View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by CiteSeerX

An Expressive Stateful Aspect Language

Paul Leger! Eric Tanter? Hiroaki Fukuda?®
!Universidad Catélica del Norte, Chile
2PLEIAD Lab, Computer Science Department, University of Chile
3Shibaura Institute of Technology, Japan

Abstract

Stateful aspects can react to a program execution; they support modular imple-
mentations of several crosscutting concerns like error detection, security, event
handling, and debugging. However, most proposed stateful aspect languages
have specifically been tailored to address a particular concern. Indeed, most
of these languages differ in their pattern languages and semantics. As a conse-
quence, developers need to tweak aspect definitions in contortive ways or create
new specialized stateful aspect languages altogether if their specific needs are
not supported. In this paper, we describe ESA, an expressive stateful aspect
language, in which the pattern language is Turing-complete and patterns them-
selves are reusable, composable first-class values. In addition, the core semantic
elements of every aspect in ESA is open to customization. We describe ESA in
a typed functional language. We use this description to develop a concrete and
practical implementation of ESA for JavaScript. With this implementation, we
illustrate the expressiveness of ESA in action with examples of diverse scenarios
and expressing semantics of existing stateful aspect languages.

Keywords: Aspect-Oriented Programming, Stateful Aspects, ESA, Typed
Racket, JavaScript

1. Introduction

Separation of concerns [1] establishes that a program should be decomposed
in a set of modules, and that each module should address a given concern of
the software. Modules are crucial for raising the understandability, maintain-
ability, reusability, and evolvability of software. However, concerns like logging
and event handling cannot be implemented in one module; these are known as
crosscutting concerns. Aspect-Oriented Programming (AOP) [2] allows devel-
opers to use aspects, as embodied in e.g. AspectJ [3], to modularize crosscutting
concerns. In the pointcut-advice model of AOP [4], an aspect specifies program
execution points of interest, named join points, through predicates called point-
cuts. When an aspect matches a join point, it takes an action, called advice.
Typically, an aspect matches a program execution point in isolation, or in the

Technical Report August 12, 2013

https://core.ac.uk/display/357350668?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

context of the current call stack. However, the modularization of some crosscut-
ting concerns requires aspects to match a trace of join points (e.g. debugging [5],
security [6], runtime verification [7], and event correlation [8]). Aspects that can
react to a join point trace are called stateful aspects [9].

Several stateful aspect languages have been proposed [6, 8, 10, 11, 12, 13,
14], specifically tailored to address particular domains. Mainly because of this
reason, these languages do not share the same semantics [14]. Some of them
like Tracematches [10] support multiple matches, even simultaneously, of a join
point trace pattern (just pattern for now). Each language provides its own sub-
language to define patterns of interest. In addition, each language has its own
matching semantics to define how a pattern is matched (e.g. multiple matches of
Tracematches), and advising semantics to define how an advice is executed. To
date, stateful aspect language design has been mostly focused on performance,
leaving aside the exploration of more expressiveness:

Pattern language. The lack of expressiveness in pattern languages has at least
two consequences. The first consequence is the lack of reuse and composition
of patterns in most stateful aspect languages. The second one is the limited
expressiveness to define patterns. We now illustrate the implication of the first
consequence.

In the area of the event correlation [15], let us consider a toggle airplane
mode feature in touch devices. If a user slides the sequence up, down, and
up in the touch device, the airplane mode is enabled (or disabled, if it was
enabled). Using Tracematches [10], a stateful aspect language for Java, we can
define a tracematch, which is composed of a set of symbols, a regular expression
pattern, and a piece of code. A symbol represents a set of join points, the
pattern is defined as a regular expression over these symbols, and the piece
of code represents the advice. To implement this feature, we can define the
following stateful aspect in Tracematches:

tracematch() {

//symbols
sym s—up after: call (x Screen.up());
sym s—down after: call (x Screen.down());

//pattern
s—up s—down s—up

//piece of code (advice)
{

Device.toogleAirplaneMode();

b}

Consider now the addition of a new feature toggle airplane mode with time:
this enables/disables the airplane mode during a period of time (e.g. 10 hours).
This new feature is executed when a user realizes the sequence of the toggle
airplane mode with a left slide as prefix. To implement this feature, an ade-
quate solution would be to reuse the pattern of the previous feature, however,
Tracematches like other stateful aspect languages do not allow developers to

Figure 2: A correct implementation of toggle airplane mode with Tracematches needs an extra
symbol.

reuse patterns. Therefore, it is necessary to write all pattern again. This means
that the piece of code is not easily maintainable because if the pattern of tog-
gle airplane mode changes, it is necessary to rewrite the pattern for this new
feature.

Semantics. In stateful aspect languages, limited expressiveness also has two
consequences in terms of semantics: common and fixed for all stateful aspects.
Next, we exemplify the effect of the first consequence.

Although the aspect implementation of toggle airplane mode looks correct,
this implementation does not work because Tracematches perform multiple
matches of a pattern. As a result, once the pattern is matched, each subse-
quent up and down toggles the airplane mode. Figure 1 shows the previous
point because we can observe that before that the first match of the pattern
finishes (represented by the up dash line) with the call to the up function, a new
potential match of the pattern starts (the down dash line). As the Tracematches
semantics is not adequate in all cases, the programmer has to tweak the aspect
definition to artificially introduce another symbol, toggled, which is then ex-
cluded from the regular expression because Tracematches require contiguous
occurrences of the symbols in a pattern (see Figure 2):
tracematch() {

sym s—up after: call (x Screen.up());
sym s—down after: call (x Screen.down());

//artificial symbol
sym toggled after: call(* Device.toggleAirplaneMode());

s—up s—down s—up {
Device.toggleAirplaneMode();
)

1.1. Contributions

The consequences of the lack of expressiveness of current stateful aspect
languages motive this work, which proposes a precise description of an expressive
stateful aspect language. Concretely, this proposal allows developers to:

e use first-class patterns, bringing the benefits of the reuse and composition
of patterns (consequence pl). Apart from reuse and composition, these
first-class patterns allow developers to cleanly use the factory design pat-
tern [16] to build their own pattern libraries. In addition, developers can
use a Turing complete language to define patterns (consequence p2). In
this paper, we use first-class functions to describe our pattern language,
but other first-class abstractions might be used as well (e.g. objects).

e customize the matching and advising semantics of every stateful aspect.
With this, every stateful aspect can have different semantics (consequence
s1) and developers can customize of any aspect (consequence s2). In order
to achieve this goal, we follow open implementation design guidelines [17],
so as to allow developers to customize strategies of a program implemen-
tation, and at the same time, still hiding details of its implementation.

To contrast our proposal, we develop a reference frame that compares and
evaluates the existing proposals in terms of expressiveness. As a result, we
clarify and discuss some differences between these proposals. This reference
frame becomes an additional and novel contribution of this paper.!

Paper roadmap. Section 2 introduces and goes into detail about stateful as-
pect languages. Section 3 discusses and evaluates the state of the art of these
languages. The limitations of existing proposals are shown through diverse ex-
amples in Section 4. Section 5 presents the description of an expressive stateful
aspect language, named ESA; we describe ESA using a functional typed lan-
guage, Typed Racket [18]. To illustrate how our proposal addresses the afore-
mentioned limitations, we use a concrete and practical implementation of ESA
for JavaScript in Section 6. Section 7 assesses the expressiveness of ESA through
the emulation of several existing stateful aspect languages, and Section 8 con-
cludes.

2. Stateful Aspects

Stateful aspects [9] support the modular definition of crosscutting concerns
for which matching join point traces, as opposed to single join points, is neces-
sary. As Figure 3 shows, a stateful aspect is composed of a (join point trace)
pattern and an advice. The advice is executed before, around, or after of the
last join point that must match with the pattern. In the three next sections, we

1This work extends and refines our previous work on open trace-based mechanisms, dis-
cussed in Section 3.

PN
V—V

Pattern Advice

Stateful aspect

lDepon
W w\
matches of
Matching |[the pattern Advising
process 0o0® process
0% [
Stateful aspect language interpreter

Figure 3: The anatomy of a stateful aspect and the main processes of its language.

describe the core elements (pattern language, matching process, and advising
process) of a stateful aspect language.

2.1. Pattern Language

A stateful aspect language uses a pattern language to specify patterns. This
section defines a pattern language and explains its main features.

Definition (Pattern Language). A language that allows developers to specify
the (join point trace) pattern that should be matched by a stateful aspect.

Some pattern languages allow developers to specify bindings that are
gathered while a pattern is being matched. For example, patterns of
Tracematches [10] are defined as regular expressions and can gather bindings.
We illustrate pattern definitions using a runtime verification example imple-
mented in Tracematches (presented in [19]):
tracematch (Vector v, Enumeration e) {

sym createlter after returning(e): call(Enumeration Vector.elements()) && target(v);

sym nextEl before: call(x* Enumeration.nextElement()) && target(e);
sym addVector after: call(x Vector.addElement(..)) && target(v);

createlter nextElx addVector+ nextEl

throw new ConcurrentModificationException ();

)

This tracematch provides the fail-fast feature for the Enumeration interface
(this feature is only available for Iterator?). Fuil-fast triggers an exception if

2http://docs.oracle.com/javase/6/docs/api/java/util /Vector.html

Figure 4: Potential matches of the pattern up > down > up.

the underlying collection is modified while an iteration is in progress. As the
tracematch code shows, bindings gathered are specified in the header; in this
piece of code, two bindings: a vector v and its enumeration e. In an aspect of
Tracematches, when a symbol of the regular expression is matched, a binding
can be gathered; for example, v is gathered when createlter is matched. As we
need to catch unsafe uses of enumerations, the pattern first sees the creation
of an enumeration then zero or more nextElement calls, one or more addElement
calls, and finally an erroneous attempt to continue the enumeration. Note the
subpattern nextEl* is necessary because the Tracematches semantics matches a
pattern against all suffixes of a join point trace, which is represented by symbols
declared in the tracematch. For example, the trace elements » nextElement »
addFElement » nextElement does not match if the pattern does not contain
nextEl".

2.2. Matching Process

In most existing proposals, the matching process implementation is inside
of the stateful aspect language. The definition of its process and some of its
semantic variants are explained in this section.

Definition (Matching Process). A process that tries matching a given pattern
against the current join point trace according to its semantics.

Figure 3 shows that when a stateful aspect is deployed, the aspect language
uses its matching process for the matching of the pattern of an aspect. De-
pending on the semantics of this process, a pattern may match multiples times.
We use the implementations of the toggle airplane mode and fail-fast features
to illustrate the impact of a matching process semantics.

Toggle airplane mode. Figure 1 shows that the Tracematches semantics
matches twice the pattern of this feature in the trace up » down » up »
down » up. This is so because the Tracematches semantics supports multiple
matches, but it has the constraint of contiguous occurrences of the symbols in
the pattern. Figure 4 shows that if the previous constraint is removed, the
matching process would match up to four times; meaning that it gets more
difficult to know whether the airplane mode is enabled or disabled.

e=el
o)

Figure 5: Two matches of the pattern used for fail-fast according to the Tracematches seman-
tics. In the figure, the match of up side gathers the bindings v1 and e1, and the match of
down side gathers the bindings v2 and e2.

Fail-fast. Although the tracematch solution presented for this feature seems
intuitive, it is not so intuitive when we analyze in detail. Tracematches support
multiple matches of a pattern, if the environment of bindings gathered differs
between the potential matches of this pattern. Figure 5 exemplifies this seman-
tics because the pattern matches twice due to the fact that the environments of
both matches differ ([v=vi,e=et | and [v=v2, e=e2).

Tracematches semantics. The semantics of Tracematches is more complex
than what this section describes. We go into detail about this semantics in
Section 7.3, where we use ESA to express Tracematches.

2.8. Advising Process

The implementation of the advising process is also inside of a stateful aspect
language in most existing proposals. We start defining its process and then
explain its main features.

Definition (Advising Process). Given one or more simultaneous matches of a
pattern, the advising process is a process that executes, according to its seman-
tics, the advice of a stateful aspect for every one of these matches.

The advising process is triggered when it receives one or more matches of
the pattern (Figure 3). Each match abstraction contains the environment of
bindings gathered during the matching stage. Then, the advising process exe-
cutes the (same) advice for every match with its environment of bindings. We
illustrate this process with the implementation of a discount policy feature on a
Web application (presented in [12]).

Discount Policy. A Web application of an online store is used to order com-
puters (e.g. DELL). A client chooses computers from the catalogue and adds
them to a virtual shopping cart, which may contain more computers. The Web
application contains a checkout form asking for a desired payment method. Con-
sider that the store now wants to add a discount policy, where every computer
has a potential discount that is applied when it is added to the cart. Each
discount that is associated to a computer is only valid for a period of time; how-
ever, this discount must be applied (even if it is not valid anymore) when the
client checks out. Implementing this discount policy is a crosscutting concern
that can be modularized using a stateful aspect as follow:

u=u1, c=c4| u=u1 |

p(checkout

u=u1, c=c1 | u=u1t, c=02| u=u1, c=c3|

Figure 6: Four simultaneous matches of the pattern used to implement the discount policy
feature.

tracematch (User u,Computer c) {
sym add after: call(x Cart.add(User,Computer)) && args(u,c);
sym checkout before: call(x Form.checkout(User)) && args(u);

add checkout

{

Cart cart = u.getCart();
cart.applyDiscount(c, DiscountPolicy.getDiscount(c));

I

Figure 6 shows a join point trace that triggers four simultaneous matches
for the tracematch above (notice these matches have different environments of
bindings). The advice is executed four times, each one with an environment
of bindings (e.g. [u=ut,c=ct |), and each advice execution applies the discount to
one computer. In this example, the advising process must compose the four
executions of the (same) advice.

3. Existing Stateful Aspect Languages

Douence et al. [9, 20] initiated the body of work on stateful aspects. In
addition, there is a large body of work on stateful aspects, which we review in
this section. For each proposal, we focus on three components described in the
previous section: pattern languages, matching process, and advising process.

Tracematches. The Tracematches proposal, implemented as an AspectJ [3]
extension, is a widely-known and efficient stateful aspect language for Java. The
proposal only allows developers to use a regular expression language to define
patterns. Its patterns cannot be reused or composed. The matching process is
implemented through a nondeterministic finite-state automaton, whose active
states correspond to potential matches of a pattern. The advising process sup-
ports before, around, and after advice. For the around advice, Tracematches
follow the AspectJ guidelines: when there are two or more matches of a pattern
with the same join point, the advice executions are chained and nested.

Tracecuts. The Tracecuts stateful aspect [21] is a language that works for
Java as an AspectJ extension. This mechanism is used to check the use of
protocols (e.g. FTP [22], a communication protocol). In Tracecuts, if the join
point trace does not follow a pattern, which represents a certain protocol, an

action can be triggered. According to the authors of Tracecuts, the checking
of some protocols needs to properly identify the nested entries and exits of
the executions of different methods of a class. This feature is reducible to
recognition of properly nested parenthesis, meaning that a finite state machine
cannot correctly check the use of these protocols. Therefore, Tracecuts allow
developers to express patterns using a context-free language. The matching
process uses a pushdown automaton, and the advising process follow the same
guidelines of Tracematches.

Alpha. Alpha [13] is an aspect-oriented extension of L2, a simple object-
oriented language in the style of Java. Alpha uses Prolog queries to express
patterns. The matching process is implemented through queries to a database
that contains information about the static representation (e.g. abstract syntax
tree) and the dynamic representation (i.e. execution trace) of a program. The
matching process corresponds to the internal process of Prolog (i.e. a backward
chaining algorithm [23]) to answer a query. Every solution to a Prolog query
corresponds a match of a pattern. These solutions are passed to the advising
process, which only supports before and after advice kind. Advices are executed
in a consecutive manner for each solution, which contains a set of bindgins gath-
ered.

Halo. Herzeel et al. [12] propose Halo, a Common Lisp extension. The Halo
proposal allows developers to use almost all the base language to express pat-
terns because loops and recursions are not allowed. Despite of these limitations,
Halo patterns are first-class values. The matching process is implemented with
the Rete algorithm [24], an efficient pattern matching algorithm used for expert
systems [25]. In Rete, patterns are represented as rules that must be satisfied by
a set of (matched) join points. The advising process only executes the advice
with each set of bindings that satisfy the rules. The advice can be executed
before or after the last join point matched.

EventJava. EventJava [8] allows developers to execute a piece of code (i.e. ad-
vice) when a set of distributed events (i.e. join points) has a correlation speci-
fied by developers. To specify the correlation, every distributed event contains
a set of properties available to developers (e.g. the time at which the event is
observed). The EventJava pattern language only supports an ad hoc for and
if constructs to compare these events. No user-defined constructs to compare
events are supported. For the matching and advising processes, EventJava fol-
lows the same guidelines of Halo, but the advice can only be executed after the
last join point matched.

AWED. 1t is a language for Aspects With Explicit Distribution (AWED) [5,
26]. This stateful aspect language supports the monitoring of distributed com-
putations in Java. In addition, this aspect language takes into consideration
distributed causal relations in tasks of debugging and testing of middleware.

AWED patterns are expressed using a domain-specific language for regular ex-
pressions. Similarly to Tracematches, the matching process uses a finite state
machine to carry out the match of patterns. For the advising process, AWED
follows the same process of EventJava.

PQL. Program Query Language (PQL) [6] is a tool to detect errors and check-
/force protocols of programming (e.g. file handling). This tool uses a static
analyzer to reduce the possible matches and then use a dynamic matcher that
really matches a given pattern. A developer expresses a pattern using an AST
description (using a Java-like syntax). The matching process (i.e. dynamic
matcher) uses a specialized state machine. The advice can only use the execute,
which is used to execute a method before the last join point matched, or replace,
used to replace the original computation of the last matched join point.

PTQL. Program Trace Query Language (PTQL) [11] is another tool to detect
errors. Developers use the SQL language to express a pattern, which is actually
a SQL query. Join points are stored in databases, which are used by its matching
process, named PARTIQLE, to match a query. PTQL does not allow developers
to take actions if a pattern is matched, i.e. there is no an advising process in
PTQL.

JavaMop. JavaMop [14, 27, 28] is a generic and efficient runtime-verification
framework for Java. Patterns in JavaMop can be expressed in different (pre-
viously defined) domain-specific languages: regular expressions, context-free
grammars, linear temporal logic, string rewriting system [29], etc. This last
pattern language is Turing complete. However, the JavaMop patterns are not
first-class values, reusable, and composable. A fixed set of matching process
semantics is available for the developers. As JavaMop compiles their code
to AspectJ code, the JavaMop advising process follows the same guidelines
of AspectJ for this process.

OTM. This paper is not our first try at implementing an expressive stateful as-
pect. In [30, 31], we implement a stateful aspect language for JavaScript, named
OTM. The OTM pattern language is Turing complete and allows developers
to reuse and compose patterns. Although the matching process of any OTM
stateful aspect can be customized, developers have to update the definitions of
their patterns to support a particular customization of the matching process.
For example, the definition of a pattern for the single matching semantics dif-
fers from the definition of the same pattern for the multiple matching semantics.
In other words, the matching process does not really customize the semantics,
rather the power of the pattern language allows developers to “code around”
patterns to achieve the required semantics. The advising process cannot be cus-
tomized in OTM. In [32], OTM is extended to control causal relations among
Ajax messages in JavaScript applications.

10

Stateful Aspect Pattern Matching Advising
Languages Language Process Process
T tch Regular Nondeterministic Before, around,
racematches expression finite-state automaton | and after advice
Tracecuts Context-free Pushdown Before, around, and
grammars automaton after advice
Alpha Prolog Prolog Before and after
engine advice
Hal Almost all Rete, a pattern Before and after
alo base language | matching algorithm advice
EventJava if and for Rete, a pattern Adter
constructs matching algorithm advice
Regular Nondeterministic After
AWED expression finite-state automaton advice
PQL AST. Own algortiam Before anq replace
description advice
Particle, a query
L
PTQL sQ algorithm None
JavaMop eirpor:ens;?g:;at:) Depending on the |Before, around, and
Turing complete | Pattern language used after advice
OTM Base language Own algortihm Before, arounld, and
after advice

Figure 7: Summary of stateful aspect languages discussed in this section.

Figure 7 sums up the description of the previously described stateful aspect
languages. Most stateful aspect languages provide different pattern languages,
where the language expressiveness varies. For instance, Alpha uses Prolog,
PTQL uses SQL, and Tracecuts uses context-free grammars. Regarding the
matching process, all these aspect languages support multiple matches of a pat-
tern. Similar to pattern languages, semantics of matching processes of existing
stateful aspect languages vary as well. For example, JavaMop [14] allows de-
velopers to choose one of three fixed specifications for the matching process for
every stateful aspect. Finally, most advice processes of stateful aspect languages
only support before and after advice.

3.1. FEvaluation

Figure 8 evaluates the stateful aspect languages described in this section.
The figure evaluates three components of these languages: pattern language,
matching process, and advising process. Each evaluation measures which of the
four consequences (pl, p2, sl, and s2) mentioned in Section 1 are addressed.
The results of pattern language evaluations are heterogeneous because three
proposals use a Turing complete pattern language with support of reusable
and composable patterns (consequences pl and p2), and two proposals only
address one of the previous two consequences. Regarding matching process, only
JavaMop and OTM support semantic variations for their aspects (consequence
s1). Finally, we can observe there is no any support to customize the stateful

11

Stateful Aspect Pattern Matching Advising
Languages Language Process Process
Tracematches O O Q
Tracecuts O Q O
Alpha o O O
Halo D O Q
EventJava Q O O
AweD O O O
PaL o O O
PTQL O O O
JavaMop D D Q
OT™ . D O
ESA . . .
Legend Pattern Matching Advising
Language Process Process
Limited expressiveness without Fixed and common
Q reusable and composable patterns for all stateful aspects
Turing complete, or Not common for all
D reusable and composable patterns stateful aspects, but with
(but not both) fixed semantics
. Turing complete with Customizable semantics
reusable and composable patterns for stateful aspect

Figure 8: Evaluations of some stateful aspect proposals regarding their pattern language,
matching and advising processes.

aspect language semantics. In the bottom of the list, we can appreciate that
ESA, the proposal of this paper, completely addresses the four consequences.

It is important to mention that the main concern of existing stateful aspects
is their performance. To achieve this concern, expressiveness and customizations
have been sacrificed.

4. Limitations of Stateful Aspects

Using diverse variations of the discount policy of the Web store application
(Section 2.3), this section shows the limitations of existing stateful aspect lan-
guages, in particular, the consequences p2 and s2 mentioned in the introduction
of this paper. Each example is classified according to the components described
in the previous section. In Section 6, we will revisit all these examples to present
adequate solutions using an implementation of our proposal.

12

4.1. Pattern Languages

Apart from the lack of the pattern reusability (consequence pl), there are
other limitations in existing stateful aspect languages. For example, the limited
expressiveness to define patterns that gathers a variable list bindings: a case of
the consequence p2.

Let us at a variation of the current discount policy, named limited discount
policy). This variation only applies the discounts to a limited number of the best
discounts (e.g. three computers). This small restriction cannot be implemented
as an update of the solution presented previously. This is so because the current
solution does not use only one match that contains a list with all computers,
which is necessary to choose the best discounts. A tracematch that matches a list
of computers would be adequate, however, Tracematches do not allow developers
to define a pattern that gathers a variable-size list of bindings. Therefore, we
must code around the current tracematch advice to implement the update of
this feature:

int computerCounter = 0;
Arraylist computers = new ArrayList();

tracematch (User u,Computer c) {
//symbols and pattern as in Section 2.3

if (computerCountert+ < u.getCart().size())
computers.add(c); //adding to the list of computers

else {
ArrayList computersWithBestDiscounts = getBestDiscounts(computers);
//executing the original advice with every computer of the previous list

b}

The original advice is only executed when the final match is triggered. In
addition, the new advice is now stateful because of its mutable binding, computers.
The behavior of stateful advices depends on bindings that are outside of it.
Therefore, developers must keep in mind the state of outer bindings to know
the real behavior of a stateful advice.

4.2. Matching Process

Not all stateful aspects need the same semantics (consequence s1). For
instance, if we revisit the features of fail-fast and toggle airplane mode (Sec-
tion 2.2), we can observe different semantics of the matching process is needed.
Whereas the appropriate matching process for fail-fast must support multiple
matches, the matching process semantics for toggle airplane mode must only
support a single match at a time.

Apart from the single and multiple matching semantics, custom semantics
per stateful aspect may be useful as well (consequence s2). Consider a differ-
ent update to the policy, named selective discount policy, which only applies
discounts to one computer by category (e.g. laptops, desktops, tablets) in the
shopping cart. For example, if there are two laptops in the shopping cart, the

13

discount policy only applies discounts to one laptop — the first added. To im-
plement this new policy, it is necessary to custom matching semantics because
it must permit a new potential match of the pattern only if a computer of a
different category is added. As existing proposals do not allow developers to
customize the matching process semantics, developers end up modifying advices
to overcome the lack of this customization. For example, the implementation of
this new policy in Tracematches requires the following modification around the
advice:

ArrayList categories = new Arraylist();

tracematch(User u,Computer ¢) {
//symbols and pattern as in Section 2.3

{
int category = getCategory(c);
if (lcategories.contains(category)) { //Is this category different?
categories.add(category);
//executing the original advice with the computer ”c”
j

The piece of code above only applies the discounts when a category is differ-
ent from the already used categories. Apart from the stateful feature, this advice
overlaps its responsibility to apply discounts with the responsibility to correctly
match the pattern (i.e. the pattern definition is tangled with the advice).

4.3. Advising Process

As mentioned in Section 2.3, the pattern of a stateful aspect can match
simultaneously. If there are simultaneous matches of a pattern, the advice is
executed several times: each one with an environment of bindings. Existing
stateful aspect languages do not allow developers to customize the advising
process (consequence s2), which is necessary in scenarios like adding the last
variation to the discount policy of the online store.

Suppose the store Web application now allows clients to customize the pieces
(i.e. hardware) of their computers. Thereby, the store established a new discount
policy, named personalized discount policy. This new policy establishes that the
discount policy only applies the discount to the computer with the greatest
number of customized pieces. In this scenario, it is not possible to overburden
the pattern definition to implement this restriction because the number total
of pieces of every computer is only known when a client goes to checkout. The
implementation of this new discount policy extension requires that the stateful
aspect only executes the advice once, with the match whose bindings gathered
contain the computer with more customized pieces:
int maxCustomizedPieceNumber = 0;

int computerCounter = 0;
int computerSelected;

tracematch(User u,Computer ¢) {
//symbols and pattern as in Section 2.3

14

Expressive pattern Advice
5 ¢ S B S .
atching matches dvising

Process Process \

Statefﬁ_l aspect

Stateful aspect language interpreter

Figure 9: Requirements for Expressive stateful aspect language: a) an expressive pattern
language and b) customizable semantics per stateful aspect.

Cart cart = u.getCart();

//select the computer with the more customized pieces

if (maxCustomizedPieceNumber < getCustomizedPiecesNumber(c)) {
maxCustomizedPieceNumber = getCustomizedPiecesNumber(c);
computerSelected = c;

}

if (++computerCounter = cart.size())
//executing the original advice for ”computerSelected”

I

As we have seen before, coding around the advice is the most used option
for the current spectrum of stateful aspect languages. In this piece of code, the
original advice is only executed once, which uses computerSelected to apply the
discounts.

4.4. Requirements for an Expressive Stateful Aspect Language

We have presented many examples that illustrate different kinds of limi-
tations of existing proposals. In our opinion, a stateful aspect language that
overcomes these limitations should consider an expressive pattern language and
customizable semantics per aspect (see Figure 9):

15

Ezxpressive Pattern language. A Turing complete language allows developers
to express advanced patterns (consequence pl). In addition, first-class patterns
are useful to cleanly reuse and compose patterns (consequence p2). Finally,
the creation at runtime of patterns supports the definition of flexible patterns
(e.g. adaptive, approximate, and even evolutive patterns).

Customizable Semantics. Unlike Figure 3, Figure 9 shows that each stateful
aspect contains its matching and advising processes. Using this new approach,
each aspect can have its own semantics, which should be according to its tar-
get concern (consequence sl). In addition, the figure shows that developers
can customize the aspect semantics (consequence s2). The customization of
semantics per aspect may be an extra complexity for developers because it re-
quires a detailed knowledge of aspect language implementations. To address
this complexity, open implementations [17] propose useful programming guide-
lines. Open implementation guidelines suggest intuitive default semantics for
a program (i.e. the black-box case). For customizations (i.e. the white-box
case), these guidelines suggest that abstractions used must not depend on a
specific implementation of the program, meaning that customizations should be
self-contained: they can be understood and implemented in an isolated manner.

5. ESA

This section presents the description of our expressive stateful aspect lan-
guage, named ESA. We use a typed functional language, Typed Racket [18], to
precisely describe ESA. For reading comprehension reasons, some implemen-
tation details of Typed Racket have been omitted (Appendix B shows these
details).

ESA overview. In search of satisfying the requirements of Section 4.4, this
description allows developers to implement a stateful aspect language, whose
pattern language is Turing complete and semantics of each stateful aspect is
customizable. In the following two sections, we first introduce the ESA pattern
language, and then we explain how ESA allows developers to customize stateful
aspect semantics. Although stateful aspect languages commonly uses a rich join
point model (e.g. call join points, execution join points, field write join points,
etc), we will only focus on function-call join points because they are enough to
describe ESA.

5.1. Pattern language

In the standard formulation vision of the pointcut/advice model, a pointcut
is a function that matches a single join point. The description behind of the
ESA pattern language is a natural extension of the pointcut-advice model. We
explain this affirmation in two parts. In the first part, patterns could not be used
to gather bindings. In the second part, the ESA pattern language is extended
to support definitions of patterns that gather bindings.

16

® N e A W N e

5.1.1. Without Bindings

Whereas a pointcut is a function Pc: JoinPoint — Boolean, a pattern is a function
with the type Pattern: JoinPoint — Boolean | Pattern. A pointcut and a pattern take
a join point and return a boolean value to determine whether there is a match or
not with this join point. In addition, a pattern can return a (sub)pattern, which
specifies next join points that should be matched by the pattern® (this approach
is inspired by continuation-passing style [33]). For example, the implementation
of a pattern to match a call to the up function of a touch device is:
(: s—up Pattern) ;;Pattern is the type name for "JoinPoint —> Boolean U Pattern”
(define (s—up jp)

(eq? jp up))

The function above returns true if it matches the call to the up function; it
returns false otherwise. The first line is used to define the type of a function in
Typed Racket; in this code, the type of s-up is Pattern. The last line compares the
references between up and jpo, where jp is the function reference that is calling
at that moment. In the piece of code above, the pattern can never return a
pattern, meaning that the pattern behavior is equivalent to a pointcut.

(: call (Procedure = Pattern))
(define (call fun)

(A (ip)
(eq? jp fun)))

(define s—up (call up))
(define s—down (call down))

We can use higher-order functions to define patterns designators (i.e. func-
tions that return patterns), which allow developers to reuse code and simplify
the definitions of patterns. For example, the piece of code above shows the
definition of the pattern designator call and its use to define the patterns s-up
and s-down.

(: seq (Pattern Pattern —> Pattern))
(define (seq left right)
(A (ir)
(let ([result (left jp)])
(cond

[(Pattern? result) (seq result right)]
[(eq? result #t) right]
[else #f]))))

In ESA pattern language, we can compose patterns. For example, the piece
of code above is the implementation of the seq pattern designator, which is used
to match a sequence of two patterns. The returned pattern by seq is used to
match a sequence of a left pattern followed by a right pattern. The piece of code
above shows that depending on the left evaluation, different values are returned.
If left evaluation returns another pattern, a sequence pattern that is composed of

3Section 2.1 defines a pattern as a specification only (e.g. regular expression). In our
proposal, a pattern is a function that can take actions (e.g. match).

17

Join Point

Patte”? s-up[> s-down [>s-up s-down [>s-up
Consuming

Figure 10: How a pattern is consumed during its matching.

the continuation of left and right is returned (Line 6). If left evaluation returns #t
(i.e. true), right is only returned due to left matched completely (Line 7). Finally,
if left does not match the current join point, false is returned (Line 8). Notice
values returned on the lines 6 and 7 are patterns, which specify the next join
points that must be matched.

(: toggle—airplane—mode Pattern)
(define toggle—airplane—mode (seq s—up (seq s—down s—up)))

We illustrate the use of seq to define the pattern of the toggle airplane mode
feature. Figure 10 shows how the toggle-airplane-mode pattern (Section 1), defined
by the piece of code above, varies throughout the matching of a program exe-
cution trace. This pattern changes every time it matches a join point, notice a
pattern is drawn with non-filled triangle. In the beginning, the pattern begins
with the pattern expressed by a programmer. For the first call to up, the pattern
changes to the pattern s-down > s-up. With the down call, the pattern changes
to only s-up. Finally, once the user touches up on the screen, the whole pattern
matches.

Using our pattern language, we can easily reuse patterns to create ad-
vanced ones. For example, the piece of code below shows the pattern
toggle-airplane-mode-with-time, which reuses toggle-airplane-mode. In addition, the piece
of code shows the seqn pattern designator, which reuses seq to create a pattern
that matches a variable-size sequence of patterns. The foldl function, also known
as reduce and accumulate, processes a list of patterns in the left order to return a
new pattern.

(: toggle—airplane—mode—with—time Pattern)
(define toggle—airplane—mode—with—time (seq (call left) toggle—airplane—mode))

(: seqn ((Listof Pattern) —> Pattern))
(define (seqn patterns)
(foldl (A (pattern acc—pattern) (seq acc—pattern pattern))
(first patterns) (rest patterns)))

5.1.2. Gathering Bindings in a Environment
The previous description of our pattern language is incomplete because a pat-
tern cannot gather bindings while it is matching. Pointcuts and patterns should

18

NGO W N e

Potential results of

Prleviol_ls Current the current
Join point Result of Join point pattern evaluation
the previous
pattern evaluation Idle #
pattern(jp,env) — |Progress |Pattern X Env| pattern(jp,env) —— Progress | Pattern x Env
Match Env

Figure 11: Evaluation of a pattern and its potential kinds of results.

be able to gather bindings. The standard and complete vision of the pointcut-
advice model establishes a pointcut as a function Pc: JoinPoint — Env | J False. This
definition means that a pointcut returns an environment of bindings (instead of
true) if the pointcut matches the current join point. The ESA pattern language
is an extension of the standard pointcut-advice model because a pattern is a
function:

Pattern: JoinPoint x Env — Env | False | Pattern x Env

A pattern now also takes an environment as a parameter. As Figure 11
shows, this environment contains the bindings previously gathered by a pattern.
Like pointcuts, a pattern returns an environment when it matches. In addition,
a pattern can return a pair (instead of a pattern only) composed of a pattern
and an environment if the pattern progresses in its matching. To exemplify the
extension of the pattern language, we redefine the pattern designators call and
seq:

(: call (Procedure —> Pattern))
(define (call fun)
(X (jp env)
(if (eq? jp env) env #f)))

(: seq (Pattern Pattern —> Pattern))
(define (seq left right)
(XA (jp env)
(let ([result (left jp env)])
(cond

[(Env? result) (cons right result)]
[(pair? result) (cons (seq (get—pat result) right) (get—env result))]
[else #£]))))

Patterns now take a join point and an environment, and returns an environ-
ment when the pattern matches. The environment is an object with functional
behavior. Line 6 shows that the returned pattern by seq returns a pair that is
composed of right and the environment gathered by the left evaluation. Line 7
returns the same previous pair with the difference that right is exchanged for the
continuation of left with right. The functions with a name like get-xxx are getter
functions that return xxx from an entity.

We illustrate the power of our pattern language through an enhancement of
the feature toggle airplane mode. This feature is now triggered only if the trace
up » down » up are performed within of a time interval of five seconds:

19

(define fast—toggle—airplane—mode
(seqn (list (bind s—up 't0 get—time)
s—down
(time—diff (bind s—up 't1 get—time) t1 t0 5))))

;;where 'bind' is
(define (bind pattern id proc)
(A (jp env)
(let ([result (pattern jp env)])
(cond
[(Env? result) (add—env result id (proc))]
[else result]))))

; ;where 'time—diff' is
(define (time—diff pattern t1 tO time)
(X (jp env)
(let ([result (pattern jp env)])
(if (and (Env? result) (< (env—lookup result tl) (env—lookup result t0) time)))
env result)))

To express the fast-toggle-airplane-mode pattern, we define two reusable and
composable patterns: bind and time-diff. The first pattern binds a value when
the passed pattern matches. The second one checks the time difference between
two bindings stored in the environment when the pattern passed as argument
matches.

An object-oriented design. The reader might wonder if the ESA pattern
can be implemented on an object-oriented language (e.g. Java). It is not so
difficult to design an object-oriented solution of this pattern language. Indeed,
the ESA pattern language just defines a protocol that developers must follow.
For instance, a possible object-oriented design defines a pattern as an interface
with a match method, which is executed for every new join point; and pattern
designators are (static) methods of a class (see Appendix A for more details).

5.2. Semantics

In most stateful aspect languages, aspects of a language share the same exact
semantics [6, 8, 10, 11, 12, 13]. In ESA, every stateful aspect shares the same
default semantics, which can be customized by developers. In order to follow the
guidelines of open implementations, we use different and independent abstrac-
tions of any particular stateful aspect language implementation. Indeed, we use
MatcherCells [34], a flexible algorithm to match program execution traces. In
this section, we first explain the previous algorithm and then use to open the
semantics of a stateful aspect.

5.2.1. MatcherCells

To flexibly match join point traces, MatcherCells use self-replicating algo-
rithms [35], algorithms that emulate the reactions of a set of biological cells to
a trace of reagents. The reaction of a cell to a reagent can be the creation of an
identical copy of itself with a small variation in order to persist in the environ-
ment, nothing, death, or some of these combinations. An algorithm that follows
self-replicating behavior is defined by a pair, where the first element is the set

20

1D checkout @ - - -
b)

a)

Figure 12: a) The left cell creates a cell that expects to match the next join point and gathers
bindings.) When a cell matches the last join point specified by a pattern, the cell creates a
match cell.

e GGl > 3

e

Cell s-up > s-down B>s-up > —

Evolution -down [>s-up
s-up >s-down >s-up s-down [>s-up
s-up >s-down>s-up
s-up >s-downB>s-up

Figure 13: Evolution of a seed during the matching of a pattern.

of first cells (a.k.a. seeds) and the second one is the set of rules that governs the
evolution of these cells.

In MatcherCells, a cell contains the pattern of a stateful aspect, bindings
gathered during the matching, and a reference to its creator. Cells react to
join points, which correspond to reagents. Using the example of the discount
feature, Figure 12a shows that if a cell matches a join point, this cell creates a
new cell that expects to match the next join point specified by the pattern. In
addition, this new cell contains an environment of bindings gathered when the
join point was matched. Figure 12b shows that when there is no next join point
to match, a match cell is created to indicate a match of a pattern.

Using the example of the toggle airplane mode feature, Figure 13 shows the
evolution from a seed, which creates a set of cells during a join point trace. The
figure also shows that there is a match cell when the cell with the s-up pattern
matches. As the cell with s-up is never killed (actually, any cell is never killed
in the figure), each subsequent up join point will trigger a new match of the
pattern.

MatcherCells allow developers to add rules to control the evolution of a set of
cells. Figure 14 shows four different evolutions, where each one has a different

a) Single match
Pattern: Trace:
WG OO RO
Rules:

apply reaction,
kill creators

apply reaction,
kill creators,
add seed

b) Single match at a time
Pattern: Trace:
OO -
Rules:

c) A potential match can always start b

Pattern: Trace: @ @
a>b>c awapb @ @ =~ @ -
Rules: a|>b >c

apply reaction, al>b>c a>bp>c

kill creators,
Keep seed

d) Timing to match
Pattern: Trace:

abb a»A\t>delta»a
&éJ At > delta & e .
Rules: T

apply reaction,
kill creators,
trace life-time,
add seed

Figure 14: Different matching semantics to match a pattern (figure adapted from [34]).

set of rules that are used to customize the matching semantics of a pattern.
Although evolutions have different rules, we can appreciate that all evolutions
have the apply reaction rule, which only applies the reaction of each cell to a
join point. Figure 14a shows that the kill creators rule kills the cells that create
a new cell. Adding this rule, a pattern cannot match multiple times anymore.
Figure 14b shows that the add seed rule adds a seed if there are no cells or only
match cells. This rule allows a pattern to match again. Figure 14c shows that
the keep seed rule always keeps a seed to permit to start a new potential match
of a pattern at any moment. Finally, Figure 14d shows that the life-time for
a trace rule kills all cells whose period of time of the join point trace time has
exceeded a determined period. This rule allows developers to only match traces
of join points that occur at a period of time.

Inspired by the Decorator design pattern [16], rules of MatcherCells are func-
tions, which can be composed in order to customize the matching semantics.
For instance, the single match semantics (Figure 14a) is achieved by the com-
position of kill creators with apply reaction. In the two sections, we explain how

22

s W N e

these rules are defined and used to support the customization of the processes
of matching and advising of each stateful aspect in ESA.

AOP terminology. To avoid confusion to the reader, we will keep the use of
AOP terminology in the rest of the paper. Apart from replacing reagents with
join points, we replace cell with smatch (a stage in the match of a pattern) and
match cells with the term match. We keep the terms seed and rules because we
think these terms can be used without misunderstandings.

5.2.2. Matching Process

Unlike existing proposals, every ESA stateful aspect has own matching pro-
cess that can be customized by developers (see Figure 9). We use MatcherCells
to allow developers to define a matching process.

When an ESA stateful aspect is deployed, its matching process creates a
seed, a smatch that contains the pattern of the aspect. The matching process
evaluates the seed with every new join point. If the seed matches a join point,
this seed can create other smatches. If any smatch is a match, it means that
the stateful aspect matches its pattern. Depending on the used composition of
rules, a stateful aspect might match multiple times, even at the same time.

react: SMatchx JoinPoint x [Env x Pattern x SMatch — Env] — SMatch

A smatch uses the react function to evaluate a join point. If the smatch
matches the join point, the function returns a new smatch, otherwise the func-
tion returns the same smatch. If there is no next join point to match, the new
smatch is really a match. The last and optional parameter® of react is a function
that allows developers to add information to a smatch in its creation (more on
this at the end of this section).

rule: List<SMatch> x JoinPoint — List<SMatch>

A rule is a function that takes as parameters a list of smatches and a join
point, and returns the list of smatches that are evaluated with the next join
point. For example, the apply reaction rule implementation is:

(: apply—reaction Rule)
(define (apply—reaction smatches jp)

(remove—duplicates (append smatches
(map (XA (smatch) (react smatch jp)) smatches))))

The apply-reaction function returns the smatches reactions. A smatch, whose
reaction is itself, is in the list of smatches and their reactions (Line 4). This
means that this smatch is duplicated when both lists are joined. To prevent
this duplication, the remove-duplicates function is used. Using rule designators
(i.e. functions that return rules), developers are able to create rules that can be
composed:

4The notation [...] denotes an optional parameter.

23

(: kill—creators (Rule = Rule))
(define (kill—creators rule)
(A (smatches jp)
(let ([next—smatches (rule smatches jp)])
(diff next—smatches (get—creators (get—sons next—smatches smatches))))))

(: add—seed (Pattern — (Rule —> Rule)))
(define (add—seed pattern)
(A (rule)
(A (smatches jp)
(let ([next—smatches (rule smatches jp)])
(if (empty? (filter no—match? next—smatches))

(cons (make—seed pattern) next—smatches)
next—smatches)))))

(: keep—seed (Pattern — (Rule — Rule)))
(define (keep—seed pattern)
(A (rule)
(A (smatches jp)
(let ([next—smatches (rule smatches jp)])
(if (= (count—seeds next—smatches) 0)
(cons (make—seed pattern) next—smatches)
next—smatches)))))

These rule designators are parametrized by a rule, which corresponds to the
rule that should be applied, in most cases, before the current one. The rule
returned by Kkill-creators first applies a previous rule (e.g. apply-reaction) to obtain
a list of smatches, where the smatches that created new ones are removed for
the evaluation with the next join point. The add-seed® rule designator returns a
rule that adds a seed if there are no smatches. Finally, keep-seed always keeps
a seed. The composition of rules allows developers to define the full semantics
of a matching process. For example, the compositions of rules to obtain the
different semantics of Figure 14 are:

(define single—match (kill—creators apply—reaction))
(define single—match—at—a—time ((add—seed pattern) single—match))

(define a—potential—match—can—always—start ((keep—seed pattern) single—match))
(define timing—to—match ((add—seed pattern) ((trace—life—time delta) single—match)))

Adding context information to smatches. Some rules may need that all
smatches contain specific context information. For example, trace-life-time needs
that all smatches contain the time in their environments when a potential match
starts:

(: trace—life—time (Number — (Rule —> Rule)))
(define (trace—life—time delta)
(A (rule)
(A (smatches jp)
(let ([next—smatches (rule smatches jp)])
(filter (X (smatch)
(< (= (get—time) (env—lookup (get—env smatch) 'time))

5Notice that add-seed is in fact a higher-order rule designator, parameterized by the orig-
inal pattern or a new one.

24

delta))
smatches)))))

To add context information to smatches, the third and optional parameter
of the react function is used. This parameter is a function that receives the
values with which a smatch will be created, and returns the initial environment
of bindings of a smatch. For example, to annotate a smatch with the trace time,
one needs to provide the following function:

(: creation—with—time (Env Pattern SMatch — Env))
(define (creation—with—time env pattern creator)
(env—add env 'time (if (Seed? creator)
(get—time)
(env—lookup (get—env creator) 'time))))

In some scenarios like trace-life-time, intrinsic attributes (e.g. time, physical
space, etc) should be present in each smatch (from seed to match) in order to
support operations between smatches. In other words, these attributes crosscut
through the matching of a trace [36]. The feature of customized information
of smatches allows developers to modularize the treatment of these intrinsic
attributes.

5.2.8. Advising Process

Like the ESA matching process, the advising process is open to customiza-
tion. When one or more smatches become matches, the advising is executed
with these matches. This process executes the aspect advice with every match.
ESA entirely reifies this process through a function with the following signature:

AdvisingProcess: Advice x List<Match> x JoinPoint — AdviceReturn
where
Advice: JoinPoint x Env — AdviceReturn

An AdvisingProcess function takes three parameters: the aspect advice, the
list of matches of the pattern, and the current join point. An ESA advice also
follows the standard vision of the pointcut-advice model [4], meaning that an
advice is a function parametrized by the matched join point and an environ-
ment of bindings. The list contains the matches obtained when the matching
process used the current join point to evaluate their smatches. The type of the
value returned by the AdvisingProcess and Advice functions must be the same
(i.e. AdviceReturn). We illustrate the open ESA advising process with two differ-
ent matching processes:

(: single—advice—execution AdvisingProcess)

(define (single—advice—execution advice matches jp)
(advice jp (get—env (first matches))))

(: simultaneous—advice—executions AdvisingProcess)
(define (simultaneous—advice—executions advice matches jp)
(last (map (A (match) (advice jp (get—env match))) matches)))

25

The single-advice-execution function corresponds to an advising process that
only executes its advice once with the first match (discarding the rest of matches
if there are). This advising semantics is useful, for example, for implementing the
toggle airplane mode feature (Section 1) because simultaneous advice executions
generate unexpected results in the airplane mode of a touch device. Instead,
the multi-advice-executions function represents the consecutive advice executions,
where the value of the last execution is returned. In Section 2.3, the tracematch
implementation for the discount policy feature takes advantages the semantics
of simultaneous advice executions to apply the discounts to every computer.

5.8. Stateful Aspects in ESA

Finally, we describe how to define and weave a stateful aspect in our proposal.

5.8.1. Defining a Stateful Aspect
We have described the core elements of ESA separately so far. This section
now presents how these elements are integrated to make a stateful aspect.

make-aspect: Pattern x Advice x [Rule] x [AdvisingProcess] — StatefulAspect

The make-aspect function takes a pattern, an advice, and two more optional
parameters to create a stateful aspect. The first optional parameter, which is
a rule, is used to define matching process, and the second one allows develop-
ers to define the advising process. For example, the following stateful aspect
implements the toggle airplane mode feature:

(make—aspect (seqn (list s—up s—down s—up)) (A (jp env) (toggle—airplane—mode))
single—match—at—a—time single—advice—execution)

As toggle airplane mode requires a touch device enables/disables the air-
plane mode only every trace of up » down » up, the single-match-at-a-time rule
(Section 5.2.2) corresponds to the adequate matching semantics for this aspect.
As mentioned in Section 5.2.3, simultaneous advice executions may unexpected
results in the deployment of this feature; thereby, the advising process repre-
sented by the single-advice-execution function is needed.

Default semantics for an ESA stateful aspect. Multiple matches and si-
multaneous advice executions are distinguishing characteristics of most stateful
aspect languages. However, the understanding of these features is complex for
developers because it is necessary to reason about multiple and simultaneous
potential triggers of a stateful aspect. Therefore, we establish that the default
semantics for every ESA stateful aspect only permits a single match and ad-
vice execution. Taking into account this default semantics, we can simplify the
definition of the previous stateful aspect as follow:

(make—aspect (seqn (list s—up s—down s—up)) (A (jp env) (toggle—airplane—mode))

26

5.8.2. Weaving a Stateful Aspect
The weaving of a stateful aspect consists in evolving its list of smatches and
executing the advice with each match found:

weave: StatefulAspect x JoinPoint — AdviceReturn

(define (weave asp jp)
(let
([temp—smatches ((get—rule asp) (get—smatches asp) jp)]
[matches (filter is—match? temp—smatches)])
(begin
(update—smatches asp (filter is—not—match? temp—smatches))
(if (> (length matches) 0)
;;execute advice with bindings of each match cell
;;else execute the join point proceed

))))

The evolution of the list of smatches is determined by a rule, which represents
the matching process of a stateful aspect. If matches are found after the rule is
applied, these matches are removed from the list and the advice is executed for
every one of them.

5.4. Summary

We have described the three components of ESA. Developers can reuse
and compose patterns (consequence pl) with a Turing complete language (con-
sequence p2). The semantics of stateful aspects can be customized by each
stateful aspects (consequences sl and s2). The design of these components in
ESA are modular (e.g. the pattern language is only a protocol that the matching
process must follow).

6. ESA-JS: ESA for JavaScript

ESA-JS is a complete and practical implementation of ESA for JavaScript,
dynamic prototype-based language with higher-order functions. With ESA-JS,
we address the limitations of existing stateful aspect languages described in
Section 4. Apart from ESA-JS, we have developed a version of ESA for Ac-
tionScript, named ESA-AS3. Although this last implementation is not de-
scribed here because of space reasons, ESA-AS3 is available on the ESA Web
site (http://pleiad.cl/esa).

A brief overview of AspectScript. ESA-JS is currently implemented as a
seamless extension of AspectScript [37], an aspect language for JavaScript. In
AspectScript, pointcuts and advices are functions; and aspects and join points
are objects. In addition, AspectScript supports dynamic deployment of aspects
with expressive strategies of scoping [38].

27

var toggleAirplaneMode = {
pattern: seqn([s—up,s—down,s—up]),
advice: function(jp,env) {
Device.toogleAirplaneMode ();
}

kind: ESA.AFTER
+

ESA. deploy (toogleAirplaneMode);

The piece of code above shows the implementation of the toggle airplane
mode feature in ESA-JS. An ESA-JS stateful aspect is a JavaScript object
(Line 1). In this implementation of ESA, the patterns and advices are functions
(lines 2-3) , i.e. first-class values in JavaScript. As in AspectScript, ESA-JS also
supports dynamic deployment of stateful aspects (Line 9). Notice this piece
of code represents a correct implementation of the feature because of default
semantics of ESA (i.e. single match at a time and single advice execution).

6.1. Pattern Language

In Section 4.1, the solution presented for the limited discount policy has
the problem that its advice is stateful. This is because existing stateful aspect
languages are insufficiently expressive to allow developers to define patterns that
gather a variable-size of list of bindings. Using ESA-JS, we can define patterns
that gather a variable-sized list of bindings, implying a stateful advice is not
need anymore:
var limitedDP = {

pattern: starUntil(addComputer, call(checkout)),

advice: function(jp,env) {
var computerlList = env.computers;

var computersWithBestDiscounts = getBestDiscounts(computerList);
//apply discounts to the computers with the best discounts

T
kind: ESA.BEFORE
+

The pattern of limitedDiscountPolicy matches and gathers all computers added to
the cart until the user does check out. The advice of this aspect simply applies
the three best discounts of the list of computers stored in the environment,
computerList. The piece of code below shows the implementation of the pattern
designators starUntil and addComputer:
var starUntil = function (star,until) {

return function (jp,env) {
var result = until(jp,env);

if (isEnv(result)) {
return result;

}

result = star(jp,env);
if(isEnv(result)) {
return [starUntil(star,until),result];

}

28

return false;

b

var addComputer = bind(call(cart.add), function(jp,env) {
var addedComputer = jp.args[0]; //Ist argument passed to the function ”cart.add”
return env.bind(”computers”, addedComputer);

1

The starUntil pattern designator returns a pattern that matches the star pat-
tern zero or more times until the until pattern matches. The pattern returned by
addComputer matches a call to the cart.add method. In addition, the returned pat-
tern, using the env.bind method, binds the computers identifier to the added com-
puter. In ESA-JS, if two values are bound to the same identifier (e.g. computers),
they are aggregated as a list, where the most recent value is added at the end
of the list.

6.2. Matching Process

Before our proposal, developers cannot customize the matching semantics of
a stateful aspect. Therefore, developers must code around the advice to address
this limitation. Section 4.2 exemplifies this limitation with the selective discount
policy of the online store. This extension to the discount policy establishes that
one computer by category must apply its discount. Neither a modification to
the pattern nor to the advice of the stateful aspect is needed to implement this
discount policy extension in ESA-JS. Only the customization of the matching
process is required:

var selectiveDP = limitedDP; //reusing the aspect limitedDP

selectiveDP . matchingProcess =
keepSeed(selectiveDP . pattern)(filterByCategory (killCreators(applyReaction)));

The composition of rule above represents the potential match can always start
matching semantics (Figure 14c) plus the filtering by categories. After applying
the reaction to each smatch and killing the smatches that created new ones, the
rule returned by the evaluation of filterByCategory removes the new smatches that
contain computers whose categories are not different from current ones. The
implementation of the filterByCategory rule designator is:
var filterByCategory = function(rule) {

return function(smatches,jp) {

var nextSmatches = rule(smatches, jp);
var categories = getCategories(getComputers(nextSmatches));

//newSmaiches are the difference between mext and current smatches
var newSmatches = diff (nextSmatches,smatches);

var smatchesWithRepeatedCategories = newSmatches. filter (function(newSmatch) {
return categories.some(function(category) {
return getCategory(newSmatch.env.computer) = category;

Iak
i

//returns nextSmatches without the smatches (recently added) with repeated categories

29

return diff(nextSmatches, smatchesWithRepeatedCategories);

b

Categories of every computer are obtained from the environment of bindings
that each smatch contains. The category of the each new smatch is compared to
current categories to know whether this category is new or not. Finally, only the
new smatches with new categories are returned and kept inside of the stateful
aspect.

Multiple matches based on binding dependences. In the piece of code
above, notice that the decision of filtering smatches depends on category, a bind-
ing that is not directly included in the pattern definition. Unlike ESA-JS, the
matching process is closed for existing stateful aspect languages, therefore, it is
not possible that their semantics of multiple matches depends on bindings that
are not specified on the definition of a pattern (e.g. Tracematches [10]).

6.3. Advising Process

The advising semantics is also closed and fixed for stateful aspect developers
in the existing proposals. Thereby, such as Section 4.3 showed, the implemen-
tation of the personalized discount policy needs to intrusively modify the advice
of the aspect presented.

The openness of the matching process is insufficient to modularly implement
the new discount policy. This is so because the computer with the greater num-
ber of customized pieces is only known when the user does check out (i.e. inside
of the advising process). The personalized discount policy requires that the as-
pect only executes its advice, which applies the discounts, with an environment
that contains the computer with more customized pieces. Using ESA-JS, it is
not again necessary to modify the advice:

var personalizedDP = limitedDP; //reusing the aspect limitedDP

personalizedDP . advising = function(advices, matches, jp) {
var env = matches[0].env;
var computerList = env.computers;

//obtaining the computer with more customized pieces
var computerWithMorePieces = computerList.max(function(computerl,computer2) {
return getCustomizedPiecesNumber(computer2) — getCustomizedPiecesNumber(computerl);

)
//replacing the list of computer with only one computer
env.computers = [computerWithMorePieces];
advice(jp,env);

}

As we can appreciate above, the computer with more customized pieces,
computerWithMorePieces is obtained from the environment of the smatch. Then,
env.computers is replaced with a new array that only contains the binding
computerWithMorePieces. Finally, the advice with this modified environment.

30

var counter = 0;

var aspect = { var statefulAspect = {
pointcut: call(foo), pattern: repeatPattern(foo ,PATTERN_LENGTH),
advice: function(jp,env) { advice: function(jp,env) {
if (++counter = PATTERN_LENGTH) { print(”match”);
print(”match”); X
counter = 0; } matching: //depends on the experiment (single or multiple)
1 kind: ESA.BEFORE
kind: AspectScript.BEFORE }
}

Figure 15: (Left) AspectScript aspect used for the experiment. (Right) ESA stateful aspect
used for the experiment.

6.4. Performance

We ran performance tests of ESA-JS. The results of these tests were com-
pared to Tracematches. For this experiment, an Intel Core 2 Duo, 2.66 GHz
with 2 GB of RAM. Regarding software, we used Ubuntu 10.04 (kernel 2.6.32)
with the Firefox JavaScript interpreter (version 1.8.0) for ESA-JS and the abc®
compiler (version 1.3.0) for Tracematches.

//PATTERN_LENGTH varies from 5 to 30

start = getCurrentTime();

for (i = 0; i < PATTERN_LENGTH; ++i) {
foo();

}

delta = getCurrentTime() — start;

The experiment measured the average time used to execute the piece of code
above with an AspectScript aspect and an ESA-JS stateful aspect (Figure 15).
The AspectScript aspect keeps a counter of matches and the ESA-JS stateful
aspect with two different semantics, single match (the ESA default) and multiple
match semantics. Finally, we execute the same experiment with an aspect of
AspectJ and a stateful aspect of Tracematches. For the experiment, the base
code above together with each aspect implementation is executed 500,000 times.
The experiment was repeated for patterns of different lengths (from 5 to 30).

ESA-JS and Tracematches are aspect language extensions of AspectScript
and AspectJ respectively. Figures 16 and 17 show the increment of the overhead
of ESA-JS and Tracematches over their aspect languages. The overhead of
ESA-JS is evidently less than Tracematches, and the Tracematches overhead
quickly increases when the pattern is longer (which may be due to the index
scheme used in long patterns [39]). In addition, Figure 16 shows the choice
of the semantics of matching process strongly affects performance of a ESA-JS
stateful aspect: performance of the default semantics is quite similar to an

Shttp: //www.sable.mcgill.ca/abc/

31

ESA Overheads over AspectScript

50
500

4% ESA with Single Match (default semantics)
-~ ESA with Multiple Matches

w
~N
n

Tracematch Overhead over Aspect)

19

2 7375
E £
; 25 ; 250
2 2
5 £
3 125 % 125

0 0

5 7 9 11 13 15 17 19 5 7 9 11 13 15 17 19
Pattern length Pattern length
Figure 16: Overhead of ESA with two different Figure 17: Overhead of Tracematches over
matching semantics over AspectScript. AspectJ.
Aspect] Overhead AspectScript Overhad

2 W 1800
g s é 1350 ’/‘—M—‘
s =
g é 900
g0 g w0

o 0

5 7 9 11 13 15 17 19 5 7 9 1 13 15 17
Pattern length Pattern length

Figure 18: The overhead of AspectJ over the Figure 19: AspectScript overhead over
Java language. JavaScript.

aspect of AspectScript; instead, the stateful aspect that uses the multiple match
semantics differs from the aspect implementation in an exponential manner.

Although figures 16 and 17 show a less overhead in ESA-JS, these results
do not mean that ESA-JS has less overhead for JavaScript than Tracematches
for Java. Figures 18 and 19 shows the overhead of AspectScript is significantly
greater than AspectJ. The AspectJ performance is very similar to Java (average
of 1.3) instead of the AspectScript performance (average of 1,800).

Discussion. The current implementation of AspectScript is very slow com-
pared to AspectJ. This so because AspectScript reifies every join point of the
program execution to know whether an aspect matches or not at runtime; no
partial evaluation or other optimization is performed. Instead, Aspect] opti-
mizes aspect weaving aggressively, therefore the additional layer introduced by
Tracematches is comparatively more costly. In addition, the choice of the match-
ing process significantly impacts on the ESA-JS overhead. Finally, raw ESA-JS
overhead in this experiment does not really reflect the fact that JavaScript is
more widely used for interactive applications, that may even include remote
communication. For instance, we have tested ESA-JS on a JavaScript Tetris

32

game, without any noticeable difference”.

7. Assessing the Expressiveness of ESA

We assess the expressiveness of ESA through the emulation of the semantics
of some stateful aspect languages. For reading comprehension reasons, we use
ESA-JS to express the semantics of Alpha [13], Halo [12], and Tracematches [10].
For each stateful aspect language, we show the necessary customizations of
matching and advising processes.

7.1. Alpha

As Alpha uses Prolog, a pattern is really a query that is answered using a
backward chaining algorithm [23]. Searching a data base, this algorithm finds a
set of different answers for a query. Each answer is represented by an environ-
ment of bindings. In Alpha, the data base and the set of answers corresponds to
a join point trace and the matches of a pattern respectively. The previous point
means that if, in Alpha, a pattern matches twice or more times simultaneously,
the advice is only executed using matches whose environments of bindings gath-
ered at least differ in one binding (e.g. the environments [x=1,y=1] and [x=1,y=2]
are different because of y).

Matching process. Alpha stateful aspects support the multiple matches of a
pattern without any restriction, therefore, the matching process only uses the
applyReaction rule (Section 5.2.2):

var alphaMatching = applyReaction;

Adwvising process. If there are two or more matches of a pattern simulta-
neously, the advice is only executed with matches with different bindings. To
achieve this goal, we customize the function of the advice process (Section 6.3):

var alphaAdvising = function(advice, matches, jp){
var envs = getEnvs(matches);
//filtering environments that contain the same contextual information
var filteredEnvs = envs.removesDuplicates(function(envl,env2) {
return equal(envl,env2); //same bindings?

1

return last(consecutiveAdviceExecutions(jp, filteredEnvs));

H
//where

var consecutiveAdviceExecutions = function(jp,envs) {
return envs.map(function(env) {

return advice(jp,env);

9k

H

"The Tetris game can be tested online on the ESA Website: http://pleiad.cl/esa.

33

1
2
3
4
5
6
7
8
9

10
11

Pattern a[>b > b

Join Point Trace Alpha Halo

GGG O® 1 1
OG-0 2 | 1

Figure 20: For the same the join point trace, the subtle difference between the semantics of
Halo and Alpha causes a different number of matches for the same pattern.

The alphaAdvising function first filters environments in order to only catch the
environments with different bindings. Finally, the function executes the advice
in a consecutive manner with each environment of filteredEnvs.

7.2. Halo

Halo uses the Rete algorithm [24] to match patterns. Unlike Alpha, this
algorithm is based on forward chaining [23], meaning that Halo signals that if
all potential matches of a pattern must at least differ in one binding. Although
the Halo semantics is subtly different from Alpha, this difference causes different
matches of a pattern. Figure 20 illustrates this difference, we evaluates Halo and
Alpha with the same pattern and two join point traces. With the first join point
trace, we can see that the number of matches for both proposals is one. This
is because the pattern is simultaneously matched twice, but as both matches
have the environment of bindings ([v=1]), a match is discarded. With the second
join point trace, we can instead observe different number of matches. In Alpha,
the are two matches of the pattern because its advising process actually filters
matches with the same environment, and in this example, two different join
point trigger the matches. With Halo, there is only one match because the
filters starts inside of the matching process inside of the advising process.

Matching Process. As Halo filters the potential matches during the matching
process, we need a rule (designator) to carry out this filter:

var differentBindings = function(rule) {
return function(smatches, jp) {
var nextSmatches = rule(smatches, jp);
var newSmatches = difference (nextSmatches,smatches);

//filtering new smatches with the same environment
var filteredNewSmatches = newSmatches. filter (function(newSmatch) {

var oldSisters = sisters(newSmatch,smatches); //get old sisters of newSmatch

return oldSisters.some(function(oldSister) {
return equalEnv(newSmatch, oldSister);

34

16

1)
Iok

return difference(nextSmatches, filteredNewSmatches);

b

The differentBindings rule designator allows developers to filters smatches with
different environments of bindings. The rule returned by differentBindings only
keeps a new smatch if its bindings are different from all its sisters or its creator
is a seed (lines 7-15). Finally, the rule composition to express the matching
process of Halo is:

haloMatching = keepSeed(pattern)(differentBindings(applyReaction));

Advising Process. In Halo, the advice process only executes the advice with
every match in a consecutive manner:

var haloAdvising = function(advice,matches, jp){
return last(consecutiveAdviceExecutions(jp,getEnvs(matches)));

}

7.3. Tracematches

Like Halo, the semantics of Tracematches intuitively signals that the ad-
vice is only executed using matches with different bindings. Unfortunately, this
intuitive semantics is not completely correct because it does not take into ac-
count the effect of symbols on the matching of a program execution trace. In
Tracematches, the use of symbols, which is used to define patterns, is one of the
defining characteristic of the proposal. However, this characteristic complicates
the understandability of its semantics at first glance. For example, we see that
with two similar patterns a>b">c and a>brc and the following join point trace
a » bl » b2 » ¢, there are two matches of the first pattern but there is no match
of the second one. To correctly understand the semantics of Tracematches, it is
necessary to know the symbol semantics.

7.8.1. Symbol Semantics

Like JavaMop [14, 28], Tracematches use symbols to define the pattern of
stateful aspect. A tracematch symbol is composed of a pointcut plus a set of
bindings gathered by the pointcut. The symbols are used to define patterns as
regular expressions that should match. In addition, these symbols are used a)
to discard evaluations of smatches with unnecessary join points, b) to remove
smatches that do not satisfy conditions imposed by these symbols, and ¢) to
selectively create smatches. We now illustrate these three points using Figure 21,
which shows three tracematches (¢1, ¢2, and ¢3), and Figure 22 that shows the
number of matches of these tracematches for the three different Java program
executions:

35

tracematch () { tracematch (int v) { tracematch (int v) {

sym a after: call(* *.a(..)); sym a after: call(* *.a(..)); sym a after: call(* *.a(..));
sym b after: call(* *.b(int)); sym b after: call(* *.b(int)) sym b after: call(* *.b(int))
&& args (v); && args(v);
sym c after: call(* *.c(..)); sym c after: call(* *.c(..)); sym c after: call(* *.c(..));
a b {print("match t1");} a b ({print("match t2");} a b c {print("match t3");}
} } }

Figure 21: Pieces of code of three tracematches: t1, ¢2, and ¢3.

Number of matches of

Java Program t t2 3

a(); b(1); b(2); z(); c(); 1 2 2
a(); b(1); b(1); c(); 1 1 0
a(); b(1); b(2); b(1); ¢(); 1 2 1

Figure 22: Numbers of matches for each tracematch.

First program. The tracematches ¢2 and ¢3 match twice, and t1 only matches
once. Although ¢1 and ¢2 match the same program execution (a();b(int);), the
different values bound to v of the b symbol allows t2 to match twice. This is
because a symbol is also identified by the set the of bindings gathered, meaning
that calls b(1) and b(2) represent two different instances of the b symbol for ¢2
(see Figure 23a). Also, notice the call to the z function is not considered by
either of the three tracematches because there is no symbol that matches this
call. If there were a symbol that identifies the call to z in 3, there would not
be any match in this program due to z does not appear between b and ¢ of the
t3 pattern (a b ¢) (see Figure 23b).

Second program. In t2, there is only matches once because in the two calls
to b, the binding gathered is the same (v=1). t3 matches zero times because
its regular expression does not match with the trace of symbols a b b ¢ because
there are two b symbols identified and not only one.

Third program. The binding gathered by the pointcut that matches the second
call b(1) does not again allow ¢3 to match more times (see Figure 23c), meaning
that ¢3 only matches the trace a(); b(2); c();.

We now express the Tracematches semantics in ESA-JS through the
customizations of the matching and advising processes. To express the
Tracematches matching process in ESA, we must adapt the three previous
points of symbols semantics to our proposal: a) a smatch is only evaluated
with join points that correspond to its expected next symbol, b) a smatch that
matches a symbol that does not correspond to its next symbol is removed, and
¢) a smatch can only be created if its creator has not created another smatch

36

<
Il
)|

3
t2 £3 adbpc t3 apb>c
with a z symbol

@» MATCH @»,@,@ MXH @»»,@ M><H
G)> MATCH @”@'@ MAGCH @”@ MATCH

a) b) c)

Figure 23: a) Two matches, each one with a different binding. b) No matches due to the z
symbol. ¢) One match fails due to the symbol b with the same binding.

that corresponds to the same instance of a symbol (e.g. b(1) and b(2) are two
different instances of the b symbol in ¢2 and ¢3). It is the ¢ point which al-
lows Tracematches to match multiple times a pattern. The advising process in
Tracematches composes and executes advices like in AspectJ [3].

7.3.2. Matching Process
To achieve the points a) and b) of the previous section, it is necessary to
define a new version of the applyReaction rule:
var tracematchApplyReaction = function(alphabet){
return function applyReaction(smatches, jp){
var nextSmatches = []; //empty array

//Visiting each smatch
smatches. foreach (function (smatch) {

if (DoesJPCorrespondTheExpectedSymbol(alphabet, jp,smatch)){
var nextSmatch = react(smatch,jp);
if (nextSmatch != smatch)
nextSmatches. push(smatch, nextSmatch);
}

else
nextSmatches. push(smatch);

i

return nextSmatches;

b

The applyReaction rule is now a rule designator that takes as a parameter a set
of definitions of symbols, named alphabet. For example, alphabet might contain
the symbols a, b, and ¢ of the three tracematches shown in Figure 21. To achieve
the point a), Line 7 shows that a smatch is only evaluated if the jp join point
corresponds to the next expected symbol for this smatch. For example, this line
allows the three tracematches to ignore the call to the function z in the first
program of Figure 22. To achieve the point b), the lines 10 and 13 show that
smatch is not removed if smatch matches the next expected symbol (i.e. progress
in its matching) or this smatch is not evaluated. In other words, a smatch is
only removed if it matches an incorrect symbol. To satisfy the point c¢), we use
the differentBindings rule designator (Section 7.2) to filter duplicated instances of
symbols (i.e. symbols with the same environment).

37

Finally, the rule composition to express the semantics of the Tracematches
matching process is:

tracematchMatching = keepSeed(pattern)
(differentBindings(tracematchApplyReaction(alphabet)));

7.3.3. Advising Process

If the advice kind of a stateful aspect in Tracematches is before or after, the
advising process executes the advice for every match in undetermined order®.
Instead, if the advice kind is around, the advising process chains the advice
executions, each one nesting the next one. Hence, we customize the advising
process in the following way:
var tracematchesAdvising = function(advice,matches, jp) {

var envs = getEnvs(matches);

//randomize elements of envs
envs = randomizeOrder(envs);

//chain advice executions like Aspect]
var chainedAdvices = chainAdvice(advice,envs,isAround());
return chainedAdvices(jp);

Notice that it is not necessary to filter by environments that contain different
bindings (like in Halo) because it is now filtered by the matching process.

7.4. Summary

Through the customization of matching and advice processes, we can instan-
tiate different stateful aspect languages. In addition, any instantiation of ESA
can enjoy of the expressive pattern language of our proposal. For example, any
instantiation allows developers to define a pattern like (a¥)* that gathers one or
more lists of bindings during its matching. The former pattern is not currently
supported in most stateful aspect languages.

8. Conclusion

Because creating specialized stateful aspect languages or overburdening their
aspects is a common task to address specify needs, we propose a precise descrip-
tion of an expressive stateful aspect language, named ESA. Our proposal is
sufficiently expressive to encompass existing stateful aspect languages and new
possible variants. ESA, which is accurately described in Typed Racket [18],
concretely allows developers to a) use a Turing complete pattern language with
full support for first-class patterns, bringing benefits of reusability and compo-
sition of patterns, and b) customize internal processes of each stateful aspect.

81n [10], the authors mention that have not defined any particular ordering on the advice
executions. To the best of our knowledge, the authors do not discuss this subject again.

38

Using this description, we developed ESA-JS, a concrete and practical imple-
mentation of ESA for JavaScript. We illustrated and assessed the expressiveness
of this proposal through several examples and implementing the semantics of
some existing stateful aspect languages. To contrast ESA with existing propos-
als, we develop a deep reference frame that evaluates these proposals in terms
of expressiveness.

Whereas the common concern for existing stateful aspect languages is per-
formance, we explore a different and unusual concern such as expressiveness.
Despite of our focus, we are aware that performance is important, thereby, the
future of ESA is oriented towards to address this concern:

Elegible pattern language. In this proposal, developers can use a Turing
complete language to define patterns. However, Turing expressiveness is not
always necessary, e.g. toggle airplane mode (Section 1). Similar to JavaMop [14],
we plan to allow developers to select the pattern language expressiveness. With
this, ESA improves performance according to specific features of the selected
pattern language.

Matching process. Although we showed that the selection of the semantics
of the matching process can improve performance (Section 6.4), we think some
semantics (e.g. multiple matches) needs to improve its performance. Bodden et
al. in [40, 41, 42, 43] and Meredith’s dissertation [29] studied several proposals
in this line of research, e.g. dependency advices [41].

Availability. ESA-JS (and ESA-AS3) along with the examples presented
in this paper, is available online at http://pleiad.cl/esa. ESA-JS currently sup-
ports the Firefox, Safari, Chrome, and Opera browsers without the need of an
extension.

References

[1] D. Parnas, On the criteria for decomposing systems into modules, Com-
munications of the ACM 15 (1972) 1053-1058.

[2] G. Kiczales, J. Irwin, J. Lamping, J. Loingtier, C. Lopes, C. Maeda,
A. Mendhekar, Aspect oriented programming, in: Special Issues in Object-
Oriented Programming, Max Muehlhaeuser (general editor) et al., 1996.

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, W. Griswold,
An overview of AspectJ, in: J. L. Knudsen (Ed.), Proceedings of the 15th
European Conference on Object-Oriented Programming (ECOOP 2001),
number 2072 in Lecture Notes in Computer Science, Springer-Verlag, Bu-
dapest, Hungary, 2001, pp. 327-353.

[4] H. Masuhara, G. Kiczales, C. Dutchyn, A compilation and optimization
model for aspect-oriented programs, in: G. Hedin (Ed.), Proceedings of
Compiler Construction (CC2003), volume 2622 of Lecture Notes in Com-
puter Science, Springer-Verlag, 2003, pp. 46-60.

39

[5]

[11]

[12]

[13]

[15]

L. D. Benavides Navarro, R. Douence, M. Stidholt, Debugging and testing
middleware with aspect-based control-flow and causal patterns, in: Pro-
ceedings of the 9th ACM/IFIP /USENIX International Middleware Confer-
ence, volume 5346 of Lecture Notes in Computer Science, Springer-Verlag,
Leuven, Belgium, 2008, pp. 183-202.

M. Martin, B. Livshits, M. S. Lam, Finding application errors and security
flaws using PQL: a program query language, in: [44], pp. 365-383. ACM
SIGPLAN Notices, 40(11).

P. Avgustinov, J. Tibble, O. de Moor, Making trace monitors feasible, in:
[45], pp. 589-608. ACM SIGPLAN Notices, 42(10).

P. Eugster, K. Jayaram, EventJava: An extension of java for event corre-
lation, in: S. Drossopoulou (Ed.), Proceedings of the 23rd European Con-
ference on Object-oriented Programming (ECOOP 2009), number 5653 in
Lecture Notes in Computer Science, Springer-Verlag, Genova, Italy, 2009,
pp- 570-594.

R. Douence, P. Fradet, M. Siidholt, Trace-based aspects, in: R. E. Filman,
T. Elrad, S. Clarke, M. Aksit (Eds.), Aspect-Oriented Software Develop-
ment, Addison-Wesley, Boston, 2005, pp. 201-217.

C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins,
O. Lhotdk, O. de Moor, D. Sereni, G. Sittampalam, J. Tibble, Adding
trace matching with free variables to AspectJ, in: [44], pp. 345-364. ACM
SIGPLAN Notices, 40(11).

S. F. Goldsmith, R. O’Callahan, A. Aiken, Relational queries over program
traces, in: [44], pp. 385-402. ACM SIGPLAN Notices, 40(11).

C. Herzeel, K. Gybels, P. Costanza, T. D’Hondt, Modularizing crosscuts in
an e-commerce application in lisp using halo, in: Proceedings of the 2007
International Lisp Conference, ILC '07, ACM, New York, NY, USA, 2009,
pp. 11:1-11:14.

K. Ostermann, M. Mezini, C. Bockisch, Expressive pointcuts for increased
modularity, in: A. P. Black (Ed.), Proceedings of the European Confer-
ence on Object-Oriented Programming (ECOOP), volume 3586 of LNCS,
Springer-Verlag, 2005, pp. 214—-240.

P. O. Meredith, D. Jin, D. Griffith, F. Chen, G. Rosu, An overview
of the MOP runtime verification framework, International Jour-
nal on Software Techniques for Technology Transfer (2011) 249-289.
Http://dx.doi.org/10.1007/s10009-011-0198-6.

D. Luckham, The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems, Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2001.

40

[16]

[17]

[18]

[19]

[20]

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Ele-
ments of Reusable Object-Oriented Software, Professional Computing Se-
ries, Addison-Wesley, 1994.

G. Kiczales, J. Lamping, C. V. Lopes, C. Maeda, A. Mendhekar, G. Mur-
phy, Open implementation design guidelines, in: Proceedings of the 19th
International Conference on Software Engineering (ICSE 97), ACM Press,
Boston, Massachusetts, USA, 1997, pp. 481-490.

S. Tobin-Hochstadt, M. Felleisen, The design and implementation of Typed
Scheme, in: Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2008), ACM Press, San
Francisco, CA, USA, 2008, pp. 395-406.

P. Avgustinov, E. Bodden, E. Hajiyev, L. Hendren, O. Lhotdk, O. de Moor,
N. Ongkingco, D. Sereni, G. Sittampalam, J. Tibble, Aspects for trace
monitoring, in: K. Havelund, M. Nez, G. Rou, B. Wolff (Eds.), Formal
Approaches to Software Testing and Runtime Verification, volume 4262 of
Lecture Notes in Computer Science, pp. 20-39.

R. Douence, O. Motelet, M. Stidholt, A formal definition of crosscuts,
in: Proceedings of the Third International Conference on Metalevel Ar-
chitectures and Separation of Crosscutting Concerns, REFLECTION ’01,
Springer-Verlag, London, UK, 2001, pp. 170-186.

R. J. Walker, K. Viggers, Implementing protocols via declarative event
patterns, SIGSOFT Softw. Eng. Notes 29 (2004) 159-169.

J. Postel, J. Reynolds, File transfer protocol (ftp). request for comments
959, 1985.

F. Bancilhon, D. Maier, Y. Sagiv, J. D. Ullman, Magic sets and other
strange ways to implement logic programs (extended abstract), in: Pro-
ceedings of the fifth ACM SIGACT-SIGMOD symposium on Principles of
database systems, PODS ’86, ACM, New York, NY, USA, 1986, pp. 1-15.

C. L. Forgy, Rete: A fast algorithm for the many pattern/ many object
pattern match problem, Artificial Intelligence 19 (1982) 17-37.

K. Darlington, The essence of expert systems, Essence of computing series,
Prentice Hall, 2000.

L. D. B. Navarro, M. Siidholt, W. Vanderperren, B. De Fraine, D. Suvée,
Explicitly distributed aop using awed, in: Proceedings of the 5th ACM In-
ternational Conference on Aspect-Oriented Software Development (AOSD
2006), ACM Press, Bonn, Germany, 2006, pp. 51-62.

F. Chen, G. Rogu, Towards monitoring-oriented programming: A paradigm
combining specification and implementation, in: Workshop on Runtime
Verification (RV’03), volume 89(2) of ENTCS, pp. 108 — 127.

41

[28]

[29]

[30]

[37]

[39]

F. Chen, G. Rosu, Mop: An efficient and generic runtime verification
framework, in: [45], pp. 569-588. ACM SIGPLAN Notices, 42(10).

P. O. Meredith, Efficient, Expressive, and Effective Runtime Verification,
Ph.D. thesis, University of Illinois at Urbana-Champaign, 2012.

P. Leger, E. Tanter, Towards an open trace-baced mechanism, in: G. T.
Leavens, S. Katz, M. Mezini (Eds.), Proceedings of the Ninth Workshop
on Foundations of Aspect-Oriented Languages (FOAL 2010), Rennes and
Saint Malo, France, pp. 25-30.

P. Leger, E. Tanter, An open trace-based mechanism, in: J. Aldrich,
R. Massa (Eds.), Proceedings of the 14th Brazilian Symposium on Pro-
gramming Languages (SBLP 2010), Salvador - Bahia, Brazil, pp. 123-138.

P. Leger, E. Tanter, R. Douence, Modular and flexible causality control on
the web, Science of Computer Programming (2012). Available online.

G. J. Sussman, G. L. S. Jr., Scheme: An interpreter for extended lambda
calculus, in: MEMO 349, MIT AI LAB, Massachusetts Institute Of Tech-
nology Artificial Intelligence Laboratory, 1976, pp. 1-43.

P. Leger, E. Tanter, A self-replication algorithm to flexibly match execution
traces, in: Proceedings of the 11th Workshop on Foundations of Aspect-
Oriented Languages (FOAL 2012), ACM Press, Potsdam, Germany, 2012,
pp. 27-32.

J. V. Neumann, Theory of Self-Reproducing Automata, University of Illi-
nois Press, Champaign, 1., USA, 1966.

A. Holzer, L. Ziarek, K. Jayaram, P. Eugster, Putting events in context:
aspects for event-based distributed programming, in: Proceedings of the
10th ACM International Conference on Aspect-Oriented Software Devel-
opment (AOSD 2011), ACM Press, Porto de Galinhas, Brazil, 2011, pp.
241-252.

R. Toledo, P. Leger, E. Tanter, AspectScript: Expressive aspects for the
Web, in: Proceedings of the 9th ACM International Conference on Aspect-
Oriented Software Development (AOSD 2010), ACM Press, Rennes and
Saint Malo, France, 2010, pp. 13-24.

E. Tanter, Expressive scoping of dynamically-deployed aspects, in: Pro-
ceedings of the 7th ACM International Conference on Aspect-Oriented Soft-
ware Development (AOSD 2008), ACM Press, Brussels, Belgium, 2008, pp.
168-179.

E. Bodden, Personal Communication, 2012. July 10, 2012.

42

[40]

[42]

[43]

E. Bodden, P. Lam, L. Hendren, Clara: a framework for statically eval-
uating finite-state runtime monitors, in: 1st International Conference on
Runtime Verification (RV), volume 6418 of LNCS, Springer, 2010, pp. 74—
88.

E. Bodden, F. Chen, G. Rosu, Dependent advice: a general approach
to optimizing history-based aspects, in: Proceedings of the 8th ACM In-
ternational Conference on Aspect-Oriented Software Development (AOSD
2009), ACM Press, Charlottesville, Virginia, USA, 2009, pp. 3-14.

E. Bodden, Specifying and exploiting advice-execution ordering using de-
pendency state machines, in: International Workshop on the Foundations
of Aspect-Oriented Languages (FOAL), pp. 31 — 42.

M. Parzonka, A Library-Based Approach to Efficient Parametric Run-
time Monitoring of Java Programs, Master’s thesis, Technische Universitat
Darmstadt, Darmstadt, 2013.

OOPSLA 2005, Proceedings of the 20th ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA 2005), ACM Press, San Diego, California, USA, 2005. ACM
SIGPLAN Notices, 40(11).

OOPSLA 2007, Proceedings of the 22nd ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages and Applications
(OOPSLA 2007), ACM Press, Montreal, Canada, 2007. ACM SIGPLAN
Notices, 42(10).

43

PDL: Pattern Designator Library

7
,

«Interface» PDL
Patterm
tch(jp: JoinPoint, - Env): MatchResult + call(methodName: String): Pattern
+ mateh(p: JoinPoint, env: Env): MatchResu + seq(left: Pattern, right: Pattern): Pattern

+ seqN(patterns: List<Pattern>): Pattern

«abstract»
MatchResult
Match Advance Stuck
+env: Env + pattern: Pattern +b: boolean = false
+env: Env

Figure A.24: An object-oriented design for the ESA pattern language.

Appendix A. An Object-Oriented Design for the ESA Pattern Lan-
guage

In this paper, we affirm the ESA pattern language can be implemented in
other paradigms like object oriented. Figure A.24 shows a class diagram for our
pattern language. A pattern is only an Interface, whose method match is executed
for every new join point. This method can return every possible result of a
pattern: an environment, a pair, or false. Finally, the PDL class contains a set of
pattern designators. The following piece of code implements the pattern of the
toggle airplane mode feature (Section 1) in Java with the proposed design:

Pattern s—up = PDL. call("up”);
Pattern s—down = PDL. call(”down”);

ArraylList<Pattern> patterns = new ArrayList<Pattern>();
patterns.add(s—up);

patterns.add(s—down);

patterns.add(s—up);

Pattern toggleAirplaneMode = PDL.seqn(patterns);

Appendix B. Complete Description of ESA in Typed Racket

Using Typed Racket [18], this section presents the complete description of
ESA. At the ESA website (http://pleiad.cl/esa), this description and a testsuite
are available to download. For space reasons, we do not include the implemen-
tations of some helper functions in the following description.

Appendiz B.1. Pattern Language

The ESA pattern language only requires functions that follow the signature
of a pattern. In Typed Racket, the define-type construct allows developers to

44

define types, and define-predicate is used to make a predicate for a (customized)
type. The piece of code below defines the Pattern type and two predicates: one
for a pair of Pattern and Env, and another for a Env. These predicates are useful to
know what a pattern evaluation returns. Notice the definition of a pattern uses
the Rec construct, which is necessary to define recursive types in Typed Racket.

;i Pattern type
(define-type Pattern (Rec Pat (JoinPoint Env — (U Env False (Pair Pat Env)))))

;i Predicate for Pattern X Env

;7 Note: Typed Racket does not support the definition of predicate for a particular
;;signature of a function, therefore, the 'Pattern' type must be replaced with 'Procedure'
(define-predicate PatternEnvPair? (Pair Procedure Env))

. Predicate for Env

(define-predicate Env? Env)

Some pattern designators. The following piece of code shows the complete
implementation of the call, seq, segn, bind, where, and time-diff pattern designators.
Only segn and timediff subtly vary their implementations from Section 5.1:

::To match the call to a function
(: call (Procedure = Pattern))
(define (call fun)
((b env)
(if (eq? jp fun) env #f)))

;;To match a sequence of two patterns
(: seq (Pattern Pattern —> Pattern))
(define (seq left right)
(A (jp env)
(Let ([result (left jp env)])
(cond
[(PatternEnvPair? result) (cons (seq (get—pat result) right) (get—env result))]
[(Env? result) (cons right result)]

[else #f])))))

;;To match a sequence of 'n' patterns
(: seqn ((Listof Pattern) —> Pattern))
(define (seqn patterns)
(foldl (A : ([pattern : Pattern] [accPattern : Pattern]) (seq accPattern pattern))
(first patterns) (rest patterns)))

;7 To bind a value when a pattern matches
(: bind (Pattern Symbol (Env —> Env) —> Pattern))
(define (bind pattern id gather)
(A (ip env)
(let ([result (pattern jp env)])
(cond
[(Env? result) (env—bind result id (gather env))]

[else env]))))

;;To verify a condition (using bindings of the environment) when a pattern matches
(: where (Pattern (Env = Boolean) —> Pattern))
(define (where pattern condition)
(A (jp env)
(let ([result (pattern jp env)])
(and (Env? result) (condition result)))))

45

;;To verify a period of time when a pattern matches
(: time—diff (Pattern Symbol Symbol Real —> Pattern))
(define (time—diff pattern tl tO time)
(A (ip env)
(let ([result (pattern jp env)])
(if (and (Env? result) (< (cast (env—lookup result t1) Real) (cast (env—lookup result t0) Real) time))

env result))))

Appendiz B.2. Adaptation of MatcherCells for ESA

We adapt the MatcherCells algorithm [34] to integrate into ESA. Seeds and
matches are structures in this description, and a smatch is only type that is the
union of Seed, Match, and a list that represents an intermediate stage between a
seed and a match. The reaction of a smatch is carry out by the react function,
which takes three parameters. The last parameter, ctx-inf, is optional, where
keep-previous-bindings is its default value.

::Seed structure
(define-struct: Seed
([pat : Pattern]
[env : Env]))

. :Match structure
(define-struct: Match
([env : Env]
[creator : SMatch]))

; ;SMatch type
(define-type SMatch (Rec SM (U Seed Match (List Pattern Env SM))))

::Reaction of a smatch
(: react (SMatch JoinPoint [#:ctx—inf (Env Pattern SMatch —> Env)] —> SMatch))

(define (react smatch jp #:ctx—inf [ctx—inf keep—previous—bindings])
(Let*
([pattern (get—pat smatch)]

[env (get—env smatch)]
[result (pattern jp env)]) ;;evaluating the pattern of the smatch

(cond
;i According to 'result',this function returns a new smatch,seed,or the same smatch

[(PatternEnvPair? result) (make—smatch (get—pat result)
(ctx—inf (get—env result) (get—pat result) smatch)

smatch)]
[(Env? result) (make—match result smatch]
[else smatch]))) ;; the same smatch

.. Default context information for a smatch
(: keep—previous—bindings (Env Pattern SMatch — Env))
(define (keep—previous—bindings env pat creator)

env)

Appendiz B.3. Matching Process
The matching process is defined by a composition of rules, where a rule is a
function with the following signature in Typed Racket:

46

(define-type Rule ((Listof SMatch) JoinPoint —> (Listof SMatch)))

Some rules. Only the trace-life-time rule varies its definition from Section 5.2.2.
In Typed Racket, the < function requires two Real parameters, therefore, it is
necessary to cast the value stored in the environment.

;3 This rule just applies the reaction to each smatch
(: apply—reaction Rule)
(define (apply—reaction smatches jp)
(remove—duplicates (append smatches
(map (X : ([smatch : SMatch])
(react smatch jp)) smatches))))

;7 This rule kill to every smatch that created a new one
(: kill—creators (Rule = Rule))
(define (kill—creators rule)

(A (smatches jp)
(let ([next—smatches (rule smatches jp)])
(diff next—smatches (get—creators (get—sons next—matches smatches)))

)))

;7 This rule adds a seed when there is no smatches or only matches

(: add—seed (Pattern = (Rule —> Rule)))

(define (add—seed pattern)

(A (rule)
(A (smatches jp)
(let ([next—smatches (rule smatches jp)])
(if (empty? (filter no—match? next—smatches))

(cons (make—seed pattern) next—smatches)
next—smatches)))))

;3 This rule always keeps at least a seed
(: keep—seed (Pattern — (Rule — Rule)))
(define (keep—seed pattern)
(A (rule)
(A (smatches jp)
(let ([next—smatches (rule smatches jp)])
(if (= (count—seeds next—smatches) 0)
(cons (make—seed pattern) next—smatches)
next—smatches)))))

;3 This rules kills a smatch when this lives more than a period of time

(: trace—life—time (Real — (Rule = Rule)))

(define (trace—life—time delta)

(A (rule)
(A (smatches jp)
(let ([next—smatches (rule smatches jp)])
(filter (X (smatch)
(< (= (get—time) (cast (env—lookup (get—env smatch) 'time) Real))
delta)) smatches)))))

Some examples of matching semantics. Using the previous rules, it is
possible to define some matching semantics, for example:

(: single—match—at—a—time (Pattern —> Rule))
(define (single—match—at—a—time pattern)
((add—seed pattern) single—match))

47

(: a—potential—-match—can—always—start (Pattern — Rule))
(define (a—potential—match—can—always—start pattern)
((keep—seed pattern) single—match))

(: timing—to—match (Real Pattern —> Rule))
(define (timing—to—match delta pattern)
((add—seed pattern) ((trace—life—time delta) single—match)))

Appendiz B.4. Advising Process

The return type of the advice and the advising process of a stateful aspect
must be the exact same. To satisfy this constraint, we use parameterized types
of Typed Racket. For example, the signature of an ESA advice is defined as
follow:

; Advice type
(define-type (Advice A) (JoinPoint Env — A))

The following piece of code illustrates the use of parameterized types to
define an advice that only prints a message (and returns Void):
(: print—call—to—foo (Advice Void))

(define (print—call—to—foo jp env)
(printf "Calling to foo™"))

The signature of a function that represents an advising process uses poly-
morphic types of Typed Racket to enforce the same return type for this function
and the advice passed as parameter:

;Advising Process type

(define-type AdvisingProcess (A1l (A) ((Advice A) (Listof SMatch) JoinPoint — A)))
Some examples of advising semantics. The implementations of advising
processes shown in Section 5.2.3 do not vary.

Appendiz B.5. Stateful Aspect

As the piece of code below shows, a stateful aspect is a structure with
five fields: pattern, advice, matching process, advising process, and a list of
smatches. When a stateful aspect is created (make-aspect), the smatch list only
contains a seed. The make-aspect function, which makes a stateful aspect, takes
two optional parameters: mp and ap. These optional parameters represent the
matching process and advising process respectively.
;s StatefulAspect structure. This uses a parameterized type for its advice
(define-struct: (A) StatefulAspect

([pattern : Pattern]

[advice : (Advice A)]

[matching : Rule]

[advising : AdvisingProcess]

[smatches : (Listof SMatch)])

)

;; This function creates a stateful aspect

(: make—aspect (A1l (A) (Pattern (Advice A) [#:mp Rule] [#:ap AdvisingProcess] — (StatefulAspect A))))

(define (make—aspect pat adv #mp [mp (single—match—at—a—time pat)] #:ap [ap single—advice—execution])
(StatefulAspect pat adv mp ap (list (make—seed pat))))

48

