i × {i} ↘

∪n
i=1Ki × {i} = ⨿Ki.

Given a multivariate set function ψ : Kn → [0, 1] ful-
filling conditions (MCF1) - (MCF3) of the foregoing
lemma, the Choquet theorem (Theorem 1) can be ap-
plied to the capacity functional φ : Kn

⨿ → [0, 1] de-
fined by ⨿Ki 7→ ψ(K1, . . . ,Kn). This yields a prob-
ability measure Q : B(Fn

⨿) → [0, 1] such that for all
⨿Ki ∈ Kn

⨿ it holds that

φ(⨿Ki) = Q({⨿Fj ∈ Fn
⨿ : ⨿Fj ∩ ⨿Ki ̸= ∅}). (7)

The right-hand side of Equation (7) can further be
written in the following form:

Q({⨿Fj ∈ Fn
⨿ : ⨿Fj ∩ ⨿Ki ̸= ∅})

= Q
({

⨿Fj ∈Fn
⨿ :

( n∪
j=1

Fj×{j}
)
∩
( n∪
i=1

Ki×{i}
)
̸= ∅

})
= Q

( n∪
i=1

{
⨿Fj ∈Fn

⨿ :
( n∪
j=1

Fj×{j}
)
∩(Ki×{i}) ̸= ∅

})
= Q

( n∪
i=1

{⨿Fj ∈ Fn
⨿ : Fi ∩Ki ̸= ∅}

)

= Q
( n∪

i=1

{⨿Fj ∈ Fn
⨿ : (F1, . . . , Fn) ∈ F̂Ki

}
)

= Q
({

⨿ Fj ∈ Fn
⨿ : (F1, . . . , Fn) ∈

n∪
i=1

F̂Ki

})
(8)

where F̂Ki
= {(F1, . . . , Fn) ∈ Fn : Fi ∩Ki ̸= ∅}.

As already mentioned we have a one-to-one correspon-
dence between Fn

⨿ and Fn. This can be used to define
a probability measure Π on B(Fn) from the proba-
bility measure Q on B(Fn

⨿) as the following lemma
shows.

Lemma 2. It holds that

B(Fn
⨿)=

{
{⨿Fi ∈Fn

⨿ : (F1, . . . , Fn)∈B} :B ∈B(Fn)
}
.

Furthermore, if Q : B(Fn
⨿) → [0, 1] is a probability

measure then Π : B(Fn) → [0, 1] defined by

Π(B) = Q({⨿Fi ∈ Fn
⨿ : (F1, . . . , Fn) ∈ B}) (9)

is a probability measure, too.

Proof. Let

A1 =
{
{⨿Fi ∈ Fn

⨿ : (F1, . . . , Fn) ∈ B} : B ∈ B(Fn)
}
.

The σ-algebra B(Fn
⨿) is generated by sets of the form

{⨿Fi ∈ Fn
⨿ : ⨿Fi ∩ ⨿Ki ̸= ∅}, ⨿Ki ∈ Kn

⨿. As in
Equation (8) we obtain

{⨿Fj ∈ Fn
⨿ : ⨿Fj ∩ ⨿Ki ̸= ∅}

=
{
⨿ Fj ∈ Fn

⨿ : (F1, . . . , Fn) ∈
n∪

i=1

F̂Ki

}
which lies in A1 since

∪n
i=1 F̂Ki

∈ B(Fn). It is easy
to see that A1 is a σ-algebra and thus B(Fn

⨿) ⊆ A1.
On the other hand, B(Fn) is generated by sets of the
form FK1

× · · · ×FKn
, Ki ∈ Ki. We obtain

{⨿Fj ∈ Fn
⨿ : (F1, . . . , Fn) ∈ FK1

× · · · ×FKn
}

=

n∩
i=1

{⨿Fj ∈ Fn
⨿ : (F1, . . . , Fn) ∈ F̂Ki

}

=
n∩

i=1

{⨿Fj ∈ Fn
⨿ : ⨿Fj ∩ (Ki × {i}) ̸= ∅}

which lies in B(Fn
⨿) sinceKi×{i} ∈ Kn

⨿. Furthermore,
it is easy to see that

A2 = {B ∈B(Fn) : {⨿Fi : (F1, . . . , Fn)∈B} ∈B(Fn
⨿)}

is a σ-algebra. Thus B(Fn) = A2 which further im-
plies A1 ⊆ B(Fn

⨿). It can be easily checked that Π is
a probability measure.



From Equations (6), (7), (8) and (9) we obtain the
following relation between the multivariate capacity
functional ψ and the probability measure Π:

ψ(K1, . . . ,Kn) = φ(⨿Ki)

= Q({⨿Fj ∈ Fn
⨿ : ⨿Fj ∩ ⨿Ki ̸= ∅} = Π

( n∪
i=1

F̂Ki

)
We are now ready to formulate the following proposi-
tion which can be viewed as a multivariate version of
the Choquet theorem.

Proposition 1. Let ψ : Kn → [0, 1] be a multivari-
ate capacity functional (that is a set function ful-
filling Conditions (MCF1) - (MCF3) of Lemma 1).
Then there exists a unique probability measure Π :
B(Fn) → [0, 1] such that

ψ(K1, . . . ,Kn) = Π
( n∪

i=1

F̂Ki

)
for all (K1, . . . ,Kn) ∈ Kn.

This means that the probability of events of the form∪n
i=1 F̂Ki

can be directly computed by ψ. Probabili-
ties of other events like FK1 × · · · ×FKn can be com-
puted by using the exclusion-inclusion principle and
the complete alternation property:

Π(FK1 × · · · × FKn) = Π
( n∩

i=1

F̂Ki

)
= −

∑
I⊆{1,...,n}

(−1)|I|Π
(∪

i∈I

F̂Ki

)
= −

∑
I⊆{1,...,n}

(−1)|I|φ
(∪

i∈I

Ki × {i}
)

= ∆nφ(∅;K1 × {1}, . . . ,Kn × {n})
= ∆nψ(∅; Ǩ1, . . . , Ǩn) (10)

where Ǩi = (∅, . . . , ∅,Ki, ∅, . . . , ∅) ∈ Kn. We can
state an additional result concerning the probability
of F ′n = F ′

1 × · · · × F ′
n, that is, the set of tuples of

non-empty closed subsets.

Corollary 1. In the situation of Proposition 1, if ψ
fulfills in addition for all 1 ≤ i ≤ n

sup{ψ(Ǩi) : Ki ∈ Ki} = 1

then Π(F ′n) = 1, that is, a tuple of closed sets almost
surely consists of non-empty sets.

Proof. Let {Lk
i }k∈N ∈ Ki be increasing sequences

such that Lk
i ↗ Ei for all 1 ≤ i ≤ n, let {Mk

i }k∈N ⊆
Ki be increasing sequences such that ψ(M̌k

i ) ↗ 1 for

all 1 ≤ i ≤ n and let Kk
i = Lk

i ∪Mk
i for all 1 ≤ i ≤ n

and k ∈ N. Consequently,

F ′n =
∪
k∈N

FKk
1
× · · · ×FKk

n

=
∪
k∈N

n∩
i=1

F̂Kk
i
=

n∩
i=1

∪
k∈N

F̂Kk
i
.

By the exclusion-inclusion principle we obtain

Π(F ′n) = Π
( n∩

i=1

∪
k∈N

F̂Kk
i

)
= −

∑
∅̸=I⊆{1,...,n}

(−1)|I|Π
(∪

i∈I

∪
k∈N

F̂Kk
i

)
= −

∑
∅̸=I⊆{1,...,n}

(−1)|I|Π
( ∪

k∈N

∪
i∈I

F̂Kk
i

)
= −

∑
∅̸=I⊆{1,...,n}

(−1)|I| sup
k∈N

Π
(∪

i∈I

F̂Kk
i

)
.

For all I ̸= ∅, i ∈ I and k ∈ N we have

ψ(Ǩk
i ) = Π(F̂Kk

i
) ≤ Π

(∪
i∈I

F̂Kk
i

)
≤ 1

and thus

sup
k∈N

ψ(Ǩk
i ) = sup

k∈N
Π
(∪

i∈I

F̂Kk
i

)
= 1.

Hence,

Π(F ′n) = −
∑

∅̸=I⊆{1,...,n}

(−1)|I| = 1.

Note that if we consider n almost surely non-
empty random sets X1, . . . , Xn on a probability space
(Ω,Σ, P ) then the multivariate capacity functional of
the product random set defined by Equation (5) is
given by

ψ(K1, . . . ,Kn) = P
( n∪

i=1

X−
i (Ki)

)
.

Hence, if the Ei are σ-compact spaces (which is the
case if the Ei are LCHS spaces) and {Kk

i }k∈N ⊆ Ki

are increasing sequences converging to Ei, respec-
tively, we obtain

lim
k→∞

ψ(Ǩk
i ) = lim

k→∞
P (X−

i (Kk
i )) = P (Xi ̸= ∅) = 1

and thus the condition of Corollary 1 is fulfilled.



We will now relate multivariate capacity functionals
to set functions on special classes of subsets of the
product space En. Up to now we have used the fact
that a tuple (A1, . . . , An) of subsets of the Ei can be
identified with the set ⨿Ai =

∪n
i=1Ai × {i} which is

a subset of the co-product En
⨿. On the other hand,

a tuple (A1, . . . , An) can be identified with
∪n

i=1 Âi

where

Âi = {(x1, . . . , xn) ∈ En : xi ∈ Ai}.

Consequently, we have a one-to-one correspondence
between Kn and

K̂n
∪ =

{ n∪
i=1

K̂i : Ki ∈ Ki

}
and each set function ψ on Kn is related to a set
function ϕ on K̂n

∪ by

ψ(K1, . . . ,Kn) = ϕ
( n∪

i=1

K̂i

)
. (11)

Similar to Lemma 1 one has the following lemma.

Lemma 3. Let ψ : Kn → [0, 1] and ϕ : K̂n
∪ → [0, 1]

satisfying Equation (11) for all (K1, . . . ,Kn) ∈ Kn.
Then ϕ is a capacity functional (that is, ϕ fulfills Con-
ditions (CF1), (CF2) and (CF3) for sets from K̂n

∪)
if and only if ψ is a multivariate capacity functional
(that is, ψ fulfills Conditions (MCF1) - (MCF3) of
Lemma 1).

Proof. The equivalence follows from the relation
ϕ(
∪n

i=1 K̂i) = ψ(K1, . . . ,Kn). Indeed, we have∪n
i=1 K̂i = ∅ if and only if Ki = ∅ for all i and

thus ϕ(∅) = ψ(∅, . . . , ∅). Furthermore, by Formula (1)
we have for all K = (K1, . . . ,Kn) ∈ Kn, Kj =
(Kj

1 , . . . ,K
j
n) ∈ Kn

∆kψ(K;K1, . . . ,Kk)

= −
∑

J⊆{1,...,k}

(−1)|J|ψ
(
K ∪

∪
j∈J

Kj
)

= −
∑

J⊆{1,...,k}

(−1)|J|ψ
(
K1∪

∪
j∈J

Kj
1 , . . . ,Kn∪

∪
j∈J

Kj
n

)

= −
∑

J⊆{1,...,k}

(−1)|J|ϕ
( n∪

i=1

(
Ki ∪

∪
j∈J

Kj
i

)̂ )

= −
∑

J⊆{1,...,k}

(−1)|J|ϕ
( n∪

i=1

K̂i ∪
∪
j∈J

n∪
i=1

K̂j
i

)

= ∆kϕ
( n∪

i=1

K̂i;

n∪
i=1

K̂1
i , . . . ,

n∪
i=1

K̂k
i

)
.

The equivalence of (MCF3) and (CF3) follows from
the fact that Kk

i ↘ Ki for all 1 ≤ i ≤ n if and only if∪n
i=1 K̂

k
i ↘

∪n
i=1 K̂i.

Together with Proposition 1 this implies the following
proposition which gives a characterization of the joint
distribution of n random sets by a set function on K̂n

∪.

Proposition 2. Let ϕ : K̂n
∪ → [0, 1] be a capacity

functional, that is, ϕ fulfills Conditions (CF1), (CF2)
and (CF3) for sets from K̂n

∪. Then there exists a
unique probability measure Π : B(Fn) → [0, 1] such
that

ϕ
( n∪

i=1

K̂i

)
= Π

( n∪
i=1

F̂Ki

)
for all

∪n
i=1 K̂i ∈ K̂n

∪. If, in addition, for all 1 ≤
i ≤ n it holds that sup{ϕ(K̂i) : Ki ∈ Ki} = 1 then
Π(F ′n) = 1 and for all L ∈ K̂n

∪ it holds that

ϕ(L) = Π(nFL).

Proof. The main assertion directly follows from ap-
plying Proposition 1 to ψ : Kn → [0, 1] defined by
ψ(K1, . . . ,Kn) = ϕ(

∪n
i=1 K̂i) which is a multivari-

ate capacity functional by Lemma 3. The additional
statement follows from the fact that ψ(Ǩi) = ϕ(K̂i).
By virtue of Corollary 1 this implies Π(F ′n) = 1 which
further leads to

Π
( n∪

i=1

F̂Ki

)
= Π

(
F ′n ∩

n∪
i=1

F̂Ki

)
for all Ki ∈ Ki. Furthermore, we obtain

F ′n ∩
n∪

i=1

F̂Ki

=

n∪
i=1

{(F1, . . . , Fn) ∈ F ′n : Fi ∩Ki ̸= ∅}

=

n∪
i=1

{(F1, . . . , Fn) ∈ Fn : F1 × · · · × Fn ∩ K̂i ̸= ∅}

= nF n∪
i=1

K̂i

.

Hence, ϕ(L) = Π(nFL) for all L ∈ K̂n
∪.

One can think of extending the various set functions
to wider classes of sets. In case of a capacity func-
tional φ : Kn

⨿ → [0, 1] the extensions from Equa-
tion (2) can be used to obtain a completely alter-
nating Choquet-Kn

⨿-capacity φ∗ : Pn
⨿ → [0, 1] on

the power set of En
⨿. In case of a multivariate ca-

pacity functional ψ : Kn → [0, 1] or a capacity
functional ϕ : K̂n

∪ → [0, 1] one can define a corre-
sponding capacity functional φ on Kn

⨿ by the relation

φ(⨿Ki) = ψ(K1, . . . ,Kn) or φ(⨿Ki) = ϕ(
∪n

i=1 K̂i)
and use φ∗ to obtain ψ∗ or ϕ∗. On the other hand,
the extension procedure given by Equation (2) can be



directly applied to ψ or ϕ which yields the same ψ∗

or ϕ∗ since ⨿Ai ⊆ ⨿Bi if and only if Ai ⊆ Bi for all
i if and only if

∪n
i=1 Âi ⊆

∪n
i=1 B̂i.

We have seen how a capacity functional ϕ defined on
K̂n

∪ can be extended to a Choquet-K̂n
∪-capacity on

P̂n
∪ =

{ n∪
i=1

Âi : Ai ∈ Pi

}
.

We point out that a further extension to all subsets
of En = E1 × · · · × En would not make much sense
since this extension would not be unique. Indeed,
consider the following two (deterministic) sets X1 =
[0, 1]2 and X2 = {(x, y) ∈ [0, 1]2 : x + y ≥ 1}. They
can be seen as random compact sets in R2 on a one
point probability space. The corresponding capacity
functionals ϕ1 and ϕ2 are given by

ϕi(A) =

{
1 if Xi ∩A ̸= ∅
0 if Xi ∩A = ∅

for each A ⊆ R2. Obviously, ϕ1 and ϕ2 coincide on
K̂2

∪ but they have different values on other sets, for
example, ϕ1(A) = 1 and ϕ2(A) = 0 for A = [0, 1/3]2.

4 Application to set-valued processes

Let T denote a time set, let (M,M) be a measurable
space and let (Ω,Σ, P ) be a probability space. Then
a map x : T × Ω → M is a stochastic process if for
each t ∈ T the partial map xt : Ω → M is measurable,
that is, x−1

t (B) ∈ Σ for all B ∈ M. Denoting by T
the set of all finite subsets of T , the process x induces
a family {µt}t∈T of probability measures where

µt : M⊗n→ [0, 1],
B 7→ P ({ω ∈ Ω : (xt1(ω), . . . , xtn(ω)) ∈ B}),

t = (t1, . . . , tn), M⊗n = M⊗ · · · ⊗M. The latter is
called the family of finite-dimensional distributions of
x and obviously fulfills the following two conditions:

(i) For all t = (t1, . . . , tn) ∈ T , B1, . . . , Bn ∈ M and
each permutation σ of {1, . . . , n} it holds that

µt(B1 × · · · ×Bn) = µσ(t)(Bσ(1) × · · · ×Bσ(n))

where σ(t) = (tσ(1), . . . , tσ(n)).

(ii) For all t = (t1, . . . , tn) ∈ T , tn+1 ∈ T , B ∈ M⊗n

it holds that

µt1,...,tn+1(B ×M) = µt(B).

A family of finite-dimensional distributions is said to
be consistent if these two conditions are fulfilled. Un-
der the assumption that M is a complete separable
metric space endowed with its Borel sets B(M), the
well-known Daniell-Kolmogorov theorem [5, 7] says
that for any consistent family of finite-dimensional
distributions there exists a stochastic process whose fi-
nite dimensional distributions coincide with that fam-
ily. More precisely, consider the set of maps from T
to M denoted by MT which is endowed with the σ-
algebra B(MT ) generated by sets of the form {ω ∈
MT : (ω(t1), . . . , ω(tn)) ∈ B}, B ∈ B(Mn), ti ∈ T ,
n ≥ 1. Then there exists a probability measure µ on
B(MT ) such that for all t = (t1, . . . , tn) ∈ T (n ≥ 1)
and B ∈ B(Mn) it holds that

µt(B) = µ({ω ∈ MT : (ω(t1), . . . , ω(tn)) ∈ B}).

The desired process is then given by (t, ω) → ω(t).

By set-valued stochastic processes we mean stochastic
processes where M = F , that is, maps of the form

X : T × Ω → F

where Xt : Ω → F is Effros-measurable for all t ∈ T .
With the aid of Proposition 1 we can now formulate
an existence theorem for set-valued processes by using
multivariate capacity functionals.

Proposition 3. Let {ψt : t ∈ T } be a family of
multivariate capacity functionals (i.e. set functions
fulfilling Conditions (MCF1) - (MCF3) of Lemma 1).
Assume that the following consistency conditions are
fulfilled:

(i) For all n ≥ 1, t = (t1, . . . , tn) ∈ T , K1, . . . ,Kn ∈
K and each permutation σ of {1, . . . , n} it holds
that

ψt(K1, . . . ,Kn) = ψσ(t)(Kσ(1), . . . ,Kσ(n))

where σ(t) = (tσ(1), . . . , tσ(n)).

(ii) For all n ≥ 1, t = (t1, . . . , tn) ∈ T , tn+1 ∈ T ,
K1, . . . ,Kn ∈ K it holds that

ψt1,...,tn+1(K1, . . . ,Kn, ∅) = ψt(K1, . . . ,Kn).

Then the family {Πt : t ∈ T } obtained from Propo-
sition 1 is a consistent family of probability measures
and there exists a probability measure Π on B(FT )
such that for all t = (t1, . . . , tn) ∈ T (n ≥ 1) and
(K1, . . . ,Kn) ∈ Kn it holds that

ψt(K1, . . . ,Kn)

= Πt

({
ω ∈ FT : (ω(t1), . . . , ω(tn)) ∈

n∪
i=1

F̂Ki

})
.

(12)



In addition, the condition sup{ψt(K) : K ∈ K} = 1
implies Πt({ω ∈ FT : ω(t) ̸= ∅}) = 1 for all t ∈ T .

Proof. Since E is an LCHS space, F is a compact
Hausdorff second countable space. Thus, F is also a
Polish space, that is, separable and completely metriz-
able. Hence, if we show that {Πt : t ∈ T } is a
consistent family of probability measures the classical
Daniell-Kolmogorov theorem can be applied directly
and Equation (12) is obtained from Proposition 1:

ψt(K1, . . . ,Kn) = Πt

( n∪
i=1

F̂Ki

)
= Π

({
ω ∈ FT : (ω(t1), . . . , ω(tn)) ∈

n∪
i=1

F̂Ki

})
It is enough to prove that the consistency conditions
for {Πt : t ∈ T } are fulfilled for cylindrical sets of the
form

FK11,...,K1k1
× · · · ×FKn1,...,Knkn

,

Kiji ∈ K, since they constitute a generating class of
B(Fn) = B(F)⊗n which is closed under finite inter-
sections. Similarly as in Equation (10) we obtain the
following formula

Πt(FK11,...,K1k1
× · · · ×FKn1,...,Knkn

)

= Πt

( n∩
i=1

F̂Ki1,...,Kiki

)
= Πt

( n∩
i=1

ki∩
ji=1

F̂Kiji

)
= −

∑
J∈J

(−1)|J|Πt

( n∪
i=1

∪
ji∈Ji

F̂Kiji

)
= −

∑
J∈J

(−1)|J|Πt

( n∪
i=1

F̂ ∪
ji∈Ji

Kiji

)
= −

∑
J∈J

(−1)|J|ψt

( ∪
j1∈J1

K1j1 , . . . ,
∪

jn∈Jn

Knjn

)
where J = {(J1, . . . , Jn) : Ji ⊆ {1, . . . , ki}} and |J | =∑n

i=1 |Ji|. Together with (i) this implies

Πt(FK11,...,K1k1
× · · · ×FKn1,...,Knkn

)

= Πσ(t)(FKσ(1)1,...,Kσ(1)kσ(1)
×· · ·×FKσ(n)1,...,Kσ(n)kσ(n)

)

In a similar manner as before we obtain

Πt1,...,tn+1(FK11,...,K1k1
× · · · ×FKn1,...,Knkn

×F)

= −
∑
J∈J

(−1)|J|ψt1,...,tn+1

(∪
j1∈J1

K1j1 , . . . ,
∪

jn∈Jn

Knjn , ∅
)
.

and thus (ii) implies

Πt1,...,tn+1(FK11,...,K1k1
× · · · ×FKn1,...,Knkn

×F)

= Πt(FK11,...,K1k1
× · · · ×FKn1,...,Knkn

).

The additional statement that sup{ψt(K) : K ∈ K} =
1 implies Πt({ω ∈ FT : ω(t) ̸= ∅}) = 1 directly fol-
lows from Corollary 1.

It should be mentioned that in [9] a Daniell-
Kolmogorov theorem for supremum preserving (also
called maxitive) upper probabilities has been proved.

With the aid of the foregoing proposition we can now
try to construct something like a set-valued Brownian
motion. Brownian motion is a real-valued stochas-
tic process in continuous time which is defined via a
consistent family of Gaussian distributions. More pre-
cisely, it is a process with continuous sample functions
starting at time 0 with value 0, and it has indepen-
dent, Gaussian distributed increments with mean 0.
We denote by {βt}t∈T (T = [0,∞)) its family of finite
dimensional distributions which is clearly consistent.
According to Equation (11) and Lemma 3 we get a
family of multivariate capacity functionals {ψt}t∈T
which can be easily seen to be consistent. In addi-
tion, we have for all t = (t1, . . . , tn) ∈ T and for all
1 ≤ i ≤ n that

sup{ψt(Ǩi) : Ki ∈ K} = sup{βt(K̂i) : Ki ∈ K}
= sup{βti(Ki) : Ki ∈ K} = 1.

By applying Propositions 2 and 3 we get a proba-
bility measure Π on B(F [0,∞)) such that for each
t = (t1, . . . , tn) ∈ T it holds that Πt(F ′n) = 1 and
for each (K1, . . . ,Kn) ∈ Kn we get

Π
({
ω ∈ F [0,∞) : (ω(t1), . . . , ω(tn)) ∈ nF n∪

i=1
K̂i

})
= Πt

( n∪
i=1

F̂Ki

)
= ψt(K1, . . . ,Kn) = βt

( n∪
i=1

K̂i

)
.

By defining

B : [0,∞)×F [0,∞) → F , (t, ω) 7→ Bt(ω) = ω(t)

we get a set-valued process with finite dimensional dis-
tributions {Πt}t and finite dimensional capacity func-
tionals {ψt}t. For time t ∈ [0,∞) and G ∈ G we get

Π({ω : Bt(ω) ∩G ̸= ∅}) = Πt(FG) = Πt

( ∪
n∈N

FKn

)
= lim

n→∞
Πt(FKn

) = lim
n→∞

βt(Kn) = βt(G)

where {Kn}n∈N ⊆ K is an increasing sequence such
that

∪n
i=1Kn = G. On the other hand, if we approx-

imate Gc by an increasing sequence {Kn}n∈N ⊆ K we



obtain

Π({ω : Bt(ω) ⊆ G}) = Πt(FGc

) = 1−Πt(FGc)

= 1− lim
n→∞

Πt(FKn
) = 1− lim

n→∞
βt(Kn)

= 1− βt(G
c) = βt(G).

Consequently, the lower and the upper probability of
Bt coincide and thus, Bt is almost surely a singleton.
This means that although B has values in F it is
actually not a set-valued process but a version of
classical Brownian motion.

Note that there are other approaches to define a set-
valued Brownian motion via support functions (see
[11, 12]), but at least in the real-valued case they also
lead to set-valued processes that almost surely consist
of singletons.

5 Summary and conclusion

The goal of this paper was to give a characterization
of probability measures on the Borel subsets of Fn

(n ≥ 2) by set functions. The first approach was
to use a set function φ defined on the compact sub-
sets of the co-product En

⨿ and to apply the (classical)
Choquet theorem leading to a probability measure Q
on the Borel-σ-algebra of the closed subsets of En

⨿.
It has been shown that instead of φ one can equiv-
alently use a set function ψ defined on the cartesian
product Kn = K1 × · · · × Kn (Lemma 1). Moreover,
it has been demonstrated how to obtain a probabil-
ity measure Π on B(Fn) from Q (Lemma 2). This
resulted in a characterization of probability measures
on B(Fn) by set functions on Kn called multivari-
ate capacity functionals (Proposition 1). In addition,
Proposition 2 stated a characterization using set func-
tions on K̂n

∪ which is a special class of subsets of the
product space En = E1 × · · · × En. Figure 1 gives an
overview of the proposed characterizations.

φ : Kn
⨿ → [0, 1] -Thm. 1 Q : B(Fn

⨿) → [0, 1]

6

?
Lemma 1

?
Lemma 2

ψ : Kn → [0, 1] -Prop. 1 Π : B(Fn) → [0, 1]

6

?
Lemma 3

ϕ : K̂n
∪ → [0, 1]

�
�
�
��>

Prop. 2

Figure 1: Overview over characterizations of proba-
bility measures by set functions.

In Section 4, we have stated a Daniell-Kolmogorov
theorem for set-valued stochastic processes, that is,
we have demonstrated that for a consistent family
of multivariate capacity functionals there exists a
set-valued process whose finite dimensional upper
probabilities coincide with these multivariate capac-
ity functionals.

Acknowledgements

I would like to thank the reviewers for their useful
comments and suggestions. Especially, one of the re-
marks led to a substantial improvement of the paper.

References

[1] G. Beer. Topologies on Closed and Closed Con-
vex Sets. Kluwer Academic Publishers, Dor-
drecht, 1993.

[2] C. Castaing, M. Valadier. Convex analysis and
measurable multifunctions. Lecture notes in
mathematics 580, Springer, 1977.

[3] G. Choquet. Theory of capacities. Annales de
l’Institut Fourier, 5:131–295, 1953.

[4] A. P. Dempster. Upper and lower probabilities
induced by a multivalued mapping. Annals of
Mathematical Statistics 38:325–339, 1967.

[5] J. L. Doob. Stochastic Processes. Wiley, 1990.

[6] E. B. Dynkin. Die Grundlagen der Theorie der
Markoffschen Prozesse. Springer, 1961.

[7] I. I. Gikhman, A. V. Skorokhod. Introduction to
the theory of random processes. Saunders Com-
pany, 1969.

[8] C. J. Himmelberg. Measurable relations. Funda-
menta Mathematicae, 87:53–72, 1975.

[9] H. Janssen, G. de Cooman, E. E. Kerre. A
Daniell-Kolmogorov theorem for supremum pre-
serving upper probabilities. Fuzzy Sets and Sys-
tems 102:429–444, 1999.

[10] R. Kruse, K. D. Meyer. Statistics with vague
data. D. Reidel Publishing Company, Dordrecht,
1987.

[11] Shoumei Li, Li Guan. Fuzzy set-valued Gaus-
sian processes and Brownian motions. Informa-
tion Sciences 177:3251–3259, 2007.



[12] C. Y. Liu, Xu. Han, M. Feng, S. K. Li. Itô inte-
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