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Abstract. Explaining the causes of infeasibility of Boolean formulas
has many practical applications in various fields. A small unsatisfiable
subformula provides a succinct explanation of infeasibility and is valu-
able for applications. In recent years the problem of finding unsatisfiable
subformulas has been addressed frequently by research works, which are
mostly based on the SAT solvers with DPLL backtrack-search algorithm.
However little attention has been concentrated on extraction of unsatis-
fiable subformulas using stochastic methods. In this paper, we propose a
resolution-based stochastic local search algorithm to derive unsatisfiable
subformulas. This approach directly constructs the resolution sequences
for proving unsatisfiability with a local search procedure, and then ex-
tracts small unsatisfiable subformulas from the refutation traces. We
report and analyze the experimental results on benchmarks.
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1 Introduction

Many real-world problems, arising in artificial intelligence, formal verification
and electronic design, can be formulated as constraint satisfaction problems,
which are translated into Boolean formulas in conjunctive normal form (CNF).
Boolean satisfiability (SAT) solvers are generally able to determine whether a
large formula is satisfiable or not. We are usually interested in a small expla-
nation of infeasibility that excludes irrelevant information. Therefore when a
formula is unsatisfiable, it is often required to find an unsatisfiable subformula,
that is, a small unsatisfiable subset of the original formula. Localizing an un-
satisfiable subformula is necessary to determine the underlying reasons for the
failure. Explaining the causes of unsatisfiability of Boolean formulas is an essen-
tial requirement in many fields. A paradigmatic example is repairing inconsistent
knowledge from a knowledge base [1]. Additional examples include SAT-based
model checking on predicate abstraction [2], counterexample minimization and
explanation [3], and fixing wire routing in FPGAs [4].

* This work is supported by the National Natural Science Foundation of China under
grant No. 60603088.



There have been many different contributions to research on unsatisfiable
subformulas extraction in the last few years, owing to the increasing importance
in numerous practical applications. Experimental works on computing unsatisfi-
able subformulas can be grouped into complete search algorithms and incomplete
search algorithms. Most of previous works are complete search approaches [5-13],
essentially on the basis of enhanced versions of the Davis-Putnam-Logemann-
Loveland (DPLL) backtrack-search algorithm. In the recent past, a few re-
searches have considered the problem of finding the unsatisfiable subformulas
by incomplete methods. In [14], the authors present an algorithm which tracks
minimal unsatisfiable subformulas according to the trace of a failed local search
run for consistency checking. However, this method is essentially based on a typi-
cal local search procedure for giving the formula a satisfiable interpretation. Two
distinct algorithms proposed in [15] are the first known works on using stochastic
method for proving unsatisfiability of a formula. Whereas up till now, no existing
research work has concentrated on the unsatisfiable subformulas extraction from
the proof of infeasibility utilizing a stochastic local search procedure.

In this paper, we tackle the problem of extracting unsatisfiable subformulas
from refutation traces of Boolean formulas by a stochastic local search algorithm.
This approach is the first work we are aware of to adopt resolution-based local
search method to find unsatisfiable subformulas. Firstly, a local search procedure
is employed to compute the resolution sequences for proving unsatisfiability of
a formula. The process of resolving an empty clause is combined with some
reasoning heuristics, such as unit clause propagation, binary clause resolution
and equality reduction. Then each refutation trace is constructed as a tree,
and an effective technique called refutation trace pruning is applied to the tree
on-the-fly to reduce the search space. Finally, a recursive function is used to
find all of the leaves which correspond to the original clauses, and then a small
unsatisfiable subformula is obtained, because the original clauses involved in the
derivation of an empty clause are referred to as the unsatisfiable subformula.

The paper is organized as follows. The next section introduces the basic defi-
nitions used throughout the paper. Section 3 proposes the local search algorithm
for finding small unsatisfiable subformulas. Section 4 presents some heuristics
and technique to improve the efficiency of our algorithm. Section 5 shows and
analyzes experimental results on well-known pigeon hole problem instances. Fi-
nally, Section 6 concludes the paper and outlines future research work.

2 Preliminaries

Resolution is a proof system for CNF formulas with the following inference rule:

(AVz)(BV-x) (1)
(AV B) ’
where A and B denote the disjunctions of literals. The clauses (AV x) and (BV

—z) are the resolving clauses, and (A V B) is the resolvent. The resolvent of the
clauses (z) and (—x) is the empty clause (). Every application of the inference



rule is called a resolution step. A resolution sequence, namely a sequence of
resolution steps, is that each one uses the result of the previous step or the
clauses of the original formula as the resolving clauses of the current step.

Lemma 1. A CNF formula ¢ is unsatisfiable iff there exists a finite sequence
of resolution steps ending with the empty clause.

It is well-known that a Boolean formula in CNF is unsatisfiable if it is possible
to generate an empty clause by a resolution sequence from the original clauses.
A refutation trace of an unsatisfiable formula is defined as a resolution sequence
in which the final resolvent is an empty clause.

Definition 1. (Unsatisfiable Subformula). Given a formula @, v is an un-
satisfiable subformula for o iff ¥ is an unsatisfiable formula and ¥ C .

It is obvious that there may exist many different unsatisfiable subformulas with
different numbers of clauses for the same problem instance, such that some of
these subformulas are the subsets of others.

Lemma 2. The set of original clauses involved in the derivation of an empty
clause is referred to as the unsatisfiable subformula.

That is to say, the clauses, contained in the intersection of a refutation trace
and the original formula, belong to some unsatisfiable subformula. Then we
illustrate the process of extracting unsatisfiable subformulas from a Boolean
formula according to Lemma 1 and Lemma 2. For example, the CNF formula is

o= (z1) A (mx2) A (mx1 V a2) A (e V x3) A (—xs) . (2)

The formula is refuted by a series of resolution steps ending with an empty
clause. There are two resolution sequences to prove the infeasibility of this for-
mula. One of the refutation traces is

()21 V) (@) (02s)
(z2) (L)

From the sequence, the resolvent (x2) of the first resolution step serves as one

of the resolving clauses of the second step, and the result of the second resolution

step is an empty clause. According to Lemma 1, this formula is unsatisfiable.

Therefore, the original clauses included in the proof of infeasibility belong to an

unsatisfiable subformula. More specifically, the unsatisfiable subformula corre-
sponding to the above resolution sequence is

3)

P = (.131) A (_\1‘1 \Y .’172) N (_\.’L‘g) . (4)

Moreover, the other refutation trace is

(z)(ow1 V) (2) (0w Vag) (z3)(—z3)

(@2) (z3) T




This finite sequence of resolution steps arrives at an empty clause, and the
unsatisfiable subformula consists of the original clauses involved in the process
of refutation. Consequently, another unsatisfiable subformula is

Py = ($1) AN (ﬁl‘l V 372) A\ (ﬁxg V 373) A\ (ﬁ.’lﬁg) . (6)

In conclusion, this simple example demonstrates that our stochastic local
search algorithm to find the small unsatisfiable subformulas is essentially based
on Lemma 1 and Lemma 2.

3 Local Search for Finding Unsatisfiable Subformulas

In recent years, the complete methods have made great progress in solving many
real life problems including constraint satisfaction problem, but they usually
cannot scale well owing to the extreme size of the search space. One way to solve
the combinatorial explosion problem is to sacrifice completeness, thus some of the
best known methods using this incomplete strategy are stochastic local search
algorithms. In general, the local search strategy starts from an initial solution,
which may be randomly or heuristically generated. Then the search moves to a
better neighbor according to the objective function, and terminates if the goal is
achieved or no better solution can be found. Stochastic local search methods are
underlying some of the best-performing algorithms for certain types of problem
instances, both from an empirical as well as from a theoretical point of view.
Consequently, this stochastic strategy is adopted to tackle the problem of finding
unsatisfiable subformulas. We propose a resolution-based local search algorithm
based on Lemma 1 and Lemma 2. The algorithm, detailed in the later, is given
as follows:

SLSAtoFindUS (formula)
refuted = false
iteration = 0
while ((iteration < MAXITER) && !refuted) do
if (Unit_Clause_Propagation() return UNSAT) then
refuted = true
else if (there exist binary clauses) then
Binary_Clause_Resolution()
Non_Tautology ()
Equality_Reduction()
No_Same_Clause()
else Randomly choose two clauses to resolve
for (each clause cl added into sequence)
Trace_Updating(cl)
if (formula.size > MAXSIZE) then
Remove a clause cl at random
Trace_Pruning(cl)
iteration++



if (refuted == true) then

print unsatisfiable

SmallUS = Compute_Unsatisfiable_Subformula(sequence)
else print unresolved
return SmallUS

The stochastic local search algorithm begins with an input formula in CNF
format. The objective function of this algorithm is to derive an empty clause, and
a necessary condition for this to occur is that the formula contains at least some
short clauses. We perform resolution of two clauses heuristically or randomly,
until the formula is refuted or the upper limit of iterations is reached. In this
algorithm, the function called unit clause propagation can determine whether
the formula is infeasible, because the formula is refuted if and only if an empty
clause can be resolved by two unit clauses. If the current formula contains binary
clauses, some reasoning strategies are employed in this algorithm, such as binary
clause resolution and equality reduction. The function named Non_Tautology
deletes the clauses which contain two opposite literals such as (1 V —z1 V x3).
The function of No_Same_Clause is to remove the duplicate clauses from the
formula. If there is no binary clause in the formula, two clauses will be randomly
chosen to resolve according to the inference rule shown in Equation 1, and then
the resolvent is added into the formula. However, too many resolving clauses
increase the overhead of the search process, thus a clause deletion scheme called
refutation trace pruning is employed. When the updated formula exceeds the
maximum size constant, a clause is removed at random, and some redundant
clauses on the source trace of this clause are also deleted.
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Fig. 1. The Process of Finding Unsatisfiable Subformulas

When the algorithm proceeds, we record the sequences of clauses engaged
in the process of resolving an empty clause. Then a tree is constructed with
respect to each refutation trace. If the formula is refuted, a recursive function



called Compute_Unsatisfiable_Subformula is employed to extract a small unsat-
isfiable subformula from the formation of a treelike arrangement. According to
Lemma 2, we can conclude that all leaf nodes of a tree are actually referred to
as the unsatisfiable subformula. Fig. 1 illustrates the process of deriving small
unsatisfiable subformulas from the formula denoted by Equation 2. As shown in
Fig. 1, there are two trees respectively corresponding to two refutation traces,
which are represented as Equation 3 and Equation 5. The original clauses located
on the leaves of a tree can be extracted by a recursive algorithm to form the
unsatisfiable subformula. For example, in Fig. 1 (a), the root node, namely an
empty clause, is resolved by an interim result (z3) and a leaf node (—x3). If we
treat the clause (x2) as a root node, the branches and leaves with the root also
constitute a tree, and then the recursive function can be used on this subtree.
The clause (x2) is resolved by two leaf nodes (1) and (-1 V z2). Consequently,
an unsatisfiable subformula is composed of the three leaf clauses belonging to
the original formula. Similarly, in Fig. 1 (b), another unsatisfiable subformula
consists of the four leaf clauses (—x3), (mx2 V 23), (1), and (—x1 V 3).

4 Heuristics and Pruning Technique

To improve the efficiency of the local search algorithm, we implement some rea-
soning heuristics. One of the heuristics is unit clause propagation. A so-called
unit clause is the clause only containing one literal. Unit clause propagation se-
lects a unit clause from the original formula, and then performs the reduction
on the formula by this unit clause. We achieve this reduction in two kinds of
situation: Firstly, if some clause contains a literal which is negative of the literal
in the unit clause, the corresponding literal is deleted from that clause; Secondly,
we eliminate the clauses which include the literal of the unit clause. Considered
the formula shown in Equation 2, the clause (—2) is a unit clause, and is propa-
gated to the whole formula. In accordance with the reduction rule of unit clause
propagation, the literal (z2) is removed from the third clause (—z; V x2), and
the fourth clause (—z2 V x3) is deleted. Consequently, the formula is turned into

¢ = (21) A (mw2) A (m21) A (7o) - (7)

After applying the unit clause propagation, one can observe that the formula
is strongly simplified and easily refuted. Furthermore, because unit clause prop-
agation might generate new unit clauses, it is an iterative process of executing
reductions by unit clauses until either of the following conditions is reached: one
is that an empty clause is resolved, or the other is that there are no more unit
clauses in the remain formula. The order in which the unit clause reductions
occur is not important to the correctness of our local search algorithm.

In general, a Boolean formula might also have many binary clauses, which
are defined as the clauses including two literals. Then it is possible to do a lot
of reductions on the original formula by reasoning with these binary clauses as
well. The resolution of two binary clauses arises if and only if they contain one



pair of opposite literals, and abides by the inference rule depicted in Equation
1. For instance, a Boolean formula in CNF is given as follows:

o1 = (ﬁl‘l vV IQ) AN (ﬁ.ﬁg V 3?3) A\ (.Tl V .%‘3) . (8)

There are three binary clauses, which can be resolved by the inference rule,
in this formula. Then the process of resolution between the binary clauses is

(mx1 Vag)(—xe Vas) (mxy Va)(zy Vas) (mxr Vas)(z Vas)
(=x1 V x3) ’ (x2 V x3) ’ (r3) .

(9)

Resolving these clauses produces two new binary clauses (-1 Vz3), (z2Vzs)
and one new unit clause (z3). More generally, performing all possible resolutions
of pairs of binary clauses may generate new binary clauses or new unit clauses.
Therefore, binary clause resolution can be done in conjunction with unit clause
propagation in a repeated procedure.

The third heuristic is equality reduction, which is also a type of useful bi-
nary clause reasoning mechanism. Equality reduction is essentially based on the
following equation:

ey =@=yAy=2)=(zVy A(yVa). (10)

If a formula contains two correlated clauses such as (z V —y) and (—z V y),
we can form an updated formula by equality reduction. Equality reduction is a
three-step procedure: Firstly, all instances of y in the formula are replaced by
the literal x or vice versa; Secondly, all clauses containing both z and —x are
deleted; Finally, all duplicate instances of x or —x are removed from all of the
clauses. For example, a Boolean formula in CNF is

¢2 = (331 vV _‘J,‘g) A ("331 \/.IQ) N (.731 \/$2 \/333) N (.131 V X9 \/334) A (—\xl \/333) . (11)

Obviously, one can conclude that x; is equivalent to zo, because there exist
(x1 V —z2) and (—z1 V x2). We substitute z; for x5 throughout the formula, and
perform reductions on the new clauses. Then the reduced formula is obtained:

(j)/Q = (1'1 \/.’Eg) A (_‘1'1 \/.’£3) . (12)

Similar to binary clause resolution, such clause reasoning approach might
yield new binary clauses. Consequently, equality reduction combined with unit
clause propagation and binary clause resolution can run iteratively, until an
empty clause is resolved or no new clause is added.

During the process of derivation, many redundant clauses bring a degrada-
tion of runtime performance and memory consumption. To reduce the search
space, we propose a technique called refutation trace pruning, which filters out
the clauses not belonging to any refutation proof of the formula. We keep two
fields for each interim clause: one is the list of resolving source trace of this



clause (clause.tarce), the other is a counter that tracks the number of descen-
dants of this clause which still have a chance to involve in the refutation proof
(clause.offspring-count). This technique contains two functions: one is to estab-
lish or update the two fields of trace information when a new clause is added into
the sequence, the other is to remove the clauses which are redundant for proof
of unsatisfiability. Firstly, the function called Trace_Updating is introduced:

Trace_Updating(c)
c.trace = resolution_clauses
c.offspring_count = 0
for (each clause cl in c.trace)
cl.offspring_count++

While a clause ¢ is created its offspring_count is zero. A newly generated
clause can potentially take part in the proof, thus the offspring_count of each
clause on its resolution trace is incremented. Another function called Trace_Pruning
is presented as follows:

Trace_Pruning(c)
if ((c.offspring_count == 0) && (c.trace is not empty))
for (each clause cl in c.trace)
cl.offspring_count--
Trace_Pruning(cl)
delete c.trace

When a clause ¢ is removed and c.offpsring_count > 1, we keep c.trace be-
cause we cannot know whether a descendant of c¢ is included in the proof or not.
If ¢ has no descendant, the c.trace is deleted and the offspring_count for each
clause on its resolution source is decremented. These counters may become zero,
so a recursive call to the function of Trace_Pruning tries to remove each of the
resolution sources.

5 Experimental Results

To experimentally evaluate the effectiveness of our algorithm, we select 9 problem
instances from the well-known pigeon hole family, and compare our algorithm
with the greedy genetic algorithm [11] on this benchmark. The pigeon hole prob-
lem “holen” asks whether it is possible to place n+ 1 pigeons in n holes without
two pigeons being in the same hole. We choose these instances because each of
them has only one unsatisfiable subformula. Consequently, the greedy genetic
algorithm which derives a minimum unsatisfiable subformula and our algorithm
can obtain the same unsatisfiable subformula for one problem instance.

Our algorithm to find small unsatisfiable subformulas is implemented in C++
using STL. The experiments were conducted on a 1.6 GHz Athlon machine hav-
ing 1 GB memory and running the Linux operating system. The limit time was
3600 seconds. The experimental results are listed in Table 1. Table 1 shows the



number of clauses (clas) and the number of variables (vars) for each of the 9
problem instances. Table 1 also gives the number of clauses in the unique unsat-
isfiable subformula (US size) for every instance. Furthermore, Table 1 provides
the runtime in seconds of the greedy genetic algorithm (GGA time) to extract
the unsatisfiable subformula. The last column presents the mean runtime of ten
launches in seconds for the stochastic local search algorithm (SLSA time).

Table 1. Performance Results on Benchmark

Instances || clas | vars | US size | GGA time | SLSA time
hole2 9 6 9 0 0
hole3 22 12 22 0 0
hole4 45 20 45 0 0
holeb5 81 30 81 0.02 0
hole6 133 42 133 0.08 0.1
hole7 204 56 204 0.90 0.5
hole8 297 72 297 51.90 22.8
hole9 415 90 415 1304.00 682.6
holel0 561 110 561 time out 1850.0

From this table, we may observe the following. The stochastic local search al-
gorithm outperforms the greedy genetic algorithm for most formulas, except for
the instance of hole6. Our algorithm is able to successfully find the unsatisfiable
subformula at each launch. For the instance of hole10, the greedy genetic algo-
rithm failed to extract the unsatisfiable subformula within the timeout, but our
algorithm succeeded in obtaining it. The resolution-based local search algorithm
can efficiently solve these instances, partially because the heuristics brings the
great capabilities of reasoning short clauses, such as unit clause propagation,
binary clause resolution and equality reduction, and the pigeon hole problem
instances contain many binary clauses.

6 Conclusion

Finding the unsatisfiable subformulas of problem instances has practical ap-
plications in many fields. In this paper, we present a stochastic local search
algorithm to derive small unsatisfiable subformulas from CNF formulas. The al-
gorithm is combined with some reasoning heuristics and pruning technique. The
experimental results illustrate that our algorithm outperforms the greedy genetic
algorithm. The results also show that this local search algorithm can efficiently
tackle the certain type of problem instances with many short clauses, and cannot
work very well for the formulas with most long clauses, largely because it makes
the decisions on resolution of two long clauses in a stochastic way, and lacks of



the effective heuristics for selecting the right clauses. Therefore one of the future
works is to add more aggressive methods for resolution of long clauses.
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