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This paper presents the development of an integrated fault diagnostics model for identi-
fying shifts in component performance and sensor faults using the Genetic Algorithm and
Artificial Neural Network. The diagnostics model operates in two distinct stages. The first
stage uses response surfaces for computing objective functions to increase the explora-
tion potential of the search space while easing the computational burden. The second
stage uses the concept of a hybrid diagnostics model in which a nested neural network is
used with genetic algorithm to form a hybrid diagnostics model. The nested neural
network functions as a pre-processor or filter to reduce the number of fault classes to be
explored by the genetic algorithm based diagnostics model. The hybrid model improves
the accuracy, reliability, and consistency of the results obtained. In addition significant
improvements in the total run time have also been observed. The advanced cycle Inter-
cooled Recuperated WR21 engine has been used as the test engine for implementing the
diagnostics model. �DOI: 10.1115/1.1995771�
Introduction
It is a commonly known fact that engine condition monitoring

is an effective but complex way to improve safety and reduce
operating and maintenance costs of gas turbines. Engine health
monitoring systems have become increasingly important in recent
years due to the development of engines with improved power to
weight ratios. Additionally, the need to show enhanced reliability
at reduced costs will require major advances in engine controls
and engine fault diagnosis capability. In the fundamental sense,
performance monitoring and fault diagnosis involves processing
of engine measurements. In all the cases, a comparison of some
parameter values of an engine under examination is performed
with the corresponding values of an engine which is considered
“healthy.” The parameters used and the method of analyzing them
characterizes each different diagnostic method. Broadly speaking,
these techniques have not changed much from the 1970s and
mainly rely on what is known as the Gas Path Analysis �GPA�
�1,2�. The advantages and limitations of the GPA have been ex-
tensively debated and different ways to overcome the limitations
were proposed �3�. In recent times the use of artificial intelligence
techniques and optimization techniques like the genetic algorithm
have been on the rise. Interesting research has been undertaken by
several researchers �4,5� including work on Kalman filters �6�.
Zedda and Singh �7� used the ANN technique for engine fault
diagnosis and Sensor Fault Diagnosis and Isolation �SFDI� and
reported high accuracy.

Engine Fault Diagnostics Using Ga
The use of a genetic algorithm for engine fault diagnostics has

been investigated by several authors in the recent past and re-
ported good accuracy. Zedda �8� used this technique for develop-
ing a diagnostics model for the EJ200 engine with test bed instru-
mentation. Gulati �9� extended the technique to a poorly
instrumented engine using the concept of multiple objective point
analysis. He validated the technique on the RB199 engine. Sam-
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path et al. �10� have used the GA based technique for investigating
faults in advanced cycle engines like the ICR WR21 and reported
considerable success. All the methods used a similar objective
function given by Eq. �1�.

J�x� = �
j=1

M
�zj − hj�x,w��
zodj�w� . � j

�1�

Integrated Fault Diagnostics Model
The diagnostics system developed for the advanced cycle ICR

WR21 was able to detect the component faults and instrumenta-
tion faults to reasonable accuracy. However, the model had its
own limitations, particularly the long run times and, therefore, has
necessitated further enhancement. It is clear that the center of
gravity of the algorithm lies in the calculation of the objective
function, which in turn is mapped to the fitness function. The
fitness function is the parameter which dominates the search pro-
cess.

The calculation of the objective function requires the perfor-
mance model to be run twice �clean condition and faulty condi-
tion�. Therefore, any reduction in the number of calls to the per-
formance model can significantly reduce the overall run time of
the algorithm. It has been estimated that the engine performance
code run constitutes almost 75%–80% of the total runtime.

After carrying out a detailed study of the problem, several tech-
niques have been worked out to overcome the limitations, while
enhancing the accuracy, consistency, and reliability of the diag-
nostics system. The speed of convergence of the performance
model is beyond the control of a diagnostics engineer, but one
way to overcome this problem is to make fewer calls to the per-
formance code. Perhaps, the use of a function or a response sur-
face which is a suitable representation of the engine performance
model for the initial generations to eliminate the weaker indi-
vidual can reduce the total run time.

Response Surface Method
In many problems we have specific knowledge that allows us to

construct approximate models of our problem. In turn, modeling
capability allows us to create more or less accurate approxima-
tions to our objective function. With genetic algorithms, this

knowledge can be put to good use by reducing the number of
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full-cost function evaluations. In many optimization and search
problems, a single function evaluation is a fairly costly process,
involving many layers of subroutines, numerical or symbolic
computation, iterations and various coding and decoding func-
tions. As a result, if savings in computation time are possible
through approximate, perhaps a rough estimation, of the objective
function, they are worth pursuing so that more evaluations can be
performed in the same time. Interesting work in this regard have
been carried out by Montgomery �11� and Myers �12�. This ob-
servation is particularly relevant to genetic algorithms, as we ex-
pect GAs to behave robustly under error and noise because of
their population -sampling approach.

In this case a response surface is a complex nonlinear function
representing the engine performance model. The aim of the re-
sponse surface method is to obtain an objective function of a
given string without having to run the performance code. This
method, which completely avoids the performance model, is very
useful in the earlier generations of the GA diagnostics model. A
suitable representation of the performance code is essential in or-
der to implement this technique, which can be beneficial in speed-
ing up the overall process. The rationale behind this concept is to
avoid spending time on evaluating strings which are to be dis-
carded in the initial generations.

In order to implement the response surface method, the tradi-
tional objective function shown in Eq. �1� needs to be modified by
splitting it into two objective functions. Since the response surface
is created by implanting faults and comparing it with baseline
values, the objective function obtained from the response surface
will be with respect to the baseline and needs to be compared with
the objective function obtained from the actual data and baseline.
The modified objective function is given by:

�J = ��
j=1

NM
�zj

b − hj�x,w��
zodj�w� . � j

− �
i=1

NM
�zi

b − zi
s�

zodj�w� . �i
� �2�

The parameters are the same except for the superscripts “b” and
“s,” which mean baseline and simulated, respectively. A set of
measurements is obtained from the engine and is compared with
the corresponding baseline �clean parameters� measurements. An
objective function is calculated which is designated as J1. This is
required to be calculated only once. The other objective function,
J2, is directly obtained from the response surface. The optimiza-
tion of �J �difference between J1 and J2� tends to achieve the best
solution or more appropriately, eliminates the bad solutions.

At this point it is pertinent to mention that the optimization of
�J shown in Eq. �2� may not produce the exact match, for the
reason that faults with different signatures could also have similar
values of objective function. The fault signatures producing J1
and J2 could be different and it is not the same as calculating J
between the faulty data and the simulated parameter using Eq. �1�.
However, what is important at this stage is to identify the strong
individuals and create a condition for the weak individuals to be
eliminated early in the search process. The calculation of J1 gives
the sum of deviations from the baseline. This value indicates that,
deviations producing J2, which are close to J1 in magnitude are
likely candidates for further examination. At this point, the signs
of deviations are not considered as they will be eliminated when
the objective function is calculated with measurements obtained
from the performance model using Eq. �1�.

Data for the response surface is generated using the engine
performance model. It is very similar to generating the search
space by varying the engine performance parameters �component
flow capacities and efficiencies� in small steps from its baseline
values and implanting it into the engine performance model. A set
of measurements are obtained for these conditions and compared
with corresponding engine baseline parameters. The sum of the
deviations is the objective function. This data is used to generate a
response surface. Some of the ways to develop a response surface

which have been investigated are enumerated below.
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The first method involved the development of a general regres-
sion function using the Gaussian functions and high-order poly-
nomials. A sample is shown by Eq. �3� which represents a com-
plex function like the search space. The aim is to evolve an
equation which can readily return an objective function when
given a set of deviation in the engine performance parameter.
Once the regression coefficients have been obtained, the reanaly-
sis and sensitivity analysis represented by Eqs. �3� and �4� require
trivial computational effort. The constants and coefficients have
been obtained using the MATLAB statistical toolbox.

f�x,y� = Ae�−b1x−b2y� + Be�−b3x−b4y� + ¯ . �3�
in the case of engine fault analysis the equation can be re-written
as

JRS = Ae�−b1��−b2��� + Be�−b3��−b4��� + ¯ . �4�
Figure 1 shows a comparison between the original data and the
data generated from the response surface generated using the
Gaussian function shown in Eq. �4�. It is evident that the response
surface is barely able to reproduce the original data and, therefore,
would not be of much value considering the fact that it is expected
to reproduce the surface details to reasonable accuracy.

The second option was to use the Radial Basis Functions
�RBF�. RBFs have attracted a great deal of interest due to their
rapid training, generality, and simplicity. They have been widely
used for the Generalized Regression Neural Networks �GRNN�.
They are several orders of magnitude faster in training when com-
pared to the standard back propagation but have a major disad-
vantage: After training, they are generally slower to use, requiring
more computation to perform a classification or function approxi-
mation. It can approximate any arbitrary function between input
and output vectors, drawing the function estimate directly from
the training data. Furthermore, it is consistent, that is, as the train-
ing set size becomes large, the estimation error approaches zero.
The accuracy of the estimated function is very high as long as the
input vector is close to the training vector. The RBFs are highly
localized and, therefore, need large amounts of training data. The
large amount of training data creates a large number of nodes.
Though the training is very quick, the function approximation is a
computationally intensive process.

Having investigated the possibility of representing the search
space in the form of a response surface using the first two options
and carefully considering the advantages and disadvantages of the
process, it was decided to investigate the possibility of using a
FFBPNN for the generation of a response surface. The FFBPNN
is a standard neural network widely used for classification. The
FFBPNN are known to represent complex functions very accu-
rately when trained with appropriate and adequate samples. Figure
2 shows the response surface developed using the data from Fault
class-2 �Fault in HPC� The network �8-20-20-1� was trained using
data generated by implanting faults in the engine performance
model and the objective function calculated with measurements
obtained and baseline measurements.

From Fig. 2 it can be seen that the data represented using FFB-

Fig. 1 Objective function using Gaussian function
PNN is accurate for the same data set. It is a trade-off between the
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other two methods and can be used effectively in the initial stages
of the search process. While the calculation of an objective using
the engine performance model takes a significant portion of a
second, several hundred objective functions can be obtained dur-
ing the same time using the response surface.

The number of generations for which the RSM is not fixed and
is a matter of choice. Experiments show that using the RSM for
the initial 25% of the total number of generations is beneficial.

Though a considerable amount of time can be saved by using
the RSM, However, the algorithm has to search all the fault
classes in order to arrive at a solution. Figure 3 shows a typical
optimization process consisting of 100 generations out of which
25 generations use the RSM to compute the fitness values of
strings. The diagnosis of multiple component faults lead to a large
number of fault classes to be explored, which in turn leads to large
run times. The number of fault classes that need to be searched
could be further reduced by developing a hybrid system in which
a pre-processor algorithm can be used to classify the fault classes
into the appropriate groups and suggest a single/group of fault
classes to be explored by the GA optimizer.

There are several fault diagnostics techniques and optimization
techniques which can be combined with the GAs to form a hybrid
system for efficient fault diagnostics. Researchers like Gulati �6�
have suggested the use of the GA for a broader search and the use
of calculus-based methods for the local search. The approach
adopted here is to identify a method which could be used to re-
duce the number of fault classes, so that the GA module can be
used to search the fault classes for faulty components and quantify
the fault. The rationale behind this is to avoid searching fault
classes which are not likely to have faulty components.

Hybrid Diagnostics Model Using Ga and ANN
When problem specific knowledge exists, it may be advanta-

geous to consider a GA hybrid. Genetic algorithms can be crossed
with various problem specific search techniques to form a hybrid

Fig. 2 Data representation using FFBPNN
Fig. 3 Comparison of time taken for objective function

Journal of Engineering for Gas Turbines and Power

: https://gasturbinespower.asmedigitalcollection.asme.org on 07/01/2019 Terms o
that exploits the global perspective of the GA and the convergence
of the problem specific technique. A number of authors have sug-
gested such hybridization �Bethke �13�; Bosworth et al. �14�;
Goldberg �15��. However, there is not much published work de-
scribing the results of GA-hybrid studies. Nonetheless, the idea is
simple, has merit and may be used to improve the ultimate genetic
search performance.

For the problem in hand, an analogy can be drawn with the
diagnostic engineers of yesteryear, when modern-day engine fault
diagnosis techniques were in their infancy and when an analyst
would make an intelligent assessment based on certain thumb
rules. The method used was similar to the fault tree method in
which the branches of the fault tree are traversed by eliminating
certain criteria to arrive at the fault. The fault tree technique has
the limitation that only single component faults can be identified.
However, in the case of the proposed hybrid system, a Fault Class
Classifier �FCC� is expected to identify the likely fault class�es�
and the GA optimizer would subsequently explore the fault
classes and quantify the faults associated with the components.

An extensive literature study showed that the feed forward back
propagation network remains an effective paradigm and is by far
the most commonly applied neural network for classification
problems. Ogaji and Singh �16� have successfully used the con-
cept of cascade neural networks for component and sensor fault
identification. An informal count indicates that more than 85% of
published applications have used the FFBPN. In difficult applica-
tions where the input-output relationships are nonlinear and/or
involve high-order correlations among the input variables, back
propagation has produced accurate results. The disadvantage of its
slow training is partially offset by its rapid computation in the
forward direction.

It was felt that the ability of the ANN to classify the given data
with a relatively small network can be used to act as a preproces-
sor for the GA diagnostics. Even if the neural network is able to
classify the given data as a single or multiple component fault, the
search time is reduced to 25% of the original time in the case of
single component faults �the GA module has to search only the
first 7 fault classes� or 75% of the original time in case of multiple
components fault �the GA module has to search 21 fault classes�.

A schematic diagram of the concept of the hybrid model is
shown in Fig. 4. The hybrid model consists of a Nested Neural
Network �NNN� in which each network has a limited task of
classifying the data into subgroups.

Perhaps, one way to classify is to train a network for all pos-
sible combinations of faults. But the training set required to fully
represent all possible combinations of health parameters and sen-
sor biases will be prohibitively large. It would take excessive time
to train such a neural network and their performance might not
reach satisfactory levels. In the light of the above, the problem
domain has been partitioned into smaller and specific tasks. A
node in the NNN is trained to classify the given input into any one
of the subcategories, usually two or more subcategories or
BRANCH nodes �described later�.

This approach has been found to be more accurate when com-
pared to training a single large network to identify the faulty com-
ponents. The dark line shows the flow of the algorithm to arrive at
the final stage, for an arbitrary set of measurements. The nodes are
classified into “BRANCH” nodes and “TERMINAL” nodes. The
bottom most level of each branch/path consists of the terminal
nodes. The “TERMINAL” nodes have an important task of ex-
tracting and submitting the fault class�es� for optimization by the
GA Module.

Input data from an engine is fed into the NNN pre-processor.
The first step is to identify whether the input data was generated
due to a faulty component or a faulty sensor. Once the classifica-
tion has been made, the data is forwarded to the next level. If the
input data is associated with a component fault, then it is for-
warded to a node classifying the input data into Single or Multiple

component faults. In the same way, the input data traverses
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through the BRANCH nodes and arrives at the TERMINAL node.
A terminal node will classify the input data into a single fault class
or a group of fault classes to be explored by the GA optimizer.

Whether in classification or regression, it is necessary to em-
ploy appropriate training algorithms. For the feed forward back
propagation network, various training algorithms such as resilient
backpropagation, delta-bar-delta, conjugate gradient algorithms.
Levenberg Marquardt, Bayesian regularization, etc. are available.
The choice of algorithm is usually a trade-off between many fac-
tors such as minimum RMS error obtainable, length of training
time or speed of convergence, memory requirements, nature of the
problem. The choice of the algorithm is left to the user and the
type of problem being solved.

In the present work, several algorithms were tested and the
conjugate gradient method was found to be most suitable from the
point of the speed of convergence and memory requirement. The
algorithm gave good results by improving the generalization es-
pecially with respect to classification, which is the main require-

Fig. 4 Schematic of a hybrid diagnostics model

Table 1 Desc

Node Designation

LIN1 SFCF Class
L2N1 CMPF Class
L2N2 SFD Ident
L3N1 SCMPF Ident
L3N2 MCMF Class
L4N1 GROUP-1 Class
L4N2 GROUP-2 Class
L4N3 GROUP-3 Class
L5N1 LPC-GP Ident
L5N2 HPC-GP Ident
L5N3 HPT-GP Ident
L5N4 LPT-GP Ident
L5N5 FPT-GP Ident
L5N6 ICL-GP Ident
L5N7 RCR-GP Ident
52 / Vol. 128, JANUARY 2006
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ment in the model. The radial basis functions were also experi-
mented but they need a large amount of nodes and that gives a
particularly good result if the input data is close to the training
data.

The number of layers and number of processing elements per
layer are important decisions to be made during the design of an
ANN. The number of processing elements in the input and output
layers are fixed by the number of input measurements and re-
quired output vectors, respectively, and, therefore, only the num-
ber of hidden layers and number of processing elements in the
hidden layers are to be determined. There are no good solutions to
this problem and is again dependent of the nature of the problem
being addressed. In general, as the complexity in the relationship
between the input data and the desired output increases, then the
number of processing elements in the hidden layer should also
increase. The number of processing elements may also depend on
the amount and the quality of training data. It is noteworthy that a
fewer number of processing elements would mean there are insuf-
ficient network parameters �weights and biases� to undertake the
required tasks �which leads to under learning of the problem do-
main�, while more than necessary processing elements in the hid-
den layers would lead to poor generalization as the features of the
training patterns are memorized �making the network less capable
to apply knowledge learned to patterns that were not included in
the training process though within the problem domain�. In other
words, the network becomes useless on new data sets.

Table 1 shows the description of individual nodes. The letter
“L” denotes the level and the number gives the level number. The
letter “N” denotes the node and the number suffixed shows the
position of the node in a particular level. Each node has a specific
function to perform as part of the network. Table 2 shows the type
of network and configuration of the individual nodes in the nested
neural network.

Various configurations of the MLPs were tried and the configu-
ration shown in Table 2 was found to give good classification. The
fault classes used to train the nodes are shown in the last column
of Table 2.

Confidence Rating of Networks
Once the individual networks have been trained to classify data

into specific subgroups, they can be integrated to form a nested
neural network for different levels of classification. Before en-
trusting the networks with the classification job, a Confidence
Factor �CF� of each network has to be established to have confi-
dence in the final output from the NNN. The CF of each network
is obtained by simulating the network output with a large amount
of randomly generated data set for that particular node. This is an
important aspect of the HDM as the GA module depends on the
classification ability of NNN. As it was described earlier, the
nodes, particularly the TERMINAL nodes, are not constrained to
give one fault class, but can suggest a set of fault classes to the

tion of nodes

Function

s Sensor fault and Component Fault
s between Single or Multiple Component Faults
s Sensor Fault
s fault classes in case of single component fault
s multiple fault component faults into subgroups
s the faults with compressors into LP and HP groups
s the faults with turbines into subgroups
s the faults with ICL and RCR into subgroups
s fault classes with LPC as a common component
s fault classes with HPC as a common component
s fault classes with HPT as a common component
s fault classes with LPT as a common component
s fault classes with FPT as a common component
s fault classes with ICL as a common component
s fault classes with RCR as a common component
rip

ifie
ifie
ifie
ifie
ifie
ifie
ifie
ifie
ifie
ifie
ifie
ifie
ifie
ifie
ifie
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GA module. This feature has been provided to reduce the prob-
ability of a wrong fault class being given to the GA module. While
classifying the fault classes the CF of that node plays an important
role in the number of fault classes being suggested. The higher the
CF the lesser will be the number of fault classes suggested, and
also more confidence in the fault classes suggested.

High CF is particularly necessary in the BRANCH nodes as the
decision made at the branch level is crucial for the progress of the
solution in the correct direction. It is also possible that under some
extreme conditions the network makes an incorrect classification
in the beginning, which can lead to input data being passed
through the wrong branches.

To avoid such a situation, different network topologies can be
used for classification. Different topologies would mean longer
training time. However, once the networks are trained for a par-
ticular operating point, the classification is instantaneous. The
confidence factors shown in Table 3 have been obtained by sub-
jecting the nodes to a large amount of test data. The various de-
cisions made at the BRANCH nodes and TERMINAL nodes are
dependent on these CF values. The CFs for classification of indi-
vidual nodes and the layer are obtained and is indicative of the
confidence one can have in the classification ability of the nodes

Table 2 Config

Network Type Configurati

LIN1 MLP 10-30-30-
L2N1 MLP 10-30-30-
L2N2 AANN 10-30-4-30-
L3N1 MLP 10-25-25-
L3N2 MLP 10-30-30-
L4N1 MLP 10-25-25-
L4N2 MLP 10-25-25-
L4N3 MLP 10-25-25-
L5N1 MLP 10-25-25-
L5N2 MLP 10-25-25-
L5N3 MLP 10-25-25-
L5N4 MLP 10-25-25-
L5N5 MLP 10-25-25-
L5N6 MLP 10-25-25-
LFN7 MLP 10-25-25-

Table 3 Confidence ra

NODE CLASSIFICATION O

L1N1 SF CF
99.45 99.27

L2N1 SCMPF MCMPF
96.23 92.86

L3N1 FC-1 FC-2 FC-3
99.90 99.97 99.88

L3N2 GROUP-1 GROUP-2
99.83 99.52

L4N1 LPC-GP HPC-GP
100.00 99.60

L4N2 HPT-GP LPT-GP
98.44 98.87

L4N3 ICL-GP RCR-GP
99.79 98.92

L5N1 FC-8 FC-9 FC-10 F
98.50 99.17 97.88

L5N2 FC-14 FC-15 FC-16 F
97.62 99.23 98.38

L5N3 FC-23 FC-24 FC-25 F
98.49 99.56 98.67

L5N4 FC-26 FC-27 FC-23 F
97.68 98.64 99.33

L5N5 FC-28 FC-26 FC-24 F
97.29 99.09 97.78

L5N6 FC-19 FC-20 FC-21 F
97.56 99.27 98.59

L5N7 FC-28 FC-27 FC-25 F
97.34 99.21 96.73
Journal of Engineering for Gas Turbines and Power
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Discussion of Results From HDM

The process starts with a node classifying the input data as
having a component fault or a sensor fault. If it is identified as a
sensor fault, the data is forwarded to an Auto-Associative Neural
Network �AANN� for isolation of faulty sensor�s� as well as as-
sessment of the fault magnitudes. On the other hand, if a pattern is
identified as a component fault by the node, it is then passed to the
next node which classifies it as a single component or multiple
component faults. If it is identified as a single component fault
then the input data is passed onto to a node which further classi-
fies it into the appropriate category �fault class�. If it is classified
as a multiple components fault, then it is forwarded to nodes for
classification to appropriate subgroups and finally classified into
fault classes. A brief description of the constituent nodes is pre-
sented:

Node L1N1. The test measurements are introduced to this node
which is trained to accomplish an important task of classifying the
data into: Component fault or sensor. The node was subjected to a
series of rigorous tests with randomly simulated test patterns as
follows:

ation of nodes

FCs-Involved in training

FC-1: FC-28
FC-1: FC-28
MEASUREMENTS
FC-1: FC-7
FC-8: FC-28
FC-8:FC-18
FC-23:FC28
FC-19:FC22
FC-8:FC-13
FC-14:FC-18,FC-8
FC-23:FC-25,FC-19,FC-15,FC-10
FC-26,FC-27,FC-23,FC-20,FC-16,FC-11
FC-28,FC-26,FC-24,FC-21,FC-17,FC-12
FC-19,FC-20,FC-21,FC-22,FC-14,FC-9
FC-28,FC-27,FC-25,FC-22,FC-18,FC-13

s of nodes in the NNN

ATEGORIES �%� CF�%�

99.36

94.54

-4 FC-5 FC-6 FC-7 99.74
4 99.92 99.71 99.25

GROUP-3 98.87
97.12

99.80

FPT-GP 99.80
99.26

98.95

11 FC-12 FC-13 98.62
4 98.92 98.71

17 FC-18 FC-8 98.47
4 99.12 98.54

19 FC-15 FC-10 98.67
9 97.84 98.59

20 FC-16 FC-11 98.34
1 98.72 97.48

21 FC-17 FC-12 98.01
7 97.37 97.88

22 FC-14 FC-9 98.43
4 97.92 98.51

22 FC-18 FC-13 98.03
7 97.45 98.78
ur

on

2
2
10
3
2
2
2
2
3
3
3
3
3
3
3

ting

F C

FC
99.5

C-
98.5
C-

97.9
C-

98.8
C-

98.2
C-

98.6
C-

98.7
C-

98.6
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• data with only sensor faults
• data with only component faults
• data with component and sensor faults �not occurring

simultaneously�

The break down of the classification by L1N1 is shown in Fig.
5. Data set-1 has patterns only from component faults and Data
set-2 has patterns only from sensor faults.

The accuracy achieved by the network was over 99%. Investi-
gation of the misclassified data revealed that some input data with
low levels of sensor faults were classified as having component
faults or input data with low levels of component faults were
classified as having sensor faults. The levels of faults involved
were very small and, therefore, the patterns were indistinguish-
able. For practical sense, such faults would not make a significant
impact on the performance of the engine or endanger the safe
operation of the engine. It should be noted that the data from 28
fault classes are involved and, therefore, the network is subjected
to a large amount of data and needs good generalization capabil-
ity.

Node-L2N1. This node is required to classify the input data as
having a single component fault or multiple component faults �re-
stricted to a maximum of two components simultaneously faulty�.
The node was subjected to a series of tests with randomly gener-
ated fault data. The classification accuracy or the overall confi-
dence factor achieved was 94%. The individual break down of
classification is shown in Fig. 6. Data set-1 consists of only single
component faults and data set-2 consists of only multiple compo-

Fig. 5 Results from L1N1 classification
Fig. 6 Results from L2N1 classification
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nent faults.
The network achieved low accuracy due to the large variety of

data involved in the training. The training data involved patterns
from 28 fault classes, which implies various combinations of com-
ponents and different fault levels. Therefore, the network gener-
alization capability was poor. Many cases of overlaps in classifi-
cation among the two categories were found. Further investigation
revealed that single component fault with high fault levels were
classified as multiple component faults and multiple component
faults with very low fault levels were classified as single compo-
nent faults. However, the misclassification does not seriously af-
fect the diagnostics process, as closer examination showed that a
single component fault misclassified as a multiple component
fault normally detects the fault class which has the same compo-
nent as the actual faulty component �single component fault� and
“smears” as small amount of the fault to the other components.
When multiple component faults are classified as single compo-
nent faults, it is normally observed that one of the components has
a low level fault and the other, which has a high level fault, can be
identified by the nest level.

Node-L3N1. This is a TERMINAL node and is required to
provide the fault classes for further examination by the GA mod-
ule. This node exhibits a high level of classification accuracy as
the patterns produced by the faults in the components are distin-
guishable by the network. The task of classification can be carried
out by a network smaller than the ones used for the above two
networks, i.e., L1N1 and L2N1. In general, if the confidence rat-
ing of the network is very high, it would identify only one fault
class to be examined by the GA module. However, in order to
make the NNN robust, a simple logic is incorporated, which con-
siders the individual fault class classification levels before decid-
ing the fault class�es� to be examined.

Node L2N2 (Sensor Fault Diagnosis). Once the L1N1 node
identifies the data as having sensor fault, the input data is for-
warded to the node identifying the sensor faults. The Auto-
Associative Neural Network �AANN� is found to be most appro-
priate for the sensor fault diagnostics. The AANN basically
consists of several layers of nodes which form a symmetrical
structure with a bottleneck. The number and configuration of the
nodes on either side of the bottleneck layer are identical. Several
test were carried out to validate the performance of the node in
isolating the faulty sensors. Bias ranging from 4� to 15� for
respective instruments were used to generate the faulty sensor
data. A sample of a bias implanted in the HPC �Exit� pressure
sensor is shown in Fig. 7. The bias levels have been correctly
identified by the network in all the cases. The small deviations in
the identified values are mainly due to the measurement noise. It
was observed that, small levels of bias which are close to noise
levels are more difficult to isolate.

The hybrid model attempts to combine the strengths of two

Fig. 7 Results from L2N2 node „Sensor bias detection…
different techniques to create a more robust diagnostics model.
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The ANNs are known to have good classification properties and
also the ability to represent a complex function which is otherwise
difficult to solve analytically. The hybrid system developed has
reduced the total run time of the fault diagnostics model signifi-
cantly. The reduction in the run time gives the opportunity for the
diagnostics model to be run several times to ascertain the fault
identified.

The long run times of the initial GA based diagnostics model
was a discouraging factor in the implementation of the model.
However, the HDM reduces the overall runtime which makes is
possible to run the model several times to increase the confidence
in the output. The FCC could suggest more than one fault class
�depending on the CF of TERMINAL node� to be explored by the
GA model. In a test case, the FCC suggested five fault classes to
be explored �instead of 28�. The GA diagnostics model uses
probabilistic transition rules and, therefore, it is also possible that
occasionally the model detects the faults in other fault classes
erroneously, especially the competing fault classes, this is attrib-
utable mainly to the randomness in the application of the GA
operators coupled with the measurement noise and model inaccu-
racies. The GA based diagnostics model was ran 60 times and it
has identified the FC-10 to have the faulty components shown in
Fig. 8.

A distribution of the faults quantified by the GA based diagnos-
tics model is shown in Fig. 9. It can be seen that the average of the
deviations are close to the implanted values and also the extreme
values are within the acceptable limits. It is more important to
identify the faulty component more accurately than the actual
quantification of the fault as on most occasions the remedial ac-
tion might be the same. E.g., if the actual fault had a 2% drop in
compressor efficiency and the diagnostics model detected 2.5%,
the corrective action remains unchanged.

Figure 10 shows a comparison of the overall runtimes for vari-
ous schemes taken for the ICR WR21 engine. The MOPA based
diagnostics model developed initially took �22 h for conver-
gence. The IFDM1 �with 25% RSM� took about 18 h and the
IFDM2 �with 50% RSM� took close to 12 h. The HDM took

Fig. 8 Results from multiple runs of HDM
Fig. 9 Distribution of fault quantification
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about 2 h to converge to a solution. It is ten times faster than the
initial model developed. In fact this time can further be reduced if
the terminal node can suggest only one fault class to be searched
�in the present case it has suggested five Fault classes�.

Comparison with Other Methods
In the present study and related studies in the past, the GA

based engine diagnostics technique has been tested quite exten-
sively for various combinations of component faults and instru-
mentation faults while varying the level of noise. It has been
observed that the technique has certain advantages when com-
pared with other techniques. One of the main advantages is that
the technique is robust and consistent in the face of instrument
noise and also the implementation of the Sensor Fault Detection
and Accommodation is simple. The GA based method works with
a group of solutions and once a reasonably close solution is iden-
tified, further refinement is possible. The GA based technique has
the ability to detect very small deviations in component perfor-
mance parameters due to its solution refinement capability. One
major limitation in the implementation of the technique, is the
long time taken for the algorithm to converge. While the initial
GA based methods �9,10� took several hours to converge, the
hybrid method developed by the authors has been successful in
reducing the run times significantly ��10–12 times�. However,
the run time still remains large when compared with other tech-
niques. A comparison of four different diagnostics method was
conducted using the WR21 performance code and a sample result
is presented in Table 4. It is evident that the GA based method
scores over the other methods in identifying the fault levels which
are very small.

A comparison of the overall fault identification capability was
obtained by introducing the same set of one hundred faults to the
four different diagnostics techniques. It can be observed from Fig.
11 that the GA based technique has been able to successfully
identify the faults in almost 95% of the cases.

Fig. 10 Comparison of run times for different schemes

Table 4 Comparison of different diagnostics techniques

Method

Component-LPC Component-HPT

RMS Error� � � �

Fuzzy Logic −1.0 −2.6 −0.2 1.3 0.83
Gas Path Analysis −0.82 −2.1 −1.1 1.2 1.29
Neural Network −0.95 −2.87 −0.8 1.5 0.45
Genetic Algorithm −1.12 −3.11 −0.56 1.88 0.16

*Fault Implanted. Percentage Deviation in: LPC: �: −1.2% �: −3.0% Percentage

Deviation in: HPT: �: −0.6% �: 1.8%
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Large deviations in component performance parameters have
been identified by all the techniques correctly with comparable
RMS errors. However, the GA based technique has been able to
identify more faults of small magnitudes and, therefore, has been
shown to have identified a higher percentage of faults for the
given sample data.

Conclusion
In this paper a novel method of combining the ANN and GAs

have been examined. Though the diagnostic model based purely
on the GA had merit but was reported to have long run times and,
therefore, necessitated modification in order to be implemented
for engine fault diagnostics. Despite research in the various meth-
ods for engine fault diagnostics, there is still no “magic formula”
which can effectively address all issues. One way to approach the
problem is to try and offset the limitations of one technique with
the strength of the other. The hybrid model developed, to an ex-
tent, has attempted to bridge this gap. The results obtained were
encouraging and further investigation is being carried out to make
it more efficient.

Nomenclature
� � flow capacity
� � efficiency
� � small change
J � objective function
� � standard deviation for noise

Abbreviations

Fig. 11 Comparison of accuracy of fault detection
RBF � radial basis function
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AANN � auto associative neural network
ANN � artificial neural network

CF � confidence factor
FC � fault class

FFBPNN � feed forward back propagation neural network
GA � genetic algorithm

GPA � gas path analysis
HDM � hybrid diagnostics model
HPC � high pressure compressor
ICR � inter-cooled recuperated

NNN � nested neural network
FCC � fault class classifier
RSM � response surface method
MLP � multi-layer perceptron
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