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Near-Minimum Bit-Error Rate Equalizer Adaptation
for PRML Systems

Jamal Riani, Steven van Beneden, Jan W. M. Bergmans, Senior Member, IEEE, and Andre H. J. Immink

Abstract—Receivers for partial response maximum-likelihood
systems typically use a linear equalizer followed by a Viterbi detec-
tor. The equalizer tries to confine the channel intersymbol interfer-
enceto a short span in order to limit the implementation complex-
ity of the Viterbi detector. Equalization is usually made adaptive
in order to compensate for channel variations. Conventional adap-
tation techniques, e.g., LMS, are, in general, suboptimal in terms
of bit-error rate (BER). In this paper, we present a new equal-
izer adaptation algorithm that seeks to minimize the BER at the
Viterbi detector output. The algorithm extracts information from
the sequenced amplitude margin (SAM) histogram and incorpo-
rates a selection mechanism that focuses adaptation on particular
data and noise realizations. The selection mechanism is based on
the reliability of the add compare select (ACS) operations in the
Viterbi detector. From a complexity standpoint, the algorithm is
essentially as simple as the conventional LMS algorithm. More-
over, we present a further simplified version of the algorithm that
does not require any hardware multiplications. Simulation results,
for an idealized optical storage channel, confirm a substantial per-
formance improvement relative to existing adaptation algorithms.

Index Terms—Adaptive equalizers, intersymbol interference,
partial response signaling, sequenced amplitude margin (SAM),
Viterbi detection.

I. INTRODUCTION

THE OPTIMAL receiver for estimating a data sequence in
the presence of intersymbol interference (ISI) and additive

Gaussian noise [1] can, generally, not be realized because of its
excessive complexity. This fact has led to the development of a
variety of suboptimal and lower complexity receivers.

In many practical systems, a linear equalizer is first used to
shape the channel symbol response to an acceptably shorter tar-
get response. A Viterbi detector (VD), suitable for the target
response [2], subsequently estimates the transmitted data se-
quence. Such systems are known as partial response maximum-
likelihood (PRML) systems. PRML systems are widely used in
digital recording [3] to combat the extensive ISI, caused by the
channel, especially at high recording densities.
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Equalization in PRML systems is, usually, made adaptive
in order to compensate for channel variations. One of the most
popular adaptation methods is based on the MMSE criterion [4].
This method minimizes the power of the error signal, with the
error signal being the difference between the actual and the
ideal (noiseless) VD input. This minimization is achieved re-
gardless of correlation or data-dependency of the error signal,
as caused, for example, by residual ISI (RISI) due to mise-
qualization. However, it is known that RISI or correlated noise
can cause considerable bit-error rate (BER) degradation when
compared to a system operating with a comparable amount of
additive white Gaussian noise (AWGN) and no RISI. There-
fore, MMSE equalization does not guarantee, in general, opti-
mum BER performance. To minimize BER, the equalizer must
minimize RISI for data patterns that are critical for bit detec-
tion and might tolerate more RISI for less critical data pat-
terns. In other words, the effort of equalization must be focused
primarily on critical data patterns, by improving their corre-
sponding detection SNR. As far as noise correlation is con-
cerned, the equalizer must seek an appropriate tradeoff between
noise correlation and RISI in order to achieve the best BER.
These requirements cannot, in general, be fulfilled with MMSE
equalization.

Adaptive minimum-BER equalization has already been stud-
ied for the case of full response equalization and sample-by-
sample detection [5] and decision-feedback equalization [6].
However, in the context of PRML systems, no such studies have
been reported. A step toward minimum-BER adaptive equal-
ization was reported in [7] where a new equalizer adaptation
criterion was derived from the sequenced amplitude margin
(SAM) [8], [9]. The novel idea in [7], known as the LMS SAM
(LMSAM) error, is to base equalizer adaptation on minimizing
the “variance” of the SAM for particular bit patterns and error
events. The error events considered by the LMSAM technique
are single-bit errors at transitions in the data. This restriction to
single-bit errors makes the LMSAM technique suboptimal for
channels where other error events are important. Moreover, bas-
ing the equalizer adaptation on minimizing the SAM variance
only is, in general, not optimal in terms of the BER, as will be
shown in this paper.

This paper presents a new equalizer adaptation algorithm
that seeks to minimize the BER. The algorithm incorporates
a selection mechanism that focuses equalizer adaptation only
on a particular region of the SAM histogram. The selection
mechanism is based on the reliability of the Add Compare Select
(ACS) operation in the VD. From an implementation standpoint,
our algorithm is essentially as simple as the LMS algorithm.

0090-6778/$25.00 © 2007 IEEE
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Fig. 1. Discrete-time model of a PRML system.

Moreover, a further simplified version of the algorithm that
does not require any multiplications is proposed.

The remainder of this paper is organized as follows. Section II
describes the system model and nomenclature. Section III pro-
vides analytical steps needed to understand the behavior of the
VD as a function of the error signal at its input. This allows us
to propose a cost function for equalizer adaptation. Section IV
explains the new equalizer adaptation schemes. Simulation re-
sults, presented in Section V, show the merits of our algorithm
compared to existing ones.

II. SYSTEM MODEL AND NOMENCLATURE

A discrete-time model of a PRML system is shown in Fig. 1 .
A binary sequence bk ∈ {±1} is transmitted, at a rate 1/T , over
a linear dispersive channel with finite impulse response hk . The
channel output is corrupted by additive zero-mean noise nk .
The reasoning in this paper, concerning equalization, is quite
general and does not assume any prior knowledge of the nature
of the noise nk , e.g., the noise nk is not necessarily Gaussian
and can be data-dependent. The received or replay signal rk is
the noisy channel output and is given by

rk = (h ∗ b)k + nk

where ‘∗’ denotes convolution. The channel impulse response
is, in general, quite long and may be time-varying. For this
reason, adaptive partial response (PR) equalization [4] is used
in order to transform the channel response to a shorter and well-
defined impulse response. The equalizer impulse response wk

is optimized so that the overall impulse response, at its output,
is as close as possible to a prescribed short impulse response
that we refer to as the target response gk . The equalizer output
xk serves as input to a VD that is matched to the target response
gk and that produces bit decisions b̂k . The detector input xk is
ideally equal to the reference signal (g ∗ b)k . However, because
of channel noise and RISI, xk can be written as

xk = (g ∗ b)k + εk

where εk denotes the error signal at the detector input and con-
tains contribution of channel noise and RISI caused by mise-
qualization.

Before proceeding with equalizer adaptation that minimizes
BER, let us first understand, in the next section, the dependency
of the VD performance on the error signal εk . This is, then, used
in order to derive a practical equalizer adaptation criterion that
is directly linked to the BER.

For mathematical convenience, we omit the delays of the
different modules and the latency of the bit detector and assume
that b̂k = bk .

Fig. 2. Example of a 4-state trellis.

III. DERIVATION OF THE ADAPTATION CRITERION

The VD in Fig. 1 operates on a trellis that is matched to the
target response gk . Every path in this trellis corresponds to an
admissible bit sequence. The detector selects the sequence that
leads to the smallest path metric in the trellis [1]. The metric of
a bit-sequence ak is given by the Euclidian metric

M(a) =
∑

i

(xi − (g ∗ a)i)2 (1)

where this summation is taken over all received symbol in-
dices. Obviously, the metric M(a) is optimal, in the maximum-
likelihood sense, when the error signal εk is white and Gaussian.
Because this is not always the case in practice, the VD employing
the Euclidian metric (1) can be suboptimal. However, because
the metric M(a) is widely used in practice, due to its simplic-
ity, we focus in the sequel on this metric. The results of this
paper can be extended to other metrics. An example is shown in
Section IV-B.

An example of a 4-state trellis is shown in Fig. 2. At time kT ,
the VD employs, for every state, an ACS operation to select the
best path arriving at each state; the other path is discarded. Let us
assume for the sake of the argument that the path corresponding
to the transmitted bit-sequence bk arrives at state S0 at time kT .
We denote by b0

k and b1
k the selected and discarded paths by the

ACS operation at state S0 and time kT . An erroneous ACS deci-
sion will occur at time kT when the correct path, corresponding
to bk , is discarded, i.e., when b1 = b. The selected path, in this
case, is b0 = b + 2e, where e = b0 −b

2 (ek ∈ {0,±1}) is referred
to as the bit-error sequence. This erroneous ACS decision occurs
with a probability

Pr(ACS error|b, e) = Pr(M(b + 2e) −M(b) < 0). (2)

The left part of (2) represents the probability that the ACS
operation induces a decision error, by discarding the correct
path, given the transmitted bit-sequence bk and an admissible
bit-error sequence ek , i.e., a sequence in {0,±1} for which
bk + 2ek is an admissible bit sequence.

With the assumption of an infinitely-long backtracking depth
in the VD, the overall BER is directly related to the probability
of ACS errors over all possible data patterns and admissible bit-
error sequences. Minimization of the probability of ACS error
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for a given bit-error sequence leads to minimization of the BER
for that specific bit-error sequence, i.e., of the contribution of
this sequence to the overall BER.

The variable S(e) = M(b + 2e) −M(b) is known in litera-
ture as the SAM and was first introduced in [8]. Upon invoking
(1), S(e) can be written as

S(e) = 4
∑

i

(
(g ∗ e)2

i − (g ∗ e)iεi

)
= 4(δT

e δe − Xe) (3)

where δe is a column vector given by δe,i = (g ∗ e)i , δ
T
e δe is the

Euclidian weight of the bit-error sequence ek , and Xe = δT
e ε

denotes the correlation between δe,k and the error signal εk .
Using (3), (2) can be rewritten as

Pr(ACS error|b, e) = Pr(δT
e δe < Xe). (4)

In order to minimize (4) for a particular bit-error sequence ek ,
optimal equalization must shape εk , or, equivalently, the variable
Xe , such that Pr(δT

e δe < Xe) is minimized. A first attempt
toward this goal is to minimize E[X2

e ] according to the LMSAM
algorithm, as suggested, for single-bit errors, in [7]. However,
this is not optimal because minimization of E[X2

e ] yields no
control on the sign of E[Xe ] whereas this sign is of capital
importance for Pr(δT

e δe < Xe).
By way of illustration, we consider in Appendix A the case

when the channel noise nk is additive and Gaussian and study the
impact of residual ISI on the SAM. We show mainly two points.
First, E[Xe ] and E[X2

e ] are both functions of the equalizer
response wk (20), (21). Second, E[Xe ] affects (4) differently
than the variance σ2

Xe
= E[X2

e ] − E[Xe ]2 of Xe . The average
of Xe , when positive, causes a degradation in effective Euclidian
weight of the bit-error sequence ek . The variance of Xe can be
seen as an increase in channel noise power. Thus, minimizing
E[X2

e ] is suboptimal because, on the one hand, this does not
provide the optimal tradeoff between E[Xe ] and σXe

and, on
the other hand, this does not constrain the sign of E[Xe ] whereas
the latter is of capital importance for (4). This sign tells whether
the residual ISI is constructive or destructive in terms of (4).

Because Appendix A assumes the prior knowledge of the
channel response and noise characteristics, its results cannot be
directly used in the context of adaptive equalization. In order to
come up with a simple criterion on Xe , which is directly linked
to minimization of (4), we make the following observations:

1) First, an ACS error occurs only when δT
e δe < Xe . There-

fore, it is natural to consider the values of Xe only in a
certain interval of interest, namely, when Xe is higher than
a certain threshold around δT

e δe .
2) Second, although the distribution of Xe is, in general, not

Gaussian, its tail above δT
e δe , or, equivalently, the tail of

S(e) below zero, can be approximated with a Gaussian
tail. This argument has been first used and validated in
[9] in order to extract the BER estimates from the SAM
distribution. The validation of this argument in [9] was
based on both simulated data and experimental replay
signals taken from different optical disk systems.

Example 1: In order to provide a simple explanation of the
Gaussian tail approximation, let us consider the case where
the channel noise nk has a Gaussian distribution. The er-
ror signal εk can be written as εk = (m ∗ b)k + uk where
mk = (w ∗ h)k − gk and uk = (w ∗ n)k is Gaussian as it is
a filtered version of a Gaussian noise. The variable Xe , which
is written as Xe =

∑
k (g ∗ e)k (m ∗ b)k +

∑
k (g ∗ e)kuk , can,

then, be interpreted as a superposition of different Gaussian
distributions; one distribution per bit sequence. For a given
bit-sequence bk , the mean of the corresponding Gaussian dis-
tribution is given by

∑
k (g ∗ e)k (m ∗ b)k and its variance by

δT
e Ruuδe where Ruu denotes the autocorrelation matrix of uk .

Because the variance of these Gaussian distributions is indepen-
dent of bk , the tail of Xe , above δT

e δe , is mainly determined by
the bit-sequence b for which

∑
k (g ∗ e)k (m ∗ b)k is the biggest,

i.e., b = arg maxb

∑
k (g ∗ e)k (m ∗ b)k . This justifies the Gaus-

sian tail approximation on the distribution of Xe . Note that the
bit-sequence b corresponds to the sequence with the most de-
structive ISI for the bit-error sequence ek . ♦

Following the aforementioned observations, we introduce the
truncated version of Xe over the interval ]Te,+∞[, where the
positive threshold Te is smaller than δT

e δe , i.e., 0 < Te ≤ δT
e δe .

The truncated version of Xe is denoted by X ′
e and is defined as

X ′
e

.= Xe {Xe >Te } =
{

Xe if Xe > Te

0, otherwise
(5)

where the function {Y } takes the value 1 if the Boolean variable
Y is true and 0 otherwise.

Under the assumption that the tail of the distribution of Xe

over ]Te,+∞[ can still be approximated as a tail of a Gaussian,
we will show that, for a judicious choice of Te , Pr(δT

e δe < Xe)
is an increasing function of E[X ′

e ]. In other words, increasing
E[X ′

e ] leads necessarily to an increase in Pr(ACSerror|b, e)
and vice versa. In fact, if we denote by µe and σ2

e , respectively,
the average and the variance of the Gaussian distribution that
fits best the tail of the distribution of Xe over ]Te,+∞[ (see
Fig. 3), then one can write

Pr(δT
e δe < Xe) � Q

(
δT

e δe − µe

σe

)
(6)

where the Q-function is defined as Q(x) = 1√
2π

∫ ∞
x e

−t 2
2 dt. Be-

sides, it can be shown that

E[X ′
e ] = µeQ

(
Te − µe

σe

)
+ (2π)−1/2σe exp

{
− (Te − µe)2

2σ2
e

}
.

This expression can be further simplified, over the SNR
range of practical interest, by using the approximation Q(x) �
(2πx2)−1/2 exp {−x2/2} for x > 2. This leads to

E[X ′
e ] � TeQ

(
Te − µe

σe

)
. (7)

In order to make the argument of the Q-function in (7) pro-
portional to that in (6), an obvious choice of Te is Te = δT

e δe .
However, this choice of Te implies that X ′

e is nonzero only when
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Fig. 3. Conceptual plot of the distribution of Xe (solid). The dashed curve
corresponds to the Gaussian fitting of the tail of Xe on ]Te , +∞[. The hashed
area corresponds to Pr(δT

e δe < Xe ).

the VD makes a detection error. Accordingly any equalizer adap-
tation, in this case, can only operate in a data-aided (DA) mode
where prior knowledge of the transmitted bits is available. In
order to be able to also operate in the decision-directed (DD)
mode, where the detected bits are used in the adaptation loop,
the threshold Te has to be taken strictly smaller than δT

e δe . To
this aim, one can readily show that thresholds Te of the form

Te = (1 − α)δT
e δe + αµe (8)

where α ∈ [0, 1], make the argument of the Q-function in (7)
proportional to that of (6). In fact, such a choice of Te leads to

E[X ′
e ]

Te
� Q

(
(1 − α)

δT
e δe − µe

σe

)
. (9)

It is apparent that minimizing (6) is equivalent to minimizing
(9). Thus, in order to minimize the BER for a particular bit-error
sequence ek , equalizer adaptation can be based on minimizing
the following cost function:

∆e =
E[X ′

e ]
Te

(10)

where the threshold Te is given by (8). The value of α is chosen
such that the Gaussian tail approximation holds on ]Te,+∞[.
Typical values of α are in the interval [0, 0.5]. The dependence of
Te on µe (8) implies that, in practice, the variables µe for the dif-
ferent bit-error sequences must be estimated and adapted. How-
ever, because at reasonable SNRs, µe � E[Xe ] = E[δT

e ε] 	
δT

e δe , one can simply neglect the dependency of Te on µe . In
fact, using the Cauchy–Schwartz inequality, one can prove that

E[δT
e ε] ≤

√
(δT

e δe)E[εT ε], which implies, at reasonable SNRs,

that µe 	 δT
e δe because E[εT ε] 	 δT

e δe . Unless specified oth-
erwise, we fix a value of α and consider the threshold Te to be
equal to (1 − α)δT

e δe .
Example 2: For the sake of illustration, let us consider the

error signal εk as a zero-mean Gaussian noise signal and denote
its autocorrelation matrix by Rε . This is especially true if the
residual ISI at the detector input is negligible. For a given bit-
error sequence ek , the variable Xe is, then, Gaussian with a
mean µe = 0 and a variance σ2

e = δT
e Rεδe . The threshold Te in

(8) is, then, given by Te = (1 − α)δT
e δe and one can show, after

a few mathematical steps, that (10) boils down to

∆e = f

(
Te

σe

)
where the function f is given by f(x) = 1√

2πx2 exp
{

−x2

2

}
.

Because f is a strictly decreasing function for x > 0, one con-
cludes that minimizing ∆e is equivalent to maximizing the ratio
Te

σe
= (1 − α) δT

e δ e√
δT

e Rε δe

which is proportional to the square root

of the effective SNR [1]. This example illustrates, once more,
that designing an equalizer that minimizes ∆e is equivalent to
maximizing the effective SNR, i.e., minimizing the BER for a
given bit-error sequence. ♦

IV. NEAR-MINIMUM BER EQUALIZER ADAPTATION

In the previous section, a cost function (10), which is directly
related to the BER for a given bit-error sequence, was derived.
In this section, we employ (10) in order to derive the near-
minimum BER (NMBER) equalizer adaptation. The basic idea
of the NMBER adaptation is to minimize (10) for all relevant
bit-error sequences. The different functions ∆e for the different
bit-error sequences are, then, combined with different weights
so as to achieve the best overall BER. For clarity, let us first
focus on a given bit-error sequence ek and develop an adaptive
equalization scheme that minimizes (10). The second part of this
section combines the different minimizations of the different
functions ∆e such that the overall BER, approximated by its
union-bound expression, is optimized.

For a given bit-error sequence ek , an equalizer adaptation
scheme that minimizes (10) can be based on the steepest de-
scent algorithm. This consists of following, at each iteration,
the opposite direction of the gradient of ∆e with respect to the
equalizer coefficients. The adaptation of the pth-equalizer tap
can be written as follows:

w(k+1)
p = w(k)

p − η′(e)
∂∆e

∂wp

∣∣∣∣
w=w (k )

(11)

where w
(k)
p is the pth-equalizer tap at time kT . The coeffi-

cient η′(e) denotes the equalizer adaptation constant. Note that
this adaptation constant is, in general, dependent on the error-
sequence ek . The reasons for this dependency are explained in
the next paragraph. By using (5) and the equality ∂ εi

∂wp
= ri−p ,

one can prove that

∂X ′
e

∂wp
|w=w (k ) =

(∑
i≤k

δe,iri−p

)
{Xe >Te }. (12)

Upon replacing the expectation of X ′
e in (10) by its instantaneous

realization, (11) can be rewritten as

w(k+1)
p = w(k)

p − η(e)
(
δT

e rk−p

)
{M(b+2e)−M(b)<Th (e)}

(13)
where η(e) = η′(e)/Te , rk−p = [rk−p , rk−p−1 , . . .]T , and
Th(e) = 4αδT

e δe and where the selection condition, i.e.,
{Xe >Te }was rewritten in terms of path metrics in the VD trellis

using (3).
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Now, if we consider a set of bit-error sequences, the overall
BER can be seen as the accumulation of conditional BERs for
each bit sequence and admissible bit-error sequence, weighted
differently for every bit sequence and bit-error sequence. More
precisely, if we assume that transmitted sequences are of length
N , then a union bound on the BER can be obtained using Bayes’
rule. This is written as

BER ≤
∑
b,e

p(b, e)
Hw (e)

N
Pr(δT

e δe < Xe) (14)

where the summation is taken over all possible bit sequences
b of length N and bit-error sequences e. The probability that
a bit-sequence b is transmitted and that e is an admissible bit-
error sequence is denoted by p(b, e). The Hamming weight of
the bit-error sequence e, i.e., the number of nonzeros in e, is
denoted by Hw (e). In order to derive a near-optimal expres-
sion of the weights η(e), we use the union-bound expression to
approximate BER.

Averaging over all bit sequences and admissible bit-error se-
quences, one can see that the NMBER adaptation in (11) seeks
to minimize the total cost function

∆ =
∑
b,e

p(b, e)η′(e)∆e . (15)

Note that the averaging operation is inherited in the equalizer
adaptation loop. If we first consider the case where α = 0, then
we have Te = δT

e δe and ∆e = Pr(δT
e δe < Xe) using (6), (9),

and (10). It follows that, in order to make the minimization of
(15) equivalent to that of the right-hand expression of (14), it is
sufficient to take η′(e) = η(e)Te to be proportional to Hw (e),
or, equivalently,

η(e) = η0
Hw (e)
δT

e δe

(16)

where η0 is a constant independent of the bit-error sequence ek .
Therefore, in order to minimize the BER, the minimization of the
different cost functions ∆e should be weighted differently for
different bit-error sequences, according to (16). The division by
δT

e δe in (16) can be omitted in practice because the dominant bit-
error sequences have approximately similar Euclidian weights,
which are close to the minimal Euclidian weight.

When α > 0, then the expression of η(e) given in (16) be-
comes suboptimal in general. However, from our simulations,
no noticeable improvement in the BER was provided by further
optimization of η(e). For this reason, we consider the expression
of η(e), given by (16), in the sequel.

The overall adaptation of the pth-equalizer tap value is de-
picted in Fig. 4. At every clock cycle kT , an ACS opera-
tion is employed at every state. At every state, two quanti-
ties are derived. First, the difference in path metrics between
the selected and the discarded paths is taken. Second, a bit-
error sequence ek is derived as the bitwise difference be-
tween the two sequences corresponding to the discarded and
the selected paths. The bit-error sequence ek , taken from the
state where the best path ends, is used to compute the vector
δe = [(g ∗ e)k , (g ∗ e)k−1 , . . . (g ∗ e)k−L ]T , where the integer
value L depends on the maximum length of relevant bit-error

Fig. 4. NMBER adaptation. Only the adaptation of the pth-equalizer tap is
shown.

sequences. In the sequel, we simply fix L to the backtracking
depth of the VD. The equalizer adaptation is enabled only when
the difference in path metrics is smaller than Th(e) = 4αδT

e δe .
For simplicity, one can fix Th(e) to

Th(e) = Th = 4α min
e

δT
e δe

without any significant loss in performance. When the adap-
tation is enabled, the scalar product of the vector δe with
the equalizer input vector rk−p = [rk−p , rk−p−1 , . . . rk−p−L ]T

is computed, scaled with −η(e), and then passed to an ideal
discrete-time integrator that produces the updated pth-equalizer
tap value.

A geometrical interpretation of the NMBER algorithm, which
provides an intuitive explanation, is given in Appendix B.

A. Efficient Realization of Near-Minimum BER Equalizer
Adaptation

In Fig. 4, the scalar product operation δT
e rk−p can be inter-

preted as focusing equalizer adaptation on the frequency region
that is of interest for the bit-error sequence ek . The amplitude
response of gk in the calculation of δT

e rk−p can be interpreted
as only a modification of the adaptation open-loop gain per
frequency. Therefore, one can replace, in δT

e rk−p , gk by any
response g′k that has the same phase response as gk . This DOF
in the choice of the amplitude response of g′k can be used to fur-
ther simplify the NMBER algorithm. In order to illustrate the
principle, we consider optical recording and magnetic recording
systems. Any other system can be treated similarly.

Because target responses for optical recording and perpendic-
ular magnetic recording systems are, often, symmetric, a simple
response g′(z) = z−Dg , where Dg denotes the delay in bits of
the target response gk , can be used to compute δT

e rk−p . For
longitudinal magnetic recording systems, the target response is
antisymmetric and is of the form g(z) = (1 − z−1)(1 + z−1)n ,
where n = 1, n = 2, or n = 3, corresponding to PR4, EPR4,
and E2PR4 classes of targets. In this case, the response
g′(z) = (1 − z−1)z−n/2 if n is even and g′(z) = (1 −
z−2)z−(n−1)/2 if n is odd captures the phase response of the
target response g(z). This choice of g′(z) can, thus, be used
to compute δT

e rk−p . For the sake of clarity, let us focus in the
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sequel only on optical recording and perpendicular magnetic
recording channels. The simplified NMBER (SNMBER) equal-
izer adaptation rule is, then, obtained by replacing in (13) gk by
g′k = δ(k − Dg ). This can be written as

w(k+1)
p = w(k)

p − η(e)
(
eT
k−Dg

rk−p

)
{M(b+2e)−M(b)<Th }

(17)
where Dg is the delay of the target response gk and
eT
k−Dg

= [ek−Dg
, ek−Dg −1 , . . . , ek−Dg −L ]. This adaptation al-

gorithm presents the advantage of further improved efficiency.
In fact, because, in practice, relevant bit-error sequences span
only few bits, the scalar products with e can be realized with
only few additions. As an example, single bit-errors are given by
e = ±[1, 0, 0], the simplified equalizer update boils down, ex-
cept for the selection mechanism, to eT

k−Dg
rk−p = ±rk−p+Dg

.
In the case of a double-bit error, given by e = [1, 0,−1], the
equalizer update is simply given by eT

k−Dg
rk−p = rk−p+Dg

−
rk−p−2+Dg

.

B. Extension of the NMBER Algorithm to NPML Systems

Noise-predictive maximum-likelihood (NPML) detectors
arise by imbedding a noise prediction/whitening process into
the branch metric computation of the Viterbi detector [10], [11].
This boils down to modifying the path metric in (1) by re-
placing the target response by g′k = gk −

∑M
i=1 pigk−i and the

detector input by yk = xk −
∑M

i=1 pixk−i , where pi denotes
an M -tap noise prediction filter. The NPML path metric be-
comes M′(a) =

∑
i(yi − (g′ ∗ a)i)2 . Therefore, the NMBER

algorithm, in this case, can be derived by simple analogy to
the PRML case. One can check that the NMBER adapta-
tion for NPML systems can be obtained by simply replac-
ing in (13) gk by g′k and applying a whitening filter to the
delayed equalizer input, i.e., by replacing in (13) rk−p by
r′k−p = rk−p −

∑M
i=1 pirk−p−i . The equalizer adaptation rule

then becomes

w(k+1)
p = w(k)

p − η(e)
(
δ′

T
e r′k−p

)
{M′(b+2e)−M′(b)<Th (e)}

where δ′e,i = (g′ ∗ e)i and r′k−p = [r′k−p , r
′
k−p−1 , . . . ,

r′k−p−L ]T .

V. SIMULATION RESULTS

By way of illustration, we consider an idealized optical stor-
age channel according to the Braat–Hopkins model [12]

H(f) =


sin(πf T )

πf T

(
cos−1 | f

fc
|− f

fc

√
1−( f

fc
)2

)
, |f | < fc

0, |f | ≥ fc

where fc denotes the normalized optical cutoff frequency. Data
bk is taken to be run-length-limited [13] with run-length param-
eters (d, k) = (1, 7). The channel noise is AWG with a variance
σ2

n . Channel SNR is defined as SNR =
∑

k h2
k/σ2

n . The nor-
malized cutoff frequency fc of an optical recording channel
depends on the laser wavelength λ, the numerical aperture (NA)
of the objective lens, and the channel bit-length Tbit and is
given by fc = 2NA

λ
Tbit . We use here the Blu-ray optical pa-

FIg. 5. Amplitude–frequency of idealized optical channel having a normalized
cutoff fc = 0.34, 3-tap targets g0 = [1, 2, 1] and g1 = [1, 1.6, 1] and 5-tap
target g2 = [0.17, 0.5, 0.67, 0.5, 0.17]. For clarity of the plot, the different
targets are normalized to have the same DC.

rameters, i.e., NA = 0.85, a laser wavelength λ = 405 nm, and
a track pitch of 320 nm [14]. We consider two different disk
capacities that are 23 GB and 30 GB on a single-layer 12-cm
disk. The corresponding channel bit-lengths are, respectively,
Tbit = 81 nm and Tbit = 62 nm and the resulting normalized
cutoff frequencies are, respectively, fc = 0.34 and fc = 0.26.
The comparison of the NMBER with respect to the LMS algo-
rithm is done at both capacities. To compare the NMBER and the
LMSAM algorithms, the 30-GB channel is considered where a
more pronounced improvement can be pointed out. To allow
fair comparison between the different adaptation algorithms, all
schemes are run first in the DA mode where the prior knowledge
of the transmitted bit sequence is used in all adaptation loops.
For LMS this is used to extract the error signal εk and for the
NMBER and the SNMBER it is used to select the state that cor-
responds to the correct bits from where to extract the bit-error
sequence ek . Simulation results of NMBER performances in the
DD mode are then shown at the end of this section.

In order to demonstrate the benefits gained by employing
the NMBER equalizer adaptation over the conventional LMS
adaptation, three target responses are considered. The first one
is a 3-tap target response with integer coefficients given by
g0 = [1, 2, 1]. The second one, g1 = [1, 1.6, 1], provides a bet-
ter match to the channel response. A 4-state VD is employed
for g0 and g1 . The third target response is a 5-tap response
given by g2 = [0.17, 0.5, 0.67, 0.5, 0.17]. Because of the d = 1
constraint that excludes some bit patterns, e.g., (+ + −+), the
number of states in the Viterbi trellis for g2 is equal to 10. The
response of g2 approximates the in-band characteristics and cut-
off frequency of the channel quite well. Amplitude responses of
h(t), g0

k , g1
k , and g2

k are depicted in Fig. 5.
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Fig. 6. SAM distribution, at SNR = 13 dB, is shown in the right plot for
LMS adaptation (solid) and NMBER adaptation (dashed). A zoom of the SAM
histogram around zero is shown in the left plot.

To illustrate the concept of the NMBER adaptation, Fig. 6
shows the SAM histograms for both LMS and NMBER adap-
tations using the target response g1 . The SAM histogram is the
accumulation of the different probability distribution functions
of S(e) for the different bit-error sequences. The area below
the tail of this histogram, below zero, determines the BER. It
can be seen that, below zero, the SAM histogram with NMBER
adaptation is below the one with LMS adaptation. Moreover,
because the SAM distribution on the positive axis is irrelevant
for the BER, our adaptation scheme uses this DOF and does not
spend any equalization effort there.

For the 23-GB channel, Fig. 7 shows the simulated BER
as a function of the SNR for different targets and adaptation
algorithms. The equalizer length Nw is fixed to 9 and α = 0.4.

For the target response g0 , Fig. 7 shows that, on the one hand,
the NMBER algorithm outperforms the LMS algorithm by 1.5
dB at BER = 10−5 . On the other hand, the simplified algo-
rithm SNMBER is indistinguishable, in terms of BER, from the
NMBER algorithm. For the target response g1 , the NMBERal-
gorithm outperforms LMS by 0.6 dB. Moreover, whereas with
the latter, the difference in SNR between g0 and g1 is ∼1 dB,
it is reduced to less than 0.1 dB using the NMBER algorithm.
The SNR difference between the two targets in the case of LMS
is explained by the fact that g1 is better matched to the channel
than g0 in the in-band frequencies, i.e., for f < fc .

The 5-tap target response g2 presents a good match to the
channel response, as shown in Fig. 5. For this reason, the LMS
adaptation is already very close to optimal in the case of additive
white noise. In this case, the NMBER algorithm is practically
identical to its LMS counterpart over the whole SNR range.
In addition, using LMS, the 3-tap target g1 presents a loss in
SNR of 1 dB compared to the 5-tap target g2 . This gap in SNR
between g1 and g2 is reduced to only 0.4 dB using the NMBER
algorithm. Such improvement in SNR for short target responses,
i.e., less states in the VD trellis, makes the NMBER algorithm
very attractive for practical systems.

For the 30-GB channel, Fig. 8 shows the simulated BER
as a function of the SNR for different targets and adaptation
algorithms. The parameter α is fixed here to α = 0.3. Fig. 8
shows clearly that, as density increases, the short-length tar-
get responses g0 and g1 become completely impractical using
the LMS algorithm. Nevertheless, using the NMBER algorithm

Fig. 7. Simulated BER versus SNR for the different target responses and
adaptation schemes at a disk capacity of 23 GB.

Fig. 8. Simulated BER versus SNR for the different target responses and
adaptation schemes at a disk capacity of 30 GB.

allows significant performance improvements for these short
target responses. This improvement amounts to 3.4 dB for g1

and to even more for g0 . However, because of their short length,
g0 and g1 still lag few decibells behind the 5-tap target re-
sponse g2 . Furthermore, for the target g2 , the NMBER allows
an improvement of 1.2 dB in the SNR with respect to the LMS
algorithm.

It is apparent from Figs. 7 and Figs. 8 that the NMBER al-
gorithm can be very useful in practice. First, in order to limit
detection complexity, which grows exponentially with the tar-
get length, short target responses are preferably employed. For
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Fig. 9. Simulated BER versus SNR for g = g0 and the different adaptation
schemes at a disk capacity of 30 GB.

these targets, the LMS adaptation becomes suboptimal and the
NMBER adaptation allows significant performance improve-
ments. Second, at a given complexity, i.e., target length, the
SNR improvement of the NMBER equalization with respect to
LMS increases with storage density. This should help to achieve
higher storage densities without sacrificing complexity.

Next, also the LMSAM is taken into account. The LMSAM
scans the data for particular patterns and adapts the equalizer in
order to minimize E[X2

e ] for single-bit errors at data transitions.
However, as storage capacity increases, other error events, e.g.,
the double-bit errors e = ±[1, 0,−1], become substantial. The
difference in predetection SNR between the LMSAM and the
NMBER then becomes more pronounced. In order to illustrate
the suboptimality of the LMSAM algorithm, Fig. 9 shows sim-
ulated BER as a function of SNR for the target response g0

at a disk capacity of 30 GB and Nw = 9. The LMSAM algo-
rithm is implemented in the DA mode where the transmitted
data is scanned for the patterns (−− + + +), (−−− + +),
(+ + + −−), and (+ + −−−). LMSAM equalizer adapta-
tion is implemented, as explained in [7]. For NMBER and SN-
MBER adaptations, α is taken to be equal to 0.3. Fig. 3 shows
that the LMSAM algorithm yields a loss of 1.4 dB compared to
the NMBER or the SNMBER algorithm at the capacity of 30
GB. This loss will increase at higher storage capacities.

A. Stability and Convergence Behavior of the
NMBER Algorithm

Because of the nonlinear and selective nature of the NMBER
algorithm, a theoretical analysis of its stability and convergence
behavior is quite fastidious. The convergence behavior of the
NMBER algorithm depends on the adaptation constant η0 and
on the threshold Th . The higher the threshold Th , the more
frequent the NMBER adaptation is enabled and the smaller ηo

Fig. 10. Simulated BER versus η0 at a capacity of 30 GB and different SNR
values for the target responses g = g0 (upper plot) and g = g2 (lower plot).

should be taken into consideration in order to ensure conver-
gence of the algorithm. In order to highlight the dependence of
the NMBER performance as a function of η0 , Fig. 10 shows
the BER as a function of η0 for the 30-GB channel at different
SNR values for the target responses g = g0 and g = g2 . The
threshold, or, equivalently, α, is optimized to achieve the best
BER for the smallest value of η0 . Fig. 10 illustrates that the per-
formance of the NMBER algorithm is basically independent of
η0 if this latter is smaller than a given value ηmax (≈ 10−3 , in this
case) and that if η0 > ηmax, the NMBER algorithm can become
unstable.

The NMBER performance independence of η0 for η0 < ηmax

and the independence of ηmax on SNR make the choice of the
adaptation constant rather easy in practice. In fact, as optical
storage channels have a well-known behavior [12], the value
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of η0 for a practical system can be simply precomputed and
optimized based on numerical simulations.

B. Behavior of the NMBER Algorithm in the Decision-Directed
Mode

The previous simulation results were conducted in the DA
mode where the prior knowledge of the transmitted bits was
used to extract the necessary control signals for the different al-
gorithms. In many practical systems, prior knowledge about the
transmitted bits is not available and (preliminary) VD decisions
have to be used instead, i.e., the scheme must be run in the DD
mode.

In the DD mode, the choice of α is crucial. In fact, if α ≈
0, then the NMBER algorithm will mainly adapt on wrong
decisions, which causes the algorithm to diverge. From this
perspective, α has to be as high as possible to minimize the
probability of adapting on wrong decisions. However, in order to
limit BER degradations, α has to be chosen as small as possible
such that the Gaussian tail approximation holds. Therefore, α
must realize a tradeoff between these two criteria.

To implement the NMBER algorithm in the DD mode, a bit-
error sequence and a Boolean variable need to be stored at every
state of the trellis up to the decision backtracking depth L. The
Boolean variable tells whether the difference in path metrics
between the selected and discarded paths by the ACS unit is
smaller or bigger than the threshold Th . At every clock cycle,
a bit decision is taken from the VD trellis, at a decoding state,
following a selected path at a depth L. The decoding state is also
used to extract a bit-error sequence and one Boolean variable.
The equalizer adaptation is, then, performed, according to Fig.
4, where the equalizer input rk−p is delayed to compensate for
the backtracking delay prior to correlation with δe .

Fig. 11 shows the simulated BER for the target responses
g = g0 and g = g2 and, respectively, the 23- and 30-GB chan-
nels, using the NMBER adaptation in both DA and DD modes.
This shows that the performance of the NMBER adaptation in
the DD mode is within a fraction of a decibel from its DA
counterpart, which proves the practical value of the NMBER
algorithm. The SNMBER algorithm has a similar behavior. The
performance degradation of the DD mode, compared to the
DA mode, increases with storage density, as illustrated in Fig.
11. This is not surprising as system sensitivity increases with
density [4], i.e., performance becomes more sensitive to small
system parameter deviations.

Remark: In a practical optical storage system, choosing the
threshold to be very small, can cause serious problems to the
NMBER algorithm. In fact, small values of the difference in
VD path metrics can be caused, for example, by media defects,
scratches, or fingerprints. Adapting the equalizer when these
artifacts occur, will cause the NMBER algorithm to diverge. A
simple remedy to this issue is to add a second smaller threshold
Th 2 < Th and freeze the NMBER adaptation when the VD path
metrics difference is smaller than Th 2 . This threshold should
serve also to freeze all adaptation loops, e.g., DC, AGC, PLL,
to prevent them from divergence.

Fig. 11. Simulated BER versus SNR using the NMBER algorithm in both the
DA and DD modes for g = g0 and the 23-GB channel (upper plot; α = 0.4)
and for g = g2 and the 30-GB channel (lower plot; α = 0.3). As a basis of
reference, the LMS performance in DA mode is also shown.

VI. CONCLUSION

A new equalizer adaptation scheme has been proposed for
PRML systems. This new scheme seeks to minimize directly
the BER. Based on an analysis of Viterbi detection performance,
we highlighted a practical cost function for equalizer adaptation.
This function was used to realize a remarkably simple equalizer
adaptation scheme. The proposed scheme incorporates a se-
lection mechanism that enables equalizer adaptation only if the
difference in path metrics, between selected and discarded paths
from the Viterbi trellis, is smaller than a prescribed threshold.
The actual version of the new adaptation scheme is essentially
as simple as the LMS. A simplified scheme that allows further
improved efficiency was also presented. Because of the selec-
tion mechanism, the proposed schemes present an advantage in
terms of power consumption, especially for long equalizers.
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Simulation results for an idealized optical storage system
showed that our scheme outperforms significantly the existing
adaptation schemes, especially at high storage densities or short
target response lengths.

APPENDIX

A. Impact of Residual ISI on the Sequenced Amplitude Margin

In order to develop a better understanding of the impact of
residual ISI on the SAM, let us consider the case where the
channel noise nk is data-independent, additive, and Gaussian.
In this case, the error signal εk is composed of two components.
The first component is time-invariant and linearly dependent on
the bit-sequence bk , i.e., RISI, and the second one is a data-
independent zero-mean and Gaussian noise. For simplicity of
the analysis, we assume that the binary data is uncoded. The
error signal is given by

εk = (m ∗ b)k + uk (18)

where uk = (w ∗ n)k denotes the noise component. The RISI
component is characterized by the impulse response mk , where
mk = (w ∗ h)k − gk .

In order to evaluate Pr(δT
e δe < Xe), let us consider a bit-

error sequence ek and compute E[Xe ] and E[X2
e ], where the

expectations are taken over all possible realizations of uk and
bk , such that b + 2e is an admissible bit sequence. Plugging (18)
in Xe = δT

e ε and substituting δe,k by (g ∗ e)k , we can write

Xe =
∑

k

(g ∗ e)k (m ∗ b)k +
∑

k

(g ∗ e)kuk . (19)

Since uk is independent of ek and is zero on average, we have
E[

∑
k (g ∗ e)kuk ] = 0. The average of Xe is, then, equal to

E[Xe ] = E

[ ∑
k

(g ∗ e)k (m ∗ b)k

]
=

∑
k,i,j

gk−imk−jE[eibj ].

In order to evaluate E[eibj ], we introduce the set I(e) of
indices i such that ei 
= 0, i.e., (i ∈ I(e) ⇔ ei 
= 0). The sum-
mation over j in the previous equality is split into two terms
depending on j ∈ I(e) or not

E[Xe ] =
∑

k,i,j∈I (e)

gk−imk−jE[eibj ]

+
∑

k,i,j∈I (e)

gk−imk−jE[eibj ].

When j ∈ I(e), bj becomes deterministic. In fact, because b +
2e is an admissible bit sequence, the only possibility for bj , when
ej 
= 0, is bj = −ej . In this case E[eibj ] = −eiej . However,
when j ∈ I(e), it is easy to prove that E[eibj ] = 0 because the
data is assumed to be uncoded. It follows that

E[Xe ] = −
∑

k,i,j∈I (e)

gk−imk−j eiej .

Because ej = 0 for j ∈ I(e), the previous summation can be
taken over all values of j. It is, then, straightforward to show

that

E[Xe ] = −
∑

k

(g ∗ e)k (m ∗ e)k = −δT
e me (20)

where the vector me is given by (me)k = (m ∗ e)k = (w ∗ h ∗
e)k − (g ∗ e)k .

In a similar manner as we derived (20), one can prove that
E[X2

e ] can be written as follows:

E[X2
e ] = (δT

e me)
2 + δT

e (Me + Ruu )δe (21)

where Ruu is the autocorrelation matrix of uk and the matrix
Me is defined by

Me
k,k ′ =

∑
j∈I (e)

mk−jmk ′−j

= (m ∗ m∗)k−k ′ −
∑

j∈I (e)

mk−jmk ′−j ,

where m∗ is defined by m∗
i = m−i .

Equations (20) and (21) give a closed-form expression of
E[Xe ] and E[X2

e ]. In order to link these quantities to ACS error
probabilities, let us assume that the distribution of Xe can be
approximated by a Gaussian. This assumption is not valid, in
general, because of the data-dependent component of the error
signal εk . However, in the limiting case of a small amount of
residual ISI, this approximation is acceptable. Note that the
approximation is only used in this portion of the appendix to
provide more insights and that the other results of this paper are
more general. With this assumption, one can write

Pr(ACS error|e) � Q

 δT
e δe + δT

e me√
δT

e (Me + Ruu )δe

 (22)

where Pr(ACSerror|e) equals the average of
Pr(ACSerror|b, e) over all possible bit sequences bk

such that b + 2e is an admissible bit sequence.
The impact on Pr(ACSerror|e) of the RISI differs signif-

icantly from the impact of the channel noise. The RISI has
basically two different impacts. First, compared to the case of
m = 0, it induces a modification in the nominator of the Q-
function argument in (22). We name this nominator the effec-
tive Euclidian weight of the bit-error sequence ek . The effective
Euclidian weight can be either bigger or smaller than δT

e δe

(constructive or destructive ISI for the bit-error sequence ek )
depending on the sign of δT

e me = −E[Xe ]. Second, the de-
nominator of the argument of the Q-function in (22) is also
modified. One can check that the matrix Me is positive and,
therefore, the denominator increases when m 
= 0 compared to
m = 0. The impact of Me in (22) can be seen as an increase in
effective channel noise power.

An expression of the effective predetection SNR ρVD can be
extracted from (22)

√
ρVD = min

e

δT
e δe + δT

e me√
δT

e (Me + Ruu )δe

. (23)
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Fig. 12. Geometrical representation of the enabling condition of the NMBER
algorithm.

Note that if there is no residual ISI, i.e., m = 0, and uk is white
with a variance σ2 , ρVD boils down to the known expression

ρVD = mine
δT

e δe

σ 2 .
Application to Equalizer Adaptation: Designing the equal-

izer response to minimize E[X2
e ] (21) does not necessarily

minimize Pr(ACS error|e) because of two reasons. First, the
impact of δT

e me on Pr(ACS error|e) is different than that of
δT

e (Me + Ruu )δe , as explained earlier. Thus, minimizing (21)
would not, in general, be optimal because this does not provide
the optimal tradeoff between δT

e me and δT
e (Me + Ruu )δe . Sec-

ond, and more important, minimizing E[X2
e ] does not provide

any constraint on the sign of E[Xe ], i.e., the opposite sign of
δT

e me , whereas it has been shown that this sign is of capital
importance for Pr(ACS error|e). We conclude that minimizing
E[X2

e ], as suggested in [7], is not optimal in general. Simulation
results of Fig. 9 confirm this conclusion.

B. Geometrical Interpretation of the NMBER Algorithm

In order to develop an intuitive understanding of the NM-
BER algorithm, let us collect the received samples rk in a vec-
tor r = [r0 , . . . , rN −1 ]T that we call the received vector. We
denote by x = [x0 , . . . , xN −1 ]T the column vector of equal-
ized samples xk = (w ∗ r)k . For simplicity, let us focus on
one admissible bit-error sequence ek . This means that we con-
sider for detection only the two sequences bk and (b + 2e)k .
The VD will decide for the bit-sequence bk if and only if
the vector x is closer to δb than to the vector δb+2e , where
δa = [(g ∗ a)0 , . . . , (g ∗ a)Nb −1 ]T for a bit-sequence ak (see
Fig. 12). The distance between two vectors is computed using
the L2-norm given by: ‖X‖2 = XT X . Fig. 12 shows also the
vector δe = 1

2 (δb+2e − δb) and the boundary decision of the
VD. Let us then see what happens to the vector x after the NM-
BER equalizer adaptation. For this purpose, let us assume that
we receive a vector r and that the NMBER equalizer adaptation
is enabled. The same vector r is assumed to be received again
after equalizer adaptation.

First of all, one needs to note that what matters for detection
is the orthogonal projection of ε = x − δb over the vector δe ,
i.e. AB = δT

e ε.

The NMBER adaptation is enabled when δT
e ε > (1 −

α)δT
e δe . This defines an enabling subspace, as shown in Fig. 12.

When the vector x falls in the enabling subspace, the adaptation
is enabled and the equalizer tap values are changed according to
(13). A correction response ∂w, given by ∂wp = −η(e)δT

e rk−p ,
is, then, added to the equalizer response. After adaptation and
reception of the same vector r, the vector x will change with ∂x
and, more importantly, its orthogonal projection on δe changes
as follows:

∂AB = δT
e ∂x.

Using the fact that ∂xk =
∑

p ∂wprk−p and that ∂wp =
−η(e)

∑
k δe,k rk−p , one can easily prove that

∂AB = −η(e)
∑

p

(δT
e rk−p)

2 ≤ 0. (24)

It is, then, visible that the NMBER adaptation tries to shift
the vector x outside the enabling subspace and as far as possible
from the VD decision boundary so as to increase detection
reliability (reliability can be seen, here, as the distance BC in
Fig. 12, between x and the VD decision boundary). When the
vector x falls outside the enabling subspace, the VD will output
the bit-sequence bk with a high reliability. In this case, the
NMBER equalizer adaptation is disabled. However, because the
LMSAM minimizes E[δT

e ε2 ] (for single-bit errors), it does not
make any distinction, in Fig. 12, between the point B (δT

e ε > 0)
and its mirror B′ with respect to A (δT

e ε < 0) whereas these
points correspond to completely different reliabilities.

Compared to the LMSAM or the LMS, the NMBER algo-
rithm does not spend equalization effort when this does not
improve detection reliability and, moreover, it is clear from (24)
that when the NMBER adaptation is enabled, it always acts
toward improved reliability.
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(ENST), Paris, France, in 2001. He is currently
working toward the Ph.D. degree at the Department
of Electrical Engineering, Eindhoven University of
Technology, Eindhoven, The Netherlands.

His current research interests include signal
processing for digital transmission and recording
systems.

Steven van Beneden received the degree of Burger-
lijk Electrotechnisch Ingenieur from the Katholieke
Universiteit Leuven, Leuven, Belgium, in 2001, and
the Post-Master in technological design of ICT-based
systems from the Eindhoven University of Technol-
ogy, Eindhoven, The Netherlands, in 2003. From
2003 to 2006, he was a Ph.D. student at the Eindhoven
University of Technology, where he was engaged in
research on signal processing techniques for digital
storage systems.

Since December 2006, he is a fixed-income Quan-
titative Analyst at Fortis Bank, Utrecht, The Netherlands. His current research
interests include the development of interest rate models and algorithmic trading
systems.

Jan W. M. Bergmans (M’85–SM’91) received the
degree of Elektrotechnisch Ingenieur (cum laude), in
1982 and the Ph.D. degree in electrical engineering,
in 1987, both from Eindhoven University of Technol-
ogy (TU/e), Eindhoven, The Netherlands.

From 1982 to 1999, he was with Philips Research
Laboratories, Eindhoven, where he was engaged in
research on signal-processing techniques and inte-
grated circuit (IC) architectures for digital transmis-
sion and recording systems. In 1988 and 1989, he was
an Exchange Researcher at Hitachi Central Research

Laboratories, Tokyo, Japan. Since 1999, he is a Full Professor and Chairman
of the Signal Processing Systems Group at TU/e. He is the author or coauthor
of several research papers published in refereed journals and is the author of
Digital Baseband Transmisison and Recording (Kluwer Academic, 1996, 652
pp.). He is the holder of around 30 U.S. patents.

Andre H. J. Immink received the degree of Elec-
trotechnisch Ingenieur (cum laude) from the Univer-
sity of Twente, Enschede, The Netherlands, in 1995,
and the Ph.D. degree from Eindhoven University of
Technology (TU/e), Eindhoven, The Netherlands, in
2005.

From 1995 to 2006, he was with Philips Research
Laboratories, Eindhoven, where he was engaged in
research on signal processing techniques and mixed-
signal integrated circuit (IC) design for optical stor-
age and later on biosensors using giant magnetoresis-

tive sensors. Since January 2007, he is a Principal System Architect in a Philips
Healthcare Incubator, NY working on biosensor technology based on magnetic
nanoparticle labels.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on October 28, 2009 at 08:25 from IEEE Xplore.  Restrictions apply. 


