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There are increasing concerns about missing traffic data in recent years. In this paper, a robust missing traffic flow data imputation
approach based on matrix completion is proposed. In the proposed method, the similarity of traffic flow from day to day is exploited
to impute missing data by the low-rank hypothesis of constructed traffic flow matrix. And the physical limitation of road capacity
and nonnegativity is also considered through the optimization process, which avoids the possibility of producing negative and
overcapacity values. Moreover, the proposed algorithm can impute missing data and recover outlier in a unify framework. The

experiment results show that the proposed method is more accurate, stable, and reasonable.

1. Introduction

Traffic information collected by various kinds of sensors
are a vital component of intelligent transportation system
(ITS) which aims to influence travel behavior, reduce traffic
congestion, improve mobility, and enhance air quality [1]. For
example, the real-time traffic information can be provided
to drivers before and during their travels for supporting
their decision of route choice [2] and it is also an important
guideline for modern traffic control system to adjust the
signal timing [3]. Moreover, after proper preprocessing, the
real-time traffic data can be used as the real-time traffic state
estimation of transportation networks [4]. On the other hand,
several data mining techniques have been applied to mine
time related association rules from historical traffic databases
and its results have been used for traffic prediction such as the
works of Qiao et al. [5] and Zargari et al. [6].

However, the missing traffic data problems remain
inevitable due to detector faults or transmission distortion
in many places. About 10% of daily traffic flow is usually
missing in Beijing, China [7]. Turner et al. [8] reported
that almost a quarter of data from San Antonio, Texas, is
missing; and more than 5% of data are lost within the PeMS
traffic flow database [9]. The missing data adversely affect the

applications of intelligent transportation system; for example,
the traffic control system requires sufficient traffic flow data
(i.e., traffic volumes, occupancy rates, and flow speeds) to
generate appropriate traffic management strategies [10, 11]. In
traffic forecast area, if there exists missing data, the predicting
performance will reduce sharply [12, 13]. Clearly, missing data
problem is a large obstacle for any of the functions for which
ITS data is to be used.

In the past decades, numerous imputation methods have
been proposed to handle missing traffic data problem. These
imputation methods can be roughly divided into two parts:
interpolation based and inductive learning based methods.

Interpolation based methods always fill the missing data
with a weighted average value calculated from part of known
data. Yin et al. [14] use historical averages from the same
detector at the same time period but in neighboring days
to replace missing data. Zhong et al. [15] interpolate error
traffic data by traffic data from similar daily flow variation
patterns considering the error type and traffic condition. Such
approaches only use part of the traffic information and always
fail to accurately estimate missing value at high missing ratio.

On the other hand, inductive learning methods try to
build imputation modeling from the a priori characteristics
of traffic data. Most of these methods are based on some
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TaBLE 1: The possibilities of producing unreliable results.
Methods MCI PPCA IALM SVT
Frequency 0% 38.57% 7.14% 11.43%

assumptions of traffic flow data. Autoregressive Integrated
Moving Average (ARIMA) is based on the assumption that
the historical value and future value of traffic flow provide
an indication of the missing value [16]. The probabilistic
principle component analysis (PPCA) based methods assume
that the basic characteristic of traffic flow variations can be
captured by the probability distribution of PPCA [7, 17].
The recent tensor-based methods assume that traffic data
are highly correlated in multimode (day, week, link) and
construct traffic flow data into multiway array (tensor) to
capture these correlations. By utilizing the essential charac-
teristics of traffic flow information by the assumptions, these
kinds of imputation methods often outperform traditional
interpolation methods [7]. It can be concluded that most of
the inductive missing traffic data imputation methods make
the following assumptions.

Assumption 1. Traffic flow has a high similarity from day to
day and week to week but also link to the neighboring link
which can be utilized to impute missing traffic flow.

Assumption 2. The traffic flow data have not been spoiled
by the outliers, which frequently occur in real-world traffic
information system.

While the inductive based imputation methods achieve
somewhat success by the assumptions for traffic flow data,
there are still some shortcomings in these methods. Firstly,
according to the traffic flow theory, the volume of traffic
flow is a certain value from zero to the road-capacity
(the maximum traffic flow obtainable on a given roadway
using all available lanes). But most data-driven imputation
methods ignore this limitation of traffic volume. Secondly,
the traditional methods such as the PCA-based methods
cannot work well with big outlier or errors without the
preprocessing of corrupted traffic data [7]. In fact, we have
proposed several tensor completion methods [17-20], which
make full use of multimode correlations [21] of traffic flow
data, to impute missing traffic data. However, in our former
works, the nonnegativity (lower bound) and capacity (upper
bound) of traffic flow are still ignored. As a result, it is possible
that these methods will produce some unreliable results.

To tackle these shortcomings, this paper proposes a traffic
flow data imputation methods based on matrix completion.
In the proposed method, the traffic data are constructed
into a day X interval matrix. The similarity of day mode is
captured by the assumption that the constructed matrix is
low-rank. By adding a limitation in the objective function,
the proposed method can restrict the reconstructed traffic
flow data between zero and road capacity. Moreover, for the
traffic flow data corrupted by outliers, the proposed method
can simultaneously impute the missing data and recover the
outliers by the sparse assumption. It should be noted that the
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method we proposed here can be considered as an idealized
version of robust PCA (RPCA) but different from the natural
approaches to robust PCA [22]. The proposed approach
needs not to preprocess the data and isolate the outlier
before the imputation. This advantage allows the proposed
matrix completion (MC) methods outperform traditional
imputation methods especially for the traffic flow corrupted
by outliers.

To give a detailed explanation of the proposed method,
the rest of this paper is organized as follows. The methodology
and algorithm of the proposed method are proposed in
Section 2. Section 3 presents the imputing testing results
including comparison with other methods. The conclusion
and future works are conducted in Section 4.

2. Methodology

In this section, a brief description of the matrix completion
is presented. Then, we described the proposed missing traffic
flow data imputation method in detail.

2.1. Review of Matrix Completion Methods. Let M beanmxn
matrix of rank r (< m or n); the low matrix M has some
available sampled entries {Mij : (i, j) € O} where Qisa subset
of sampled cardinality. Then [17] proves that most matrices
M of rank r can be perfectly reconstructed by solving the
optimization problem:

min | X],
¢))
st Xy=M; (i.j) e
In (1), the functional | X], is the nuclear norm of the
matrix M, which is the sum of its singular values.
In [23], the singular value thresholding (SVT) algorithm
is used to solve an approximate optimization problem of (1):

. 1
min 7| X|, + = [IX]}
2 )
st Py (X) =Py (M),

where P is the orthogonal projector onto the span of
matrices vanishing outside of Q) so that the (4, j)th component
of P,,(X) is equal to Xij if (i, j) € Q and zero otherwise.

The Lagrange multiplier of (2) is

LOGY) = TIX. + SIXE+ {5 P (M- X)), )

where {A, B} = trace{AB"}, with optimization variable X €
R™" Fix T > 0 and a sequence {8}, of scalar step sizes.
Then starting with Y° = 0 € R™", the algorithm inductively
defines

Xk = D, (Yk—l)’
k k k (4)
Y* =Y+ 8Py (M- X)),
where
D, (X)=US, (V" ifx=Usv" (5)
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TABLE 2: The recovery and imputation accuracy with different ratio of outliers.
Outlier ratio Missing data imputation Outlier recovery
MAPE MAE MAPE MAE
5% 13.81% 32.0799 14.89% 36.9587
10% 14.47% 33.8156 15.32% 39.1584
15% 15.95% 39.7424 15.76% 46.6486

(2) while not converged do

4) A, = USFI:]VT,

(7) updating p
B)k=k+1
(9) end while
(10) output A

Input: Observation samples Dy, i, j € Q, of matrix D € R™"
(1) Yo, Ey = 0, g, k = 0, C(road capacity)

(3)(U,S, V) = svd (D - By + ' Yy),

(5) Exs1 = Pp_ccpep (PQ (SM/A (D= Ay, + P‘;ZlYk)) + P (D= Ay + F;IYk))
(6) Yieyy = Vi + p (D = Agyy = Egyy)

ALGORITHM I: Matrix completion based traffic data imputation method.
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FIGURE 1: The original data (blue) and approximated low-rank data
(red) from Detector 400141. The low-rank data basically keeps the
characteristic of origin data.

S;(x) is the constriction factor of x, where

x-1 ifx>71
S;(x)=19x+1 ifx<-71 (6)
0 else.

More details for SVT can be found in [24].

Literature [25] develops an augmented Lagrange multi-
plier method to solve MC. In their methods, the MC problem
is formulated as

min  [|A], )

st A+E=D  P,(E)=0

as E will compensate for the unknown entries of D and the
unknown entries of D are simply set as zeros. Then the partial
augmented Lagrangian function is

L(AEY,u)=|Al, +{¥,D- A-E} + gnD—A—Eui.
(8)

Then, A and E are updated according to the subproblems
of (8),where A is updated by

arg m§n||A||* + g“D -A-E+ yilY“i

9)
= D‘u—l (D —FE+ ‘ule) )
E is updated by
arg min |- A= E+¥[, = o (D= 4+4'Y),
(10)

More detailed information of the augmented Lagrange
multiplier (ALM) method can be found in literature [25].

2.2. The Proposed Algorithm. The goal of the proposed
method is to impute the missed traffic data considering both
the physical limitation of traffic flow data and the possible
corruption by outliers. Firstly, the traffic flow data in a local
place are formed into the matrix mode as follows:

a, ... ap

A=t . )

a

il . a

mn

In this matrix a;; represents the discretized volume on day

j at time interval i within the given day. For the physical
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FIGURE 2: MAE and MAPE curves for three matrix completion methods and PPCA method.

4
45
40 o P P G .
350 o L R W-
. . . . . . /.
. . . . . . /
330 ..... SEREE SEREE L /V-
o . . . . . AR
2 : : : : : o
: : : : VAR &
/.
Missing ratio (%)
-©- MCI IALM
-E- PPCA =7~ SVT
(@
600
)
E 500 + J’,ﬁp ; 4:{.,‘::‘:?‘:";%«;. ) J
S 400t Tl 2 S ]
3] =15 Pdo v o% B ‘t;i\;‘yu
<300 | o off8e o T
2 o 7% }"«;"
= o g o Wao
g Op ¥ e ]
g 100 fegm, P Tl
g T G R o
2 0 %"k ]
< Negative value
—~100 , \ \ . . .
0:00 4:00 8:00 12:00 16:00 20:00 24:00
Interval
= Reconstructed by PPCA —— Zero
> Reconstructed by MCI Original data

FIGURE 3: The negative value reconstructed by PPCA.

limitation, a;; changes in a particular range from zero to road
capacity. The total number of days is n and each day is divided
into m time intervals. Supposing the set of observed traffic
volume data is (2, and the traffic volume is corrupted by sparse
outliers. Hence, the missing traffic data imputation problem is
translated into a corrupted matrix completion problem [26-
28]; the optimization problems can be described as
min rank (A) + A"PQ(E)”O
(12)

st A+E=D, 0<A<C

where || ||, represents the number of the nonzero entries and
P, is the orthogonal projector onto the span of matrices
vanishing outside of Q.

The standard deviation of errors

Missing ratio (%)

—— MCI
—— PPCA

TIALM
SVT

——

FIGURE 4: The standard deviation of errors (SDE) of the test
methods.

The minimums of || ||, (£°-norm) and the rank of matrix
are NP-hard problem [29]. To convert the objective function
(12) into a convex optimization problem, the rank of A is
approximated by the nuclear norm (the sum of the singular
values) of the matrix, and the | ||, of P (E) is approximated
by the £'-norm of the matrix (the sum of the absolute value
of its entries) [29] as follows:

min  [All, +M|Po(B)], (13)

st A+E=D, 0<A<C
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FIGURE 5: Comparisons with raw traffic volume data, data with 30%
missing data and corrupted by outliers with 15% ratio, and data
reconstructed by MCIL.

Because the solution of E is easier than A, the function is
converted into the following form:

min  [|A]l, + A|Py(E)|,
(14)
st A+E=D, D-C<E<D.

Considering the faster computation speed and higher accu-
racy, the augmented Lagrangian method (ALM) [25] is
employed to optimize the problem.

By introducing a Lagrange multiplier Y to remove the
equality constraint, one has the Lagrangian function of (14):

L(A,E,Y,u) = |All, + A|Po(E)|, + (Y, D - A-E)

(15)
+ §||D —A-E|A

Lin et al. [25] proved that updating A and E once when
solving this subproblem is sufficient for A and E to converge
to the optimal solution of (15). A is updated by

arg m[in||A||* + g”D -A-E+ y_lY“;

(16)
-1
=D, (D-E+u’'Y),
where
-1 T
D1 (D-E+p'Y)=US, 1 (2)V
(17)
if D-E+u’'y =UzV".
Slﬂ( ) is the constriction factor, where
x—-1 ifx>t
S;(x)=9x+1 ifx<-1 (18)
0 else.

5
E is updated by
. l/l : 2
arg D—rélgllrilgD)L"PQ B, + EHD ~A-Etu IY“F
= PD—CSESD PQ SE (D - A * #71Y) (19)
A

+P5(D-A+u'Y)

Py_..p<p is the projector onto the span of matrices ranging
from D — C to D. This leads to a matrix completion
based traffic data imputation method (MCI) described in
Algorithm 1.

3. Experiments

The evaluation of an imputation method’s performance is a
multiobjective problem. In this section, four key performance
indicators of the proposed method are discussed, which are
the accuracy, stability, robustness, and computation complex-

ity.

3.1 The Test Data. To evaluate the proposed method, traffic
flow datasets from PeMS [9] open database are used. The
dataset is collected from Detector 400141. The detector is
located at north bound freeway 1880. The freeway has four
lanes under surveillance. The sampling period is between July
11, 2013 and July 30, 2013. The data are almost all observed
with a 99.9% observed ratio.

The assumption is an important premise for the missing
traffic data imputation methods based on inductive learning.
For the proposed MCI, the traffic volume matrix is assumed
to be low-rank. The correctness of this assumption is val-
idated by the low-rank approximation of the original data.
The low-rank approximation data is computed by singular
value decomposition according to Eckart-Young theorem
[30]. If we consider singular value decomposition (SVD) of
the constructed traffic volume matrix Mg, we get

Mg = UGVGV(T;’ (20)

where columns of Ug and V. are left-singular vectors and
right-singular vectors of Mg, respectively. The diagonal
entries of V; are equal to the singular values of M.

The full-rank matrix Mg can be approximated as a low-

rank matrix NIE by the SVD of M, namely,
Mg = UgVe Ve, (21)

where Vg is the same matrix as V,; except that it contains
only the r largest singular values (the other singular values are
replaced by zero). The low-rank approximation of the selected
traffic data is given in Figure 1.

As we can see from Figure 1, the approximated low-rank
data basically keeps the characteristic of origin data. From the
results, it can be concluded that the low-rank hypothesis of
traffic volume matrix is reasonable.



3.2. Quantitative Measures. The set of measures including
MAE, MAPE, and SDE allows one to directly evaluate the
performance of multiple imputation techniques

3.2.1. Accuracy. In this paper, the mean absolute percentage
error (MAPE) is used to evaluate the performance of missing
traffic data imputation. However, the MAPE will be lower
if the traffic volumes are higher [31]. In observance of this
phenomenon, this paper also applies the mean absolute error
(MAE) as a complementary measure for MAPE.

The mean absolute error (MAE) is defined to be

1 n
MAE = =) |x, - M,|. (22)
nia
The mean absolute percentage error (MAPE) is defined to be

1
MAPE = —
2

x, — M
Lt % 100%, (23)

Xt

where n is the total number of missing data, x, is the observed
value, and M, is the reconstructed value.

3.2.2. Stability. The standard deviation of errors (SDE) of the
test methods is evaluated. The smaller SDE means that the
errors are tightly clustered around the mean value [29]:

SDE = 4/var (M, - x,). (24)

3.2.3. Robustness. The robustness is evaluated by the accuracy
on the dataset added outlier under different missing ratio.

3.3. The Results without Outlier. In this part, we evaluate the
performance of MCI algorithm and compare it with other
state-of-the-art algorithms including PCA-based PPCA [7],
SVT [22], and IALM [23] on random missing case without
outlier. For MCI, the tolerance on the || || f of D - A-E
divided by | | ¥ of D in the gradient is set to 0.01, and the

maximum number of iterations is set to 10> A which is set
to 150. For SVT and IALM, the tolerance on the || || s issetto

0.01, and the maximum number of iterations is also set to 10°.
For PPCA, similar to [7], the tolerance is set to 0.01, and the
latent space is set to 15.

In order to better verify the change in imputation per-
formance, the total missing ratio (the number of missing
data points divided by the total number of data points) is set
from 5% to 70%. The MAE and MAPE curves are shown in
Figure 2.

In Figure 2, all the methods achieved equal results under
missing ratio lower than 30%. However, the performances
of other methods except for MCI degrade sharply when the
missing ratio is higher than 50% except MCI. The reason
may be that the MCI can utilize the physical limitation of
traffic flow in the imputation process while the other methods
ignored the physical limitation of traffic flow data.

Traffic volume must be nonnegative and less than the
value of road capacity. The PPCA imputation strategy is a
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kind of statistical method which imputes data through the a
priori statistical characteristics of data. As shown in Figure 3,
the PPCA method may give a negative value of volume
during the low flow rate interval. The phenomenon also
can be found in the other two matrix completion strategies
without the constraints of nonnegativity and road capacity
in their objective function. Our proposed MCI can tackle
this shortcoming by adding the limits to the algorithm.
The negative and overcapacity value is not observed in the
experiments of MCI. The possibilities of four methods that
produce unreliable results in our experiments are given in
Table 1 (the frequency of experiment results with unreliable
results: negative or overcapacity).

In the above experiments, the accuracy of MCI has been
tested. Then, we will test the stability of imputation methods
by SDE under different missing ratio. As shown in Figure 4,
the SDEs of MCI and IALM using augmented Lagrangian
function are lower than PPCA and SVT. It suggests that the
MCI not only can compute missing data more accurate but
also more stable by employing the augmented Lagrangian
function.

3.4. Missing Data Imputation with Outlier. The above experi-
ments assume that the data have not been spoiled by outliers.
However, the traffic flow series are often corrupted by the
outliers which are caused by numerous reasons [32]. Unfortu-
nately, these outliers are usually not easy to be isolated by the
traditional missing traffic data imputation approaches. Thus,
the recovery of outlier and imputation of missing data are
often completed in different frameworks separately [7, 29].

For the problem, the MCI algorithm makes it possible to
impute missing data and recover outlier in a unify framework
by adding the sparse matrix E.

There are various kinds of outlier in traffic data. Here, we
only consider two common scenarios of outliers:

(a) volume out of range (VOR): percentage of the detec-
tor records with volumes larger than 1000 v/5 min;

(b) volume repeating zero (VRZ): percentage of the
detector records with repeating zero volumes for
30 min.

It is hard to enumerate all the situations with different
mixing ratios of the two outliers” scenarios. In the exper-
iments, the methods are tested on a typical situation by
assuming that the mixed VOR and VRZ data have a ratio
of 1:1. Ratios of outlier data are set from 5% to 15% and the
outlier data are produced randomly. The missing data ratio
is set to 30%. All the results are averaged by 10 instances.
The MAE and MAPE for missing data and outlier recovery
are both given in Table 2. Figure 5 presents the part of traffic
volume data and reconstructed volume data. The results show
that MCI could impute the missing data and recover the
traffic volume outlier data with a reliable performance.

3.5. Computation Complexity of MCI Approach. As the same
as [ALM [25], it is not necessary to compute the full SVD
in MCI. By using Lansvd [21], a fast SVD method that only
computes singular values larger than a particular threshold
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and their corresponding singular vectors, the complexity of
the singular value decomposition is not a problem for MCI.
And the computation speed of MCI is faster than traditional
matrix completion based methods such as SVT by utilizing
the augmented Lagrangian function [25].

It is not easy to choose the parameter A which is the
weight parameter between the rank of matrix and the number
of sparse outlier. For the traffic data without outliers, setting
A larger than 100 can obtain a good performance. But for
data corrupted by outliers, a proper lower value of A will
achieve better results. In this paper, we suggest A = 150 for
real application for data without corruption of outlier and
A = 0.05 for corrupted data.

4. Conclusion and Future Works

In this paper, a matrix completion method which fully utilizes
the physical limitation of traffic volume and the day mode
similarity has been proposed dealing with missing traffic flow
problem. The experiment shows that the proposed method
is more reasonable, accurate, and stable than the state-of-art
methods for traffic flow data. Moreover, the proposed MCI
can impute missing data and recover the outlier in a unify
framework with a reliable performance.

Future research should look into missing traffic data
imputation method that incorporates spatial and temporal
correlations among adjacent detectors to improve imputa-
tion accuracy. In addition, future studies may evaluate the
performance of MCI on other parameters such as speed and
occupancy. It still needs more researches on the appropriate
choice of parameter for the MCI.
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