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Lean premixed combustion chambers are susceptible to combustion instabilities arising from

the coupling between the heat release rate perturbations and the acoustic disturbances. These

instabilities are generally harmful. Active feedback control can be used to interrupt the cou-

pling between the acoustic waves and unsteady heat release and prevent or suppress instabil-

ity. The design of most types of controller requires prior knowledge of how the combustor

responds to actuation - the “open loop transfer function” (OLTF). This includes the flame

response to oncoming flow disturbances, which becomes non-linear at larger amplitudes. Sat-

uration of the heat release rate amplitude or a phase lag change relative to the acoustic pressure

as the modulation level increases has been confirmed to occur experimentally in many cases.

This may cause the dominant unstable frequency to change, which in turn alters the OLTF

and makes the design of controller more complicated. A flame describing function model is

proposed in this paper to account for the non-linearities of the heat release rate amplitude.

This flame model is applied to a model combustor. The ν-gap metric is used to quantify the

deviation of the set of OLTFs for different disturbance levels from the selected transfer func-

tion for the controller design. This provides us a bound on the minimum required “robustness

stability margin” for an H∞ loop shaping controller. Such a controller is synthesized, and it is

confirmed that as long as the ν-gap is smaller than the stability margin, the robust controller is

guaranteed to stabilize the combustor for all possible flame responses.

1. Introduction

Combustion instabilities arise due to the coupling between the unstable combustion process

and acoustic disturbances within the combustion chamber [1]. These instabilities are generally not

desirable because they may lead to an early ageing of the combustion chamber or in extreme cases to

severe structural damage [2].

The stability of a combustion chamber is determined by the balance between the energy gained

from the heat released from unsteady combustion and various dissipation processes, such as acoustic

losses [1], which are generally considered to be linear. However, nonlinear mechanisms dominate

the dynamics of real unstable combustion systems. Saturation of the heat release rate amplitude or a

phase lag change relative to the acoustic pressure (and hence a change in the Rayleigh source term

< p′q̇′ > driving combustion instabilities [3, 4]) with the modulation level have been experimentally

identified in many cases [5, 6]. The presence of the nonlinear mechanisms thus makes feedback con-

troller design more complicated. The “open loop transfer function” (OLTF)[4] between a monitored

thermodynamic property within the combustion chamber and the actuator signal used for feedback
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control changes during non-linear combustion instabilities. By basing controller design on a single

OLTF (normally the one corresponding to small, linear disturbances), it then can not be guaranteed

that the controller, will stabilize across all of the different disturbance levels. In particular, control

activated from within the (non-linear) limit cycle is not guaranteed to be stabilising, although it is

typically observed in practice that it is [18]. The ν-gap metric [7] is utilized in this work to quantify

the deviation of the sets of OLTF from the selected plant for controller design, in the context of a

feedback loop being present. This provides us a bound on the minimum required “robustness stability

margin” for an H∞ loop shaping controller [8].

The objective of this paper is to design a feedback controller which is guaranteed to stabilize

a non-linear combustion system across all possible amplitude levels. This will be achieved by com-

bining the H∞ loop shaping synthesis with the ν-gap metric, so that as long as the ν-gap is smaller

than the stability margin, the robust controller is guaranteed to stabilize the combustor for all possible

flame responses.

The rest of the paper is organized as follows. The acoustic network and the non-linear com-

bustion model are presented in Section 2. A governing matrix equation is derived to link the linear

acoustic response of the Rijke tube with the non-linear response of the flame to velocity disturbances.

The acoustic model is then converted into the time domain and connected with the proposed non-linear

flame model in order to determine the time evolution of disturbances. A typical non-linear combus-

tion instability case is selected and the design and application of the robust controller are shown in

Section 3. Both frequency and time domain versions of simulation code are open source (OSCILOS),

and are freely available (see www3.imperial.ac.uk/people/a.morgans ). Conclusions are

drawn in the final section.

2. Model of Rijke tube

2.1 Acoustic wave equations

Analysis is carried out on a simple model combustion chamber which is schematically described

in Figure 1. The configuration consists of a cylindrical Rijke tube with both ends open. Denoting the

distance along the tube axis by the vector x, the inlet and outlet of the tube are at x = −x1 and x = x2

respectively. A premixed gaseous flame located at x = 0 is used as the heat source. The fully mixed

fresh gases are ignited and rapidly turn to burned gases. A loudspeaker is placed at the inlet of the

tube as a control actuator and a microphone equipped downstream of the combustion zone with a

distance x = xr is used as the sensor. In the analysis, the following assumptions are implemented:

(1) The envisaged frequencies are assumed sufficiently small to consider the combustion zone to be

“compact” compared to the acoustic wavelength and to only take into account the longitudinal waves.

(2) The fluids before and after the combustion zone are assumed to be perfect gases. The specific heats

cp and cv are considered constant. The temperature T can be expressed as the function of pressure p
and density ρ. (3) The dissipation of acoustic waves throughout the tube is negligible and acoustic

damping only happens at the ends of the tube. (4) There is no noise produced by the entropy waves

formed during the unstable combustion process — these waves are assumed to leave the tube without

interaction with the flow at the end of tube.

Now consider weak disturbances induced upstream of the combustion zone. Acoustic waves

propagate in both directions and the flow is assumed to be isentropic upstream. The upstream and

downstream regions are indicated by the subscripts 1 and 2. Taking the flow to be composed of a

steady uniform mean flow (denoted as¯ ) and small perturbations (denoted as ′), it is thus possible to
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Figure 1. Schematic view of the Rijke tube and the control configuration.

write out the pressure and velocity in the upstream region [9]:

p1(x, t) = p̄1 + A+
1

(
t− x

c̄1+ū1

)
+ A−

1

(
t+ x

c̄1−ū1

)
+ pL

(
t− x

c̄1+ū1

)
(1)

u1(x, t) = ū1 +
1

ρ̄1c̄1

[
A+

1

(
t− x

c̄1+ū1

)−A−

1 (t +
x

c̄1−ū1

)
+ pL

(
t− x

c̄1+ū1

)]
(2)

where −x1 ≤ x < 0. u and c represent the longitudinal velocity and speed of sound respectively. pL
indicates the sound signal from the loudspeaker. A+

1 and A−

1 denotes the amplitude of the inward and

outward propagating acoustic waves upstream of the flame respectively. Similarly, downstream of the

combustion zone:

p2(x, t) = p̄2 + A+
2 (t−

x
c̄2+ū2

) + A−

2 (t+
x

c̄2−ū2

) (3)

u2(x, t) = ū2 +
1

ρ̄2c̄2

[
A+

2

(
t− x

c̄2+ū2

)
− A−

2

(
t + x

c̄2−ū2

)]
(4)

ρ2(x, t) = ρ̄2 +
1
c̄2
2

[
A+

2

(
t− x

c̄2+ū2

)
+ A−

2

(
t + x

c̄2−ū2

)]
− γp̄2

c̄2
2

σ(t− x
ū2

) (5)

where 0 < x ≤ x2. A+
2 and A−

2 represent the amplitudes of the outward and inward travelling waves

after the flame respectively. σ denotes the amplitude of the entropy wave. The link between the

inward and outward propagating waves can be described by the reflection coefficient at the boundary.

The pressure reflection coefficients at the inlet and outlet are characterized by R1 and R2 respectively.

The acoustic waves generated by the entropy wave can be neglected in this work as the interaction

between the entropy wave and weak subsonic flow will be very small [10]. In order to relate the

upstream and downstream acoustic waves, the mass, momentum and energy conservation equations

across the flame zone are combined with the perfect gas equation to obtain two equations in the

Laplace domain which are independent of ρ2 (which contains the entropy component) [11]:

[
X11 X12

X21 X22

] [
A−

1 (s)
A+

2 (s)

]
+

[
Y11 Y12

Y21 Y22

] [
R1(s)A

−

1 (s)e
−τ

1
s + pL(s)e

−τ
L
s

R2(s)A
+
2 (s)e

−τ
2
s

]
=

[
0
−1

]
q̇′(s)

c̄1
(6)

where τ1 = 2x1

/(
c̄1(1− M̄2

1 )
)

, τ2 = 2x2

/(
c̄2(1− M̄2

2 )
)

, τL = x1

/(
c̄1(1 + M̄1)

)
, M = u/c

denotes the Mach number and q̇′ indicates the heat release rate perturbations. To account for the

radiation of sound at the end of the open tube, Ri(s) = −
(
1+0.5(rs/c̄i)

2
)
e1.22(rs/c̄i), i = 1, 2, where

r = 0.08 m indicating the radius of the tube [12]. The expressions of the coefficients Xij and Yij are
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given as:

X11 = (1− M̄1)(1− M̄1 +
c̄2
c̄1
M̄2) X12 = −(1 + M̄2)

X21 =
γM̄1 − 1

γ − 1
+

1

2
M̄2

1
(M̄1 − 3) +

1

2

c̄2
2

c̄2
1

M̄2

2
(1− M̄1) X22 = −

c̄2
c̄1

[γM̄2 + 1

γ − 1
+ M̄2

2

]

Y11 = (1 + M̄1)(1 + M̄1 −
c̄2
c̄1
M̄2) Y12 = −(1− M̄2)

Y21 =
γM̄1 + 1

γ − 1
+

1

2
M̄2

1
(M̄1 + 3)−

1

2

c̄2
2

c̄2
1

M̄2

2
(1 + M̄1) Y32 = −

c̄2
c̄1

[γM̄2 − 1

γ − 1
− M̄2

2

]

In order to obtain the amplitude coefficients A−

1 (s) and A+
2 (s), the flame model is induced to link the

heat release rate with the upstream velocity perturbations.

2.2 Flame model

In this work, a simple model, which captures the flame response shape predicted by the G-

equation for conical flames [13], is the famous n− τ model [14] filtered by a low pass filter:

ˆ̇q
¯̇q

/ û1

ū1

= nfe
−τf s = af

( ω2
c

s2 + 2ξcωcs+ ω2
c

)2

e−τf s (7)

where af is the gain of the filter, ωc denotes the cut-off frequency and ξc represents the damping factor

of the second order filter. The superscript ˆ indicates the amplitude of perturbed signal. The nonlinear

model used in this work is similar to that in [15] but with important modifications. In [15], the

saturation point of the heat release rate amplitude is the boundary point between the linear and non-

linear regimes. However, this is not always the case and the nonlinearity may appear before saturation

[16]. We therefore smooth the traditional describing function, using the mathematical description:

af =

∫ û1/ū1

0

1

1 + (α + 0.85)30
dα (8)

The exact form of the non-linear combustion model may not fully represent a real configuration, but

does represent a simplified model which captures many realistic non-linear features and thus can be

used to get a better understanding of combustion instabilities. Figure 2 shows the evolutions of the

gain nf and ̂̇q/¯̇q of the first mode with û1/ū1. The parameters of the Rijke tube and flame model are

specified in Table 1.

Table 1. Thermodynamic and flow conditions in the Rijke tube and parameters for the simulation.

p̄1 [Pa] T 1 [K] M1 [-] T 2/T 1 [-] x1 [m] x2 [m] xr [m] ωc [rad/s] ξc
1×105 300 0.01 2 0.5 0.3 0.15 2π× 400 0.707

3. Simulation of non-linear combustion instabilities and control

By substituting the flame model into equation 6, it is possible to calculate the eigenvalues θj +
2πf ∗

j i, j = 1, 2, . . . of the system, where f ∗

j indicates the eigenfrequency of the jth mode and θj
represents the corresponding growth rate. The growth rates can be used to identify the stability of the

system. When θj > 0, the jth mode is unstable. The eigenfrequencies and growth rates may change

during non-linear combustion instabilities. Figure 3 shows the trajectory of the eigenfrequency and

corresponding growth rate of the first mode of one test case. The time delay τf of the flame model

equals 2 ms. Part of the trajectory of the first mode has a positive growth rate. The growth rate equals

32 rad/s when û1/ū1 = 0, meaning that the first mode is unstable and weak disturbances increase

ICSV21, Beijing, China, July 13-17, 2014 4



21st International Congress on Sound and Vibration (ICSV21), Beijing, China, 13-17 July 2014

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

n
f
[-
]
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Figure 2. Plots of the ˆ̇q/¯̇q and nf with û1/ū1 for the

first mode.

0 0.1 0.2 0.3 0.4
265

270

275

280

E
ig
en
fr
eq
u
en
cy

[H
z]
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Figure 3. Evolutions of the eigenfrequency and corre-

sponding growth rate of the first mode with û1/ū1.

exponentially with an envelope of exp (32t). The growth rate decreases with û1/ū1 and becomes zero

when û1/ū1 = 0.25, hence this is the velocity fluctuation amplitude at which we expect limit cycle

oscillations to occur. Meanwhile, the eigenfrequency also changes with the growth of û1/ū1.

The implied limit cycle is validated by the simulations in the time domain. The network is built

using the Simulink environment and detailed configurations can be viewed in our recent contribution

[17]. Non-linear combustion instabilities can be well reproduced and different controllers can be

applied to this system. Figure 8 shows that the time evolution of the signals af , q̇′/¯̇q and u′

1/ū1. q̇
′/¯̇q

and u′

1/ū1 oscillate as sinusoidal waves. The evolution of oscillating frequency can be resolved from

the time-frequency analysis of the signal u′

1/ū1 shown at the bottom of Fig. 8. With the growth of

û1/ū1, the signals oscillate at frequency of approx 270 Hz and a limit cycle in q̇′/¯̇q and u′

1/ū1 is

established for the first mode.

3.1 Open loop transfer function

The open loop transfer function (OLTF) for control purposes is from the sound signal pL pro-

duced by the loudspeaker to the signal pr measured by the reference microphone. The profile of the

OLTF changes with the amplitude of the inlet velocity perturbations û1/ū1 due to non-linearity. Note

that the assumption of “weak nonlinearity” has been made: this assumes that the output harmonic

content contains the same frequency as the input harmonic content, but with a gain and phase shift

that is amplitude, as well as frequency dependent. In practical unstable combustion system, measure-

ment of the OLTF is complicated since the non-linear limit cycle dominates during the combustion

instability. To overcome this problem, a loudspeaker signal is used which contains two components
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Figure 4. Comparison between the Bode diagrams for the OLTF ob-

tained from time simulation Gt and analytical model Gf .
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[18]: (1) a control signal from a stabilizing feedback controller to eliminate the combustion instabili-

ties; (2) a Gaussian white noise signal with equivalent amplitude to identify the OLTF for the required

disturbance ratio û1/ū1. Figure 4 shows the bode plots of OLTF for two û1/ū1. The black solid line

(Gt) indicates the results from our time domain simulation network model, while the red dashed line

(Gf ) represents the analytical OLTF obtained by combining the flame model and Eq. 6. The simu-

lation results match perfectly with the analytical model, showing that our network model accurately

reproduces the behavior of non-linear combustion instabilities.

3.2 Controller design
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Figure 6. Evolution of κ(G(û1/ū1), G0) with frequency.

250 255 260 265 270 275 280
0

0.2

0.4

0.6

0.8

1

f [Hz]
|S

|
[-
]
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The H∞ loop-shaping method is used in this work to design the controller [8], via the Matlab

command ncfsyn. The resulting controller typically has the same order of the identified plant G. To

obtain a low-order controller K, a fourth order approximate transfer function (Eq. 9) is used to fit the

plant G for moderate velocity perturbations û1/ū1 = 0.1.

G0(s) =
0.1562(s2 − 3088s+ 4.24× 106)(s2 + 2734s+ 6.01× 106)

(s2 − 15.2s+ 2.86× 106)(s2 + 298.8s+ 1.21× 107)
(9)

The comparison between the original plant G and the fitting transfer function G0 is shown in Fig. 5.

The fitted plot reproduces the unstable mode and the phase jump across this mode. The error between

G0 and G for different velocity disturbances û1/ū1 can be measured by ν-gap [7] for single-input

single-output system defined as:

δν = sup
2πf

κ(G0, G) = sup
2πf

|G0(2πfi)−G(2πfi)|
(
1 + |G0(2πfi)|2

) 1

2

(
1 + |G(2πfi)|2

) 1

2

(10)

Figure 6 shows the plots of κ(G0, G) for different û1/ū1 in the range 0 ≤ û1/ū1 ≤ 0.3 . The dominant

differences are located around the unstable frequency (270 Hz). The ν-gap denotes the upper bound of

the difference between two H∞ norms and the set of ν-gaps capture the range over which the functions

G(û1/ū1) deviate from G0. The ν-gap metric fits very naturally into the H∞ loop-shaping synthesis

framework, which returns both a feedback controller K (Eq. 11) and the corresponding “stability

margin”, 1/γ∞, corresponding to this controller. When δν < 1/γ∞, the controller is guaranteed to

stabilize the entire set of plants G (for example the results shown in Fig. 6).

K(s) =
−1.713(s− 7.51× 103)(s2 − 846.1s+ 1.03× 107)

(s+ 1.70× 104)(s2 + 2362s+ 8.08× 106)
(11)

The sensitivity function is another measure of the performance of the controller and for positive

feedback control is expressed as:

S(s) = G(s)
∣∣
control

/
G(s)

∣∣
no control

=
1

1−G(s)K(s)
(12)
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When |S(2πf ∗i)| < 1 (f ∗ denotes the unstable frequency), the feedback system is attenuating distur-

bances of the unstable mode compared to the open loop system. Figure 7 shows the plots of S for dif-

ferent û1/ū1. The unstable frequency is from 265 to 275 Hz in the amplitude range 0 ≤ û1/ū1 ≤ 0.3.

The fact that |S(2πf ∗i)| < 1 at the oscillating frequency, means that the current controller will reduce

the oscillation amplitude from within the limit cycle (at which point the plant appears as a “stable”

plant due to saturation, see Fig. 4(b)). For sufficient attenuation, the plant will appear unstable (see

Fig. 4(a)) and the controller will the stabilize the system.

The controller is implemented in time domain simulations. Fig. 8 shows the evolution of

the signals with time when the controller is switched on. The perturbations of velocity and heat

release rate decrease rapidly to weak white noise in 0.1 seconds once the controller is turned on. The

loudspeaker signal is initially large in order to attain control and decreases to a much smaller value

later to maintain control.

4. Conclusions

This article has presented a representative model for a non-linear combustion system exhibiting

one unstable mode. The resulting time domain simulations have been seen to realistically reproduce

the required non-linear behavior. A linear feedback controller which is theoretically guaranteed to

stabilize the combustion system, even from within the non-linear limit cycle, has then been designed.

This was achieved by combining the ν-gap metric, quantifying the difference between open loop

plants, with H∞ loop shaping robust controller design. As long as the ν-gap is smaller than the con-

troller stability margin, the robust controller is guaranteed to stabilize the combustor for all possible

non-linear flame responses. The resulting controller was applied to the unsteady combustion system

while within a limit cycle, and was indeed found to suppress the combustion instability.
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