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Abstract

We present a knowledge representation and reason-
ing framework that integrates qualitative reasoning,
qualitative simulation, numerical simulation, geomet-
ric reasoning, constraint reasoning, resolution, reason-
ing with abstraction levels, declarative meta-level con-
trol, and a simple form of truth maintenance. The
framework is the core of PRET, a system identifica-
tion program that automates the process of modeling
physical systems.

Introduction

Models are powerful tools that are used to understand
physical systems. The process of inferring an internal
model from external observations of a system—often
called system identification—is a routine and difficult
problem faced by engineers in a variety of domains (As-
trom & Eykhoff 1971; Ljung 1987). Abstract models
are simple: they account for major properties of the
physical system. Less-abstract models are more com-
plicated, allowing them to capture the features of the
physical system more accurately and in more detail,
but at the cost of increased complexity during model
construction and usage. Typically, in the hierarchy
from more-abstract to less-abstract models, the model
of choice is the one that is just detailed enough to ac-
count for the properties and perspectives that are of
interest for the task at hand. The first stage of the
system identification proces, structural identification,
identifies the form of the model, or skeleton of the equa-
tion, such as af + bsin8 = 0 for a simple pendulum. In
the second system identification stage, parameter esti-
mation, the parameter values a and b are determined.

The program PRET (Bradley & Stolle 1996) auto-
mates both stages of the system identification process;
its goal is to find a system of ODEs that models a
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given physical system. Inputs are observations about
that system, user-supplied hypotheses about the de-
sired model, and specifications.

Observations are measured automatically by sensors
and/or interpreted by the user; they may be symbolic
or numeric and take on a variety of formats and degrees
of precision. For example, an observation might inform
PRET that the system to be modeled is autonomous
with respect to the state variable ¢; another observa-

tion could state that g oscillates and that this oscil-

lation is damped. Observations can also be physical
measurements made directly and automatically on the
system (Bradley & Easley 1997). Hypotheses about
the physics involved, e.g., a hypothesis about friction,
are supplied by the user; these may conflict and need
not be mutually exclusive, whereas observations are
always held to be true. Finally, specifications indi-
cate the quantities of interest and their resolutions—
a specification might impose a microsecond resolution
over 120 seconds of system evolution. Fig. 1 shows a
physical system that consists of two masses and three
springs and exemplifies how one instructs PRET to con-
struct a model of that system. It is important to note
that this simple linear example does not by any means
exercise PRET’s power.

When modeling physical systems, human engineers
make use of several existing modeling techniques at
various different abstraction levels. A modeler’s rea-
soning about a given physical system and possible can-
didate models takes place at an abstract level first and
resorts to more detailed reasoning later in the modeling
process. PRET’s goal is to mimic this strategy and at-
tempt to find the right model at the right abstraction
level as quickly as possible. Therefore, the challenge
in writing PRET was to design a formalism that meets
two requirements: first, it must facilitate easy formula-
tion of the various reasoning techniques; and second, it
must allow PRET to reason about which techniques are
appropriate in which situation. This paper describes
PRET’s reasoning modes, how they are integrated, and
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(find-model
(domain mechanics)
(state-variables <qi1> <q2>)
(point-coordinates <ql> <q2>)

(hypotheses
(<force> (* m1 (deriv (deriv <q1>))))
(<force> (* m2 (deriv (deriv <q2>))))
(<force> (* k1 <q1>))
(<force> (* k2 (- <ql> <q2>)))
(<force> (* k3 <q2>))
(<force> (* r1 (deriv <q1>)))
(<force> (* r2 (square (deriv <qi>))))
(<force> (* r3 (deriv <q2>)))
(<force> (* r4 (square (deriv <q2>)))))
(observations
(autonomous <q1>)
(autonomous <q2>)

(oscillation <ql1>)
(oscillation <q2>)
(numeric (<time> <q1> <q2>)
(0 .1 .1) (.1 .1099 .1103) ...
(specifications
(resolution <q1> absolute 1le-3 (0 1))
(resolution <q2> absolute le-3 (0 1))))

D))

Figure 1: A find-model call that instructs PRET to model
the Springs&Masses system shown above. In this example,
the user first sets up the problem, then hypothesizes nine
different force terms, makes five observations about the po-
sition coordinates ¢ and g2, and finally specifies resolutions
and ranges.

how they solve these problems.

The next section gives a brief overview of PRET. In
the following sections, we present the various reasoning
modes, their interaction and integration. We also sug-
gest additional reasoning modes for future integration.
Finally, we use two examples to illustrate how PRET
works.

Reasoning Modes

The high-level control flow of PRET is a variant of
“generate-and-test.” In the “generate” phase, candi-
date models are constructed from the user’s hypotheses
via simple, powerful domain rules such as, for example,
Kirchhoff’s voltage law for electronic circuits. Since
PRET tries to find a model that accounts for all obser-
vations without being more complex than necessary,
candidate models are generated in order of increasing
complexity. In the “test” phase, PRET uses ODE rules
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to generate new knowledge about the physical system
and new knowledge about the current candidate model.
A model is valid if the facts about the system that is
to be modeled are consistent with the facts about the
model. Any inconsistency is a reason to discard the
model. The first model in this generate-and-test se-
quence that is consistent with the observations is cur-
rently returrnied as the result.

Using this “valid if not proven invalid” paradigm,
it is important to rule out invalid candidate models
as quickly as possible. Therefore, PRET uses abstract
knowledge first and detailed knowledge later. In or-
der to achieve this behavior, PRET chooses among and
orchestrates several reasoning modes. In the follow-
ing subsections, we describe these reasoning modes and
show how PRET decides which mode is appropriate in
which situation.

Qualitative Reasoning

Reasoning about abstract features of the physical sys-
tem or the candidate model is typically faster than
reasoning about their detailed properties. Therefore,
PRET uses a “high-level first” strategy: it tries to rule
out a model by purely qualitative techniques before ad-
vancing to more expensive semi-numerical or numeri-
cal techniques. Often, only a few steps of inexpensive
qualitative reasoning (QR) suffice to quickly discard a
model. Some of these qualitative rules in turn make
use of other tools; e.g., symbolic algebra facilities from
the commercial package Maple. For example, PRET’s
ODE theory includes the qualitative rule that oscillat-
ing linear systems must be of at least second order. If
the user’s observations imply an oscillation, any model
whose order is less than 2 can be discarded without
performing more-complex operations such as, for ex-
ample, a numerical integration of the model.

PRET’s QR features are not only important for ac-
celerating the search for inconsistencies between the
physical system and the model; they also allow the
user to express incomplete information. For example,
the user might not know the exact value of a friction
coefficient, but he or she might know that it is constant
and positive.

Geometric Reasoning

Many inappropriate models can be discarded by
reasoning about purely qualitative information that
can be inferred from numeric information. In or-
der to achieve this behavior, PRET processes the
observations—curve fitting, recognition of linear re-
gions, and so on—using Maple functions and simple
phase-portrait analysis techniques, both of which yield
high-level results that can then be used much as qual-
itative observations are (Bradley & Easley 1997).



Qualitative Simulation

Before PRET resorts to the numerical level, it reasons
about the qualitative states of the physical system.
PRET’s qualitative envisioning module constrains the
possible ranges of parameters in the candidate model.
If the constraints become inconsistent—i.e., the range
of a parameter becomes the empty set—the model is
ruled out. Currently, the qualitative states contain
only sign information (—,0,+). For example, for the
model ax + by = 0 the state (x,y) = (+,+) constrains
(a,b) to the possibilities (+, —) or (0,0) or (—,+).

PRET does not do full qualitative simulation
(Kuipers 1986). Instead, it only envisions the state
space of all possible combinations of qualitative val-
ues of state-variables and parameters. This strategy
is faster than full qualitative simulation, but it is also
less accurate, i.e., it may let invalid models pass the
test. These invalid models are later ruled out by the
numeric simulator. However, for the models that do
fail the qualitative envisioning test, this test is much
cheaper than a numeric simulation and point-by-point
comparison would be.

Parameter Estimation and Numerical
Simulation

If the observations contain a numerical time series,
the model must match the time series to within the
specified resolution. If a candidate model cannot be
discarded by qualitative means, PRET integrates the
model (an ODE system) with fourth-order Runge-
Kutta, comparing the result to the numeric time-series
observation. Typically, models contain parameters
whose values must be determined before the numeric
integration can take place. For example, for the model
af + bsing = 0 for a simple pendulum the parame-
ter values a and b must be determined. PRET calcu-
lates these values using its nonlinear parameter estima-
tion reasoner (NPER) (Bradley, O’Gallagher, & Rogers
1997), which uses knowledge derived in the structural

identification phase to guide the parameter estimation’

process—for example, choosing good initial values and
thereby avoiding local minima in regression landscapes.

Constraint Reasoning

Often, information between the purely qualitative and
the purely numeric levels is also available. For ex-
ample, if a physical system oscillates, the imaginary
parts of at least one pair of the roots of its model’s
characteristic polynomial must be nonzero. Thus, if
the model A% + Az + Azz = 0 is to match an os-
cillation observation, the coefficients must satisfy the
inequality 44; A3 > A3. PRET uses expression infer-
ence (Sussman & Steele 1980) to merge and simplify
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such constraints (Jaffar & Maher 1994). However, this
approach works only for linear and quadratic expres-
sions and some special cases of higher order. We are
investigating techniques to reason about more general
expressions. For example, if the system & + ai?* + bi?
is to be conservative, the coefficients a and b must take
on values such that the divergence —4ai?3 — 2bz is zero,
below a certain resolution threshold, for the specified
range of interest of .

SLD resolution

PRET’s search for an inconsistency between the obser-
vations and a particular candidate model is based on
SLD resolution. The observations and the ODE theory
are expressed as Horn clauses. The special atomic for-
mula falsum may only appear as the head of a clause.
Such clauses express fundamental reasons for inconsis-
tencies, e.g., that a system cannot be oscillating and
non-oscillating at the same time. This concept of nega-
tion as inconsistency (Gabbay & Sergot 1986) is the
only form of negation in our paradigm. A candidate
model is ruled out if the inference engine can derive
the formula falsum from the union of the observations
and facts about the candidate model.

The special predicate scheme-evall provides the
link between the inference engine and all the modules
that implement other reasoning modes.

Declarative Meta Level Control

The control strategy of a SLD resolution theorem
prover is defined by the function that selects the lit-
eral that is resolved and by the function that chooses
the resolving clause. PRET provides meta-level lan-
guage constructs that allow the implementer of the
ODE theory to specify the control strategy that is
to be used (Beckstein, Stolle, & Tobermann 1996;
Gallaire & Lasserre 1982). For example, a control
rule can specify that the inference engine must at-
tempt proofs for formulae with the predicate order
before it tries to prove formulae with the predicate
oscillation. The intuition here is, again, that the
search should be guided towards a cheap and quick
proof of a contradiction.

Reasoning at Different Abstraction Levels

Every rule in the ODE theory is assigned a natu-
ral number that indicates the level of abstraction of
the rule: the lower the abstraction level number, the
more abstract the rule. Whereas the meta predi-
cates described in the previous paragraph specify dy-
namic control, the ODE rules’ abstraction levels ex-
press static control information. The theorem prover

lPRET is written in Scheme.



proceeds to a higher abstraction level number only if
the attempt to prove the falsum with ODE rules with
lower abstraction level numbers fails. For example,
the scheme-eval-rule that triggers numerical integra-
tion has a higher abstraction level number than the
scheme-eval-rule that calls the qualitative simulation.

Storing and Reusing Intermediate Results

PRET reuses previously derived knowledge in two ways.
First, knowledge about the physical system is global,
whereas knowledge about a candidate model is local to
that model. Therefore, PRET reuses knowledge that is
independent of the current candidate model.

Second, knowledge is reused within the process of
reasoning about one particular model. Every time the
reasoning proceeds to a less abstract level, PRET needs
all information that has already been derived at the
more abstract level. To avoid duplication of effort,
PRET stores this information rather than rederiving
it. The user declares a number of predicates as rele-
vant (Beckstein & Tobermann 1992) which causes all
succeeding subgoals with this predicate to be stored for
later reuse. Currently, PRET recognizes special cases
and generalizations of previously proved formulas but
maintains no contexts or labels (de Kleer 1986) for in-
termediate results. We are investigating the benefits
of expanding this module to a full truth maintenance

"system. For example, PRET may generate explana-
tions (proof trees) for failures of models and use a
form of discrepancy-driven refinement (Addanki, Cre-
monini, & Penberthy 1991) to guide the generation of
better models.

Futhre Extensions

There are other modes of reasoning that we are con-
sidering adding to PRET. A form of case-based rea-
soning could help choose promising terms from a set
of hypotheses that are generated automatically by
power-series expansion. This technique will become
important when the model generator runs out of user-
supplied hypotheses.?

Currently, the control rules are specified by the im-
plementer of the ODE theory. Future incarnations of
PRET may monitor typical modeling runs and derive
good control rules automatically (Ginsberg & Geddis
1991; Minton 1996).

Example Applications

In this section we trace PRET’s actions on the example
of Fig. 1. The four friction forces are omitted here

2In this situation the current version of PRET generates
ODE terms automatically using a variety of power-series
expansions and uses these terms in order of increasing com- -
plexity for model generation.

for space reasons, and the numeric observation has the
form

(numeric (<time> <ql1> <q2>) (eval *datax))
The keyword eval causes the variable *data* to be
evaluated in the calling environment. Bound to this
variable is a time series that was generated by Runge-
Kutta integration of the system

—0]. q1 — 02 (41 — (I2)
0.2(g1 — g2) — 0.3 ga.

The first candidate model is k1q; = 0. A Scheme func-
tion called on the ODE establishes the fact (order

G =
G =

- <q1> 0) which expresses that the order of the highest

derivative of ¢; in this model is zero. This fact conflicts
with facts inferred from the observation (oscillation
<ql1>), so this model is ruled out. The way PRET
handles this first candidate model demonstrates the
power of its abstract-reasoning-first approach; only a

" few steps of inexpensive qualitative reasoning suffice to

let it quickly discard the model.

PRET tries all combinations of <force> hypotheses
at single point coordinates, but all these models are
ruled out for qualitative or numeric reasons. It then
proceeds with ODE systems that consist of two force
balances—one for each point coordinate. One example
of a candidate model of this type is

kigi +migi = 0
magz = 0

None of the implemented rules discards this model by
purely qualitative means, so PRET invokes its nonlin-
ear parameter estimation reasoner (NPER) which finds
no appropriate values for the coefficients k1, m;, and
mg such that any ODE solution matches the numeric
time series. Therefore, this candidate model is also
ruled out.?

After having discarded a variety of unsuccessful can-
didate models in a similar manner, PRET tries the
model

kigy + k2(q1 —g2) +migy = O
kagz + k2(q1 — g2) + maga = O

Again, it calls the NPER, this time successfully. It then
substitutes the returned parameter values for the con-
stants ki, k2, k3, m1, and my and integrates the re-
sulting ODE system with fourth-order Runge-Kutta,

3In certain cases, this approach may result in a depar-
ture from the paradigm wvalid if not proven invalid; unless
we trust that the parameter estimator always finds a set of
coefficients if such a set exists, this amounts to negation as
failure. This is the appropriate decision here because a user
who supplies a numeric time series is certainly interested
in a numerically accurate ODE model.
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comparing the result to the numeric time-series ob-
servation. The difference between the integration and
the observation stays within the specified resolution,
so the numeric comparison yields no contradiction and
this candidate model and the parameter values are re-
turned as the answer.

We have chosen the simple spring-mass example of
Fig. 1 to make this presentation brief and clear. Lin-
ear systems of this type are easy to model; no engineer
would use a software tool to do generate-and-test and
guided search to find an ODE model of a system so
simple and well-understood. This example is repre-
sentative neither of PRET’s power nor of its intended
applications—nonlinear, high-dimensional, black-box
systems. Modeling these types of systems is where
PRET’s mixture of exact and approximate techniques,
quantitative and qualitative reasoning, and precise and
heuristic knowledge becomes truly powerful.

The following paragraphs describe PRET’s appli-
cation to a real-world example: the radio-controlled
(R/C) cars used in the University of British Columbia’s
soccer-playing robot project. These commercially ac-
quired cars cannot be controlled without an accurate
ODE model of their dynamics—something that is not
part of the specifications sheet. The sensor data con-
sists of the car’s position in an (z, y)-plane and its ori-
entation §. PRET goes through the structural iden-
tification process that we have already seen in the
Springs&Masses example: it uses force balances to
assemble hypotheses into models; it examines hypoth-
esis combinations in order of increasing complexity;
and it discards models that are inconsistent with the
observations, always taking advantage of its abstract-
reasoning-first approach. The result, in this example,
is the model:

= wcosf
= wsinf

= p’U
= a+yv

SIS CH S

where v is the car’s velocity, 8 its orientation, p the
position of the steering wheel, o acceleration, and -~
friction.? Following the structural identification phase,
PRET calls the NPER; as in the previous example, qual-
itative knowledge derived during the former are used in
the latter—for example, symbolic algebra, constraint
propagation, and divided differences are used to com-
pute the initial values and bounds that are passed to

4This formulation of the model makes use of two differ-
ent reference frames; PRET’s formulation of the model looks
more complicated. Allowing the user to express hypothe-
ses in appropriate reference frames is a deep and important
problem that we will address in future work.

the local least-squares solver that lies at the heart of
the NPER.

PRET’s solution to the modeling problem surprised
the University of British Columbia analyst. The model
did not match his intuition because he had omitted
some important information from the specification—
including the fact that the car started from rest. In or-
der to work around noise in sensor data, PRET’s NPER
is designed to filter data and adjust boundary condi-
tions; in this case, this reasoning led to a numerically
successful ODE model with a negative initial condition
for the velocity. Further reflection on the discrepancy
led the analyst to realize that the system dynamics
might include a delay. Thus, the correct find-model
call for this example should contain an observation
that the initial velocity was zero and a hypothesis
that incorporates a delay between the application of
force and the acceleration of the car. We use this anec-
dote to emphasize that PRET is an engineer’s tool, not
a scientific discovery system. Its goal is to construct
the simplest ODE that accounts for the observations
and specifications that are ezplicit in the find-model
call, not to infer physics that the user left implicit. In
this example, the returned model enabled the expert
to identify what was wrong with the observations and
model fragments he suggested. For a more detailed
discussion see (Bradley, O’Gallagher, & Rogers 1997).

Related Work

Most automated modeling programs (Forbus 1990;
Addanki, Cremonini, & Penberthy 1991; Falkenhainer
& Forbus 1991; Amsterdam 1992; Kuipers 1993; Nayak
1995) use domain knowledge in order to map a struc-
tural description of the system to model fragments.
PRET , however, uses only general mathematics in its
analysis and does not rely on knowledge specific to the
domain in question. Also, PRET’s aim is not to dis-
cover the underlying physics of the system, but rather
to find the simplest ODE that is consistent with the
observed behavior.

In other automated modeling systems one of the im-
portant features of the formalized domain theory is
that it suggests how structural components of the phys-
ical system map to candidate model fragments. PRET’s
true targets, however, are physical systems that do not
have a well-defined domain theory, such as complex in-
dustrial devices and processes. The R/C car was a first
step in this direction; the next test case, on which we
are currently working, is a complex machine tool that
takes a plastic blank and a prescription and automat-
ically produces an eyeglass lens.

PRET aims to integrate quantitative and qualitative
information. Many good papers have reported work in
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this area, among which are (Farquhar & Brajnik 1994;
Williams 1991; Kay & Kuipers 1993).

Reasoning about physical systems is an extremely
active research area. Space restrictions precluded the
inclusion of many other papers that should have been
mentioned here.

Conclusion

System identification is a necessary first step in many
control-theory problems; without a reasonable model
of the dynamics, very few systems are amenable to
control. PRET automates this process by building an
Al layer on top of a set of the kinds of traditional SID
techniques that human experts use to solve these prob-
lems: e.g., regression, curve-fitting, matrix methods,
fast-fourier transforms and filtering, root-locus plots,
etc. Integrating this collection of techniques, which
are diverse both in methods and in reasoning levels,
was an important design goal for the inference system
described in this paper. The successful design of that
framework allows PRET to intelligently assess the task
at hand, and then automatically choose, invoke, and
interpret the results of appropriate lower-level meth-
ods.
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