
Migrating Bauhaus from IML to SKilL

Timm Felden Martin Wittiger

University of Stuttgart, Institute of Software Technology
Universitaetsstr. 38, 70569 Stuttgart, Germany

{feldentm,wittigmn}@informatik.uni-stuttgart.de

Abstract

In this paper we will motivate and discuss the ongo-
ing process of migrating the Bauhaus toolchain from
its home-brew intermediate representation (IR) to a
generalized IR based on SKilL.

1 Introduction

Bauhaus is a suite of static analysis tools [5] developed
at the University of Stuttgart. It is mainly written in
Ada and analyses C, C++ and Java. The current in-
termediate representation of analysis results is called
IML. A specification of data structures is used to gen-
erate Ada code that serializes data and provides the
user with a suitable API. Bauhaus developers are dis-
satisfied with IML and have asked for its replacement.
This paper describes our efforts to improve serializa-
tion in Bauhaus.

Requirements

Because students regularly refuse thesis projects in-
volving languages they have never worked with be-
fore, the development of Bauhaus lost momentum af-
ter the university switched the primarily taught pro-
gramming language from Ada to Java. This leads to
the requirement of achieving language independence
while keeping legacy code largely intact. In conse-
quence, we have to keep our API stable. In the current
setup, changing the specification often led to incom-
patibilities that prevented loading files created with
older versions. The successor needs to avoid this prob-
lem where possible. IML is just efficient enough for
the domain of static program analysis. Hence, a suc-
cessor should neither increase file sizes nor decoding
time.

2 Steps of Migration

Presented with these requirements, we considered dif-
ferent serialization technologies. After taking into ac-
count a comparison of file formats for serializing data
from static analysis [3] we are disinclined to use XML.
We decided to use SKilL[2], which was designed to ful-
fill requirements similar to ours.

Thus, we decided to create an export tool that
transforms a whole IML file to semantically equiva-
lent SKilL. In consequence, we can keep all tools un-

modified and have an extra tool for the conversion
between file formats. A downside of this approach
is the time spent converting files. Furthermore, IML
would stay as it is and the overall maintenance effort
would increase because two different and, most likely
diverging, intermediate representations would have to
be maintained. Also, the SKilL-based intermediate
representation can differ from IML in details.

2.1 Creating a Specification and Binding

About five man-days sufficed to create a total trans-
lation of all specified Bauhaus type definitions. We
also added type definitions for all hand-written seri-
alization code that we could find.

In the process of creating SKilL implementations
the SKilL infrastructure saw several improvements.
The specification language was extended by enums,
typedefs and interfaces to simplify the specification.
The code generators were extended by a back-end that
generates only specification, so that the IR specifica-
tion can easily be navigated. The generated imple-
mentations were improved in terms of escaping names,
generated documentation, compile time and better
handling of name conflicts between standard library
types and specified types. The latter is an issue that
almost all projects will face that move their IR from
one specific language to a set of languages because
there is no naming convention between programming
languages for standard library types.

The export tool had to be implemented in Ada be-
cause the only complete IML API is written in Ada.
Fortunately, both IML and SKilL offer a reflective
API, which allows the export tool to be written in just
about 550 LoC. Also, reflection could be used to effec-
tively detect bugs in the specification and translation
of unspecified parts of the IML because mismatches
can be observed while matching the runtime type sys-
tems. Our completely unoptimized reflection-based
approach suffices to convert our test files in about 200
seconds. In comparison, parsing these files completely
requires only about 40 seconds. Profiling the export
tool indicates that IML reflection is taking up most of
the CPU time. While it is certainly possible to write
a solution without reflection, we want to focus on our
new capabilities for now.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357350515?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


104 105 106 107 108

10−1

101

IML size (Byte)

T
im

e
(s

ec
)

IML

SKilL (Ada)

Figure 1: Execution time for finding all names of
functions with implementations in an IR file. Per-
formed on a complete specification with complete de-
serialization. 10 repetitions on cached data executed
on an Intel i5-2540M (4 Core, 2.6 GHz).

2.2 Immediate Consequences

After finishing the export, we started immediately to
profit from SKilL’s benefits. Our first step was to
reimplement a very simple tool using SKilL. That way,
we could ensure that data is exported correctly. Also,
we measured the runtime of the reimplementation to
verify that our requirements have actually been met
(Figure 1). To our surprise, SKilL scales better in
terms of file size and serialization speeds than IML.

As the SKilL specification will remain unchanged
while maintaining the existing IML implementation,
the exported files are identical to files that would have
been created if SKilL were used in Bauhaus directly.
Thus, we already have test files to check the integrity
of a future Bauhaus with IML replaced by SKilL. Fur-
thermore, we have mitigated signs of software aging
[4] in Bauhaus. SKilL generates a fully documented
API for our exported IR in any implemented language.
This is not only an improvement in Ada. It is also
possible to attract students with the promise that
they could freely choose the programming language
for their thesis. For example, we could convince a
student to extend Bauhaus by further pointer anal-
ysis implementations because he was allowed to use
Scala.

Comparison of Code Size

Table 1 shows that the IML representation requires a
significant amount of code. Given our limited human
resources, it is obviously not an option to perform
manual translation steps on a significant part of IML.
Furthermore, there are over 2 million other LoC in
Bauhaus, thus it is not an option to change the IML
API in a way that would prevent compilation of ex-
isting tools.

A summary of generated code sizes for SKilL is
given in table 1 to contrast the 487k LoC of IML.
The doxygen back-end is just a rewrite of the speci-
fication that is not even type correct C++, but can
be parsed by the doxygen parser to generate an in-

Back-end files comment code
Ada 1280 18670 288671
C++ 87 8382 110417
doxygen 337 4316 3138
IML 2293 13227 487829
Java 1177 29747 131994
Scala 16 7239 53491

Table 1: Generated code for IML and SKilL back-ends

teractive documentation. The Ada and Java back-
ends use similar architectures. The excess code re-
quired for Ada is caused by duplication in header and
source files. Additionally, Ada requires manual mem-
ory management, manual boxing, manual reflection
and more verbose type conversions. The expressive-
ness of semi-functional Scala enables a concise archi-
tecture and relatively small implementation size.

Another benefit of SKilL is that tools working only
on a subset of the IR can be built against a reduced IR
specification. For instance, there is a tool printing the
names of implemented functions. If the specification
is stripped to the minimum, the resulting amount of
code is reduced to roughly a thousand lines.

3 Complete IML Replacement

Similar to the export tool one could also write an im-
port tool building IML files from SKilL. The appealing
aspect of this approach is that it would allow us to use
SKilL’s change-tolerance to convert between different
versions of IML. On the other hand, having to con-
vert between IML and SKilL several times on the path
from the front-end to the desired analysis is reduces
usability and increases total runtime.

Thus, the remaining goal is to have a total conver-
sion of Bauhaus to SKilL. First, we will create a fully
automated translation for all type definitions that are
specified using the IML specification language. After
that, the generator for contemporary IML serializa-
tion will be changed to create implementations that
internally use the SKilL API instead of directly writ-
ing objects into a stream. That way we will soon
be able to serialize instances of specified types. This
strategy will allow us to keep our legacy without losing
the ability to extend it effectively.

References
[1] SKilL on Github. https://github.com/skill-lang/skill.

[2] Timm Felden. Efficient and Change-Tolerant Serialization
for Program Analysis. In: Softwaretechnik-Trends, 2014.

[3] Martin Kaistra. SKilL vs. XML: Performance of
Serialization-Concepts, 2015.

[4] David Lorge Parnas. Software Aging. In: Proceedings of
the 16th International Conference on Software Engineer-
ing, ICSE ’94, (pages 279–287). IEEE Computer Society
Press, Los Alamitos, CA, USA, 1994. ISBN 0-8186-5855-X.

[5] Aoun Raza, Gunther Vogel and Erhard Plödereder.
Bauhaus – A Tool Suite for Program Analysis and Reverse
Engineering. In: Reliable Software Technologies – Ada-
Europe 2006, LNCS, volume 4006, (pages 71–82), 2006.

https://github.com/skill-lang/skill

	Introduction
	Steps of Migration
	Creating a Specification and Binding
	Immediate Consequences

	Complete IML Replacement

