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Abstract—In a recent work it is shown that importance sampling
can be avoided in the particle filter through an innovation
structure inspired by traditional nonlinear filtering combined
with optimal control formalisms. The resulting algorithm is
referred to as feedback particle filter.

The purpose of this paper is to provide a comparative study of
the feedback particle filter (FPF). Two types of comparisons are
discussed: i) with the extended Kalman filter, and ii) with the
conventional resampling-based particle filters. The comparison
with Kalman filter is used to highlight the feedback structure of
the FPF. Also computational cost estimates are discussed, in terms
of number of operations relative to EKF. Comparison with the
conventional particle filtering approaches is based on a numerical
example taken from the survey article on the topic of nonlinear
filtering [2]. Comparisons are provided for both computational
cost and accuracy.

A secondary purpose of this paper is to provide a summary of the
FPF algorithm, that can aid practitioners to rapidly implement
the algorithm. A detailed algorithm (pseudo-code) is included,
and compared against an EKF algorithm. Such comparisons also
help highlight the feedback structure of the FPF algorithm.

I. INTRODUCTION

In a recent work, we introduced a new feedback control-based
formulation of the particle filter for the nonlinear filtering
problem [20], [18]. The aim of this paper is to describe, in a
comparative manner, some results on theory and applications
of the feedback particle filter (FPF).

The problem under consideration is a standard continuous-time
nonlinear filtering problem:

dXt

dt
= a(Xt)+ Ḃt , (1a)

Yt = h(Xt)+Ẇt , (1b)

where Xt ∈Rd is the state at time t, Yt ∈Rm is the observation
, a( ·), h( ·) are C1 functions, and {Ḃt}, {Ẇt} are mutually
independent white noise processes of appropriate dimension.
The covariance matrix of the observation noise {Ẇt}, and that
of the process noise {Ḃt} are both assumed to be positive
definite. These matrices are denoted as R and Q, respectively
(see Table I). The function h is a column vector whose j-th
coordinate is denoted as h j (i.e., h = (h1,h2, . . . ,hm)

T ).

The objective of the filtering problem is to estimate the
posterior distribution of Xt given the history of observations,
Zt := σ(Zs : s≤ t). The posterior is denoted by p∗, so that for
any measurable set A⊂ Rd ,∫

x∈A
p∗(x, t) dx = Prob{Xt ∈ A |Zt}.
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TABLE I. NOTATION FOR SIGNAL AND OBSERVATION MODELS

Signal model Observation model
State process Xt Observation process Yt
Process noise Ḃt Observation noise Ẇt
Noise covariance Q Noise covariance R

The filter is infinite-dimensional since it defines the evolution,
in the space of probability measures, of {p∗( · , t) : t ≥ 0}.
If a( ·), h( ·) are linear functions, the solution is given by
the finite-dimensional Kalman filter. The article [2] surveys
methods to approximate the nonlinear filter. Two approaches
described in this survey are the extended Kalman filter and the
particle filter.

Feedback particle filter (FPF) is a novel algorithm for nonlinear
filtering that is based on the principle of feedback (as the EKF
algorithm is). The FPF algorithm, however, is applicable to
a general class of nonlinear non-Gaussian filtering problems.
Nonlinearity here refers to the nonlinearity of the functions a(·)
and h(·) in the signal and the observation models. The ‘non-
Gaussianity’ refers to the posterior distribution being non-
Gaussian. The FPF algorithm was introduced in [20], [18].
In the present paper, we discuss theory and applications of the
FPF algorithm, by providing comparisons with both the EKF
and the conventional resampling-based particle filters.

The comparison with the EKF is used to highlight the feedback
structure of the FPF algorithm. Also computational cost esti-
mates are discussed, in terms of number of operations relative
to EKF.

The comparison with the conventional particle filtering ap-
proaches is based on a numerical example taken from the
survey article [2]. Comparisons are provided for both com-
putational cost and accuracy. Consistent with the conclusions
of [2], all particle filters are able to accurately estimate the
state. However, the FPF is seen to have better accuracy at
lower computational cost, relative to the other particle filtering
approaches.

Apart from the FPF algorithm presented in this paper, there has
been growing interest in control-based approaches to nonlinear
filtering. Some related approaches appear in [3], [9], [4], [8],
[10], [12].

The remainder of this paper is organized as follows: Sec II
describes the basic FPF algorithm. Sec III provides some
comparisons with the EKF, vis-a-vis the feedback structure.
Sec IV provides a summary of the resampling based ap-
proaches to particle filtering. The numerical example appears
in Sec V, where comparisons between the various particle
filtering approaches are provided. The conclusions appear
in Sec VI.
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Fig. 1. Comparison of feedback structure: (a) feedback particle filter and (b) Kalman filter.

II. FEEDBACK PARTICLE FILTER

A. Feedback Particle Filter Algorithm

Feedback particle filter (FPF) is a controlled system. The state
of the filter is {X i

t : 1≤ i≤ N}: The value X i
t ∈Rd is the state

for the ith particle at time t. The dynamics of the ith particle
have the following gain feedback form,

dX i
t

dt
= a(X i

t )+ Ḃi
t + Kt Ii

t︸︷︷︸
(control)

(2)

where {Ḃi
t} are mutually independent white noise processes

with covariance matrix Q, and Ii
t is a modified version of the

innovation process that appears in the nonlinear filter,

Ii
t := Yt −

1
2
(h(X i

t )+ ĥ), (3)

where ĥ := E[h(X i
t )|Zt ]. In a numerical implementation, we

approximate ĥ≈ N−1
∑

N
i=1 h(X i

t ) =: ĥ(N).

The gain function K is obtained as a solution to an Euler-
Lagrange boundary value problem (E-L BVP): For j =
1,2, . . . ,m, the function φ j is a solution to the second-order
partial differential equation,

∇ · (p(x, t)∇φ j(x, t)) =−(h j(x)− ĥ j)p(x, t),∫
Rd

φ j(x, t)p(x, t)dx = 0,
(4)

where p denotes the conditional distribution of X i
t given Zt .

In terms of these solutions, the gain function is given by,

[K]l j(x, t) =
m

∑
s=1

(R−1)s j
∂φs

∂xl
(x, t) . (5)

Denoting [Dφ ] := [∇φ1, . . . ,∇φm], where ∇φ j is a column vec-
tor for j ∈ {1, . . . ,m}, the gain function is succinctly expressed
as a matrix product,

K= [Dφ ]R−1.

It is shown in [20], [17] that the FPF is consistent with the non-
linear filter, given consistent initializations p(·,0) = p∗(·,0).
Consequently, if the initial conditions {X i

0}N
i=1 are drawn from

the initial distribution p∗(·,0) of X0, then, as N → ∞, the
empirical distribution of the particle system approximates the
posterior distribution p∗(·, t) for each t.

The main computational burden of the algorithm is the com-
putation/approximation of the gain function at each time t.
In this paper, we restrict ourselves to the so-called constant
gain approximation described in the following section. A more
general class of Galerkin algorithms appears in [17].

B. Constant Gain Approximation

The gain function needs to be computed at each time. For
a fixed time t and j ∈ {1, . . . ,m}, a vector-valued function
∇φ j(x, t) is said to be a weak solution of the BVP (4) if

E [∇φ j ·∇ψ] = E[(h j− ĥ j)ψ] (6)

holds for all ψ ∈H1(R; p) where E[·] :=
∫
Rd ·p(x, t)dx and H1

is a certain Sobolev space (see [17]). The existence-uniqueness
result for the weak solution of (6) also appears in [17].

(const. gain)

Fig. 3. Approximation of the function K by its expected value E[K] (For
illustrative ease, the comparison is shown for the scalar (d = 1) case).

In general, the weak solution ∇φ j(·, t) of the BVP (6) is some
nonlinear vector-valued function of the state (see Fig. 3). The
idea behind the constant gain approximation is to find a con-
stant vector c∗j ∈Rd to approximate this function (see Fig. 3).
Precisely,

c∗j = arg min
c j∈Rd

E[|∇φ j− c j|2].

By using a standard sum of square argument, we have

c∗j = E[∇φ j].

Even though ∇φ j is unknown, the constant vector c∗j can be
obtained using (6). Specifically, by substituting ψ(x) = x =
(x1,x2, . . . ,xd) in (6):

E[∇φ j] = E[(h j− ĥ j)ψ] =
∫
Rd
(h j(x)− ĥ j) x p(x, t)dx.

In simulations, we approximate the last term using particles:

E[∇φ j]≈
1
N

N

∑
i=1

(
h j(X i

t )− ĥ j
)

X i
t ,



Algorithm 1 Feedback Particle Filter
1: Iteration At each time-step t
2: Calculate

ĥ(N) :=
1
N

N

∑
i=1

h(X i
t )

3: Calculate the const. approx. of gain function

Kt =
1
N

N

∑
i=1

(
h(X i

t )− ĥ(N)
)

X i
t ,

4: for i := 1 to N do
5: Calculate the innovation error

Ii
t = Yt −

h(X i
t )+ ĥ(N)

2
6: Propagate the particle according to the SDE

dX i
t

dt
= a(X i

t )+ Ḃi
t +Kt Ii

t

7: end for

Algorithm 2 Extended Kalman Filter
1: Iteration At each time-step t
2: Evaluate the Jacobians at X̂t

A :=
∂a
∂x

(X̂t) H :=
∂h
∂x

(X̂t)

3: Calculate the gain function:

Kt = PtHT

4: Calculate the innovation error

It = Yt −h(X̂t)

5: Propagate the mean

dX̂t

dt
= a(X̂t)+Kt It

6: Propagate the covariance

dPt

dt
= APt +PtAT +Q−KtHPt

Fig. 2. Comparison of the update step for the feedback particle filter, and the extended Kalman filter (For notational ease, a scalar-valued measurement is
assumed with observation covariance R = 1).

which gives the following constant gain approximation:

∇φ j ≈
1
N

N

∑
i=1

(h j(X i
t )− ĥ j)X i

t =: c(N)
j . (7)

Denoting C := [c(N)
1 , . . . ,c(N)

m ], where c(N)
j is a column vector

for j ∈ {1, . . . ,m}, the gain function is succinctly expressed as
a matrix product,

K=CR−1.

In the remainder of this paper, we will consider only this
constant gain approximation of the gain function.

C. Extensions of the Basic FPF Algorithm

There are two extensions of the feedback particle filter:

1. PDA-FPF: In [16], [13], we generalized the classical
Kalman filter-based probabilistic data association filter (PDAF)
to the nonlinear filtering problem with data association uncer-
tainty. The resulting filter is referred to as the PDA-FPF.

2. IMM-FPF: In [15], we generalized the classical Kalman
filter-based interacting multiple model filter (IMMF) to the
nonlinear filtering problem with model association uncertainty.
The resulting filter is referred to as the IMM-FPF.

The remarkable conclusion of both these papers is that the
FPF-based implementations retain the innovation error-based
feedback structure even for the nonlinear problem. This struc-
ture is expected to be useful because of the coupled nature
of the filtering and the data/model association problems. The
theoretical results are illustrated with numerical examples for

target tracking applications. For additional details, see [15],
[16], [13].

III. COMPARISON WITH EXTENDED KALMAN FILTER

A. Extended Kalman Filter

Extended Kalman filter (EKF) is an extension of the Kalman
filter algorithm. The algorithm is used to obtain an approximate
solution to the nonlinear filtering problem. The EKF approx-
imates the posterior distribution by a Gaussian distribution,
parameterized by its mean X̂t and the covariance matrix Pt .

To perform the update step, the EKF uses linearizations of the
signal model a(·) and the observation model h(·), evaluated at
the mean X̂t . The respective Jacobian matrices are denoted by
A := ∂a

∂x (X̂t) and H := ∂h
∂x (X̂t).

The EKF algorithm is given by,

dX̂t

dt
= a(X̂t)+Kt

(
Yt −h(X̂t)

)
, (8)

dPt

dt
= APt +PtAT +Q−KtHPt . (9)

where the Kalman gain

Kt = Pt HT R−1. (10)

Under the assumptions that the signal and the observation
models are linear and the posterior distribution is Gaussian,
the Kalman filter is the optimal solution. For non-Gaussian
and strongly nonlinear problems, the EKF algorithm is known
to perform poorly, and can suffer from divergence issues;
cf., [11].



TABLE II. NOTATION

Feedback particle filter Kalman filter
Particle state X i

t EKF estimate X̂t
FPF gain (7) Kt Kalman gain Kt
Innovation error Ii

t Innovation error It
Covariance Pt

Figure 1 provides a comparison of the feedback structure of
the EKF and FPF algorithms. A pseudo-code for the two algo-
rithms is given in Fig. 2, with notation in Table II. Although
the FPF pseudo-code is for the constant gain approximation,
the two algorithms are quite close even in the general case.
The only difference is that in the general case, the gain is
a function also of the state, as given by the solution of the
BVP (4), or its weak form (6).

B. Comparison of the Feedback Structure

In recent decades, there have been many important advances
in importance sampling based approaches for particle filtering;
cf., [5], [2], [14]. A crucial distinction in the feedback particle
filter algorithm is that there is no resampling of particles.

We believe that the introduction of control in the feedback
particle filter has several useful features/advantages:

Innovation error. The innovation error-based feedback struc-
ture is a key feature of the feedback particle filter (2). The
innovation error in (2) is based on the average value of the
prediction h(X i

t ) of the ith-particle and the prediction ĥ(N) due
to the entire population.

The feedback particle filter thus provides for a generalization
of the Kalman filter to nonlinear systems, where the innovation
error-based feedback structure of the control is preserved (see
Fig. 1). For the linear case, the optimal gain function is the
Kalman gain. For the nonlinear case, the Kalman gain is
replaced by a nonlinear function of the state (see Fig. 3).

Feedback structure. Feedback is important on account of the
issue of robustness. A filter is based on an idealized model
of the underlying dynamic process that is often nonlinear,
uncertain and time-varying. The self-correcting property of the
feedback provides robustness, allowing one to tolerate a degree
of uncertainty inherent in any model.

In contrast, a conventional particle filter is based upon impor-
tance sampling. Although the innovation error is central to the
Kushner-Stratonovich’s stochastic partial differential equation
(SPDE) of nonlinear filtering, it is conspicuous by its absence
in a conventional particle filter.

Arguably, the structural aspects of the Kalman filter have been
as important as the algorithm itself in design, integration,
testing and operation of the overall system. Without such
structural features, it is a challenge to create scalable cost-
effective solutions.

The “innovation” of the feedback particle filter lies in the
(modified) definition of innovation error for a particle filter.
Moreover, the feedback control structure that existed thusfar
only for Kalman filter now also exists for particle filters
(compare parts (a) and (b) of Fig. 1).

Does not require resampling. There is no resampling required
as in the conventional particle filter. This property allows
the feedback particle filter to be flexible with regards to
implementation and does not suffer from sampling-related
issues.

Variance reduction. Feedback can help reduce the high vari-
ance that is sometimes observed in the conventional particle
filter. Numerical results in [19] support this claim, where a
comparison of the feedback particle filter and the bootstrap
filter is provided.

Ease of design, testing and operation. On account of structural
features, feedback particle filter-based solutions are expected
to be more robust, cost-effective, and easier to debug and
implement.

C. Comparison of the Computation Time

In this section, we provide a comparison of the number of
operations required to implement an FPF algorithm, relative
to an EKF algorithm. For the FPF algorithm, a constant gain
approximation is assumed.

The comparison, tabulated in Table III, is obtained by count-
ing the number of operations – addition, multiplication and
function evaluation – to implement a single update step for a
simple scalar valued observation.

With a constant gain approximation, the number of operations
scales linearly with the number of particles N, and also with
the state dimension d. This is in contrast to EKF where the
number of operations scale as d3, in the number of dimensions.

By counting the addition, multiplication and function evalu-
ation operations, the total number of operations required to
implement the update step (per observation) in EKF is,

OEKF = 4d3 +12d2 +3d +4. (11)

For the FPF, it is

OFPF = 3Nd +6N +2d +1. (12)

Setting the total operation counts in (11) and (12) equal to
each other gives the critical number of particles,

Ncrit =
4d3 +12d2 +d +3

3d +6
, (13)

where the FPF and EKF implement the same number of
operations.

If one assumes that additions, multiplication and function eval-
uation each take the same computation time, for N = Ncrit, the
two algorithms have identical computation time requirement.
Since the number of operations scale linearly with N, the
computation time to implement the update step in FPF then
is a factor N

Ncrit
more than the computation time to implement

the update step in EKF.

The accuracy of the FPF improves as the number of particles
N increases. The computation time analysis, presented in this
section, can be used to carry out performance-computation
time trade-off studies, relative to EKF.



TABLE III. COMPARISON OF THE OPERATION COUNT (PER OBSERVATION) BETWEEN FPF AND EKF

FPF EKF
Calculation Adds Multiplies Func Eval Calculation Adds Multiplies Func Eval
h(X i

t ) 0 0 N A = ∂a
∂x (X̂t) 0 0 d2

ĥ(N) = 1
N ∑

N
i=1 h(X i

t ) N 1 0 H = ∂h
∂x (X̂t) 0 0 d

Ii
t = Yt − 1

2 (h(X
i
t )+ ĥ(N)) 2N N 0 It = Yt −h(X̂t) 1 1 1

K= 1
N ∑

N
i=1(h(X

i
t )− ĥ(N))X i

t Nd+N Nd+2d 0 K= PtHT d2 d2 +d 0
U i

t = KIi
t 0 Nd 0 Ut = KIt 0 d 0

Pt 2d3 +6d2 2d3 +3d2 1
Total Nd+4N 2Nd+N+2d+1 N Total 2d3 +7d2 +1 2d3 +4d2 +2d +1 d2 +d +2

IV. SAMPLING BASED APPROACHES

A conventional particle filter is a simulation-based algorithm
to approximate the filtering task. At time t, the state of the
filter is {(X i

t ,w
i
t) : 1 ≤ i ≤ N}: The value X i

t ∈ Rd is the state
and wi

t ∈ [0,1] is the weight, for the ith particle at time t. The
weights are assumed normalized, i.e., ∑

N
i=1 wi

t = 1. In terms of
these particles,

Prob{Xt ∈ A |Zt}=
N

∑
i=1

wi
t1{X i

t ∈ A}.

for any measurable set A⊂Rd , where 1 denotes the indicator
function. The initial set of particles

{
X i

0
}N

i=1 may be drawn
i.i.d. from the initial distribution p∗(·,0) of X0. In this case
the weights are uniform, wi

0 =
1
N .

A. Sampling Importance Resampling (SIR)

A conventional particle filter is an algorithm for evolution of
the ensemble,

(X i
t ,w

i
t)−→ (X i

t+δ
,wi

t+δ
),

as new measurements are obtained; here δ is the time-step.
This evolution is carried out in two steps:

1. Prediction: Prediction involves using the SDE model (1a) to
push-forward the particles, X i

t −→ X i−
t+δ

. This is accomplished
by numerically integrating the SDE. The weights wi−

t+δ
= wi

t .

At the end of prediction step, the particles are denoted as
(X i−

t+δ
,wi−

t+δ
).

2. Update: The update step involves application of the Bayes’
formula to update the weights. Given a new observation, Yt ,
the unnormalized weights are obtained as,

w̃i−
t+δ

= wi−
t+δ

L(Yt |X i−
t+δ

), (14)

where L(y|x) is the likelihood function, conditional probability
of observing Yt = y given Xt = x. The likelihood function may
be obtained by using the observation model (1b). The weights
at time t +δ are then obtained by normalization,

wi
t+δ

=
w̃i−

t+δ

∑
N
j=1 w̃ j−

t+δ

. (15)

This basic algorithm, known at least since 1960s (see [7]), is
known to suffer from the issue of particle degeneracy. whereby
only a few particles have insignificant weight values. This is

a problem because it reduces the effective sampling size. The
remedy is to occasionally resample in order to ‘rejuvenate’ the
particle population: That is, eliminate particles that have small
weights and reproduce particles that have larger weights.

There are several methods for resampling (see [6] for an early
reference), some of which are discussed next.

B. Occasional Resampling

Resampling is carried out periodically, every lth (discrete)
time-step; the parameter l is referred to as the lag parameter.

In the simplest form of the algorithm, one resamples new
particles from the discrete distribution specified by the en-
semble {(X1

t ,w
1
t ), . . .(X

N
t ,wN

t )}. The weights {w1
t , · · ·wN

t } are
interpreted as a probability mass function for a discrete random
variable taking values {X1

t , · · ·XN
t }. After the resampling step,

the particles have identical weight 1
N .

One drawback of this simple algorithm is that random resam-
pling introduces additional noise into the simulation. This is
a problem because it can lead to large variance and in some
cases, numerical instabilities [4].

To address this issue, one may chose to do resampling in a
deterministic manner. An algorithm for this is described next.

C. Deterministic Resampling

As the name suggests, the particles are resampled in a (par-
tially) deterministic manner.

At each resampling time-step, the i-th particle is ‘branched’
ni times, where ni = bNwi

tc. This means: If ni > 0, one
creates ni copies of X i

t , and if ni = 0 then X i
t is removed.

After this deterministic step, one has Ñ = ∑
N
i=1 ni particles.

Then, Nres = N − Ñ more particles are obtained by using
random resampling. For this purpose, the residual weights are
defined as wi,res

t := wi
t − ni

N . The Nres particles are obtained
by random sampling from the discrete distribution specified
by the ensemble {(X1

t ,cw1,res
t ), . . .(XN

t ,cwN,res
t )}, where c is a

normalizing constant.

In summary, after each resampling time-step, one obtains a
total of N particles of which Ñ are deterministically obtained
from the ensemble and Nres are randomly generated. The
particles have identical uniform weight after the resampling
step.

Although these two algorithms alleviate the problem of par-
ticle degeneracy, they can introduce the problem of sample
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Fig. 4. Numerical results for a typical simulation: (a) Signal trajectory in the (x1,x2)-plane; and (b) Angular measurements for the signal trajectory.

impoverishment related to the loss of particle diversity. The
problem occurs if particles with large weights are selected for
resampling many times. In simulations, this can lead to nearly
identical values for all particles, particularly if the process
noise is small. This problem is addressed by a regularization
procedure, which is presented next.

D. Regularization

A regularized particle filter refers to the algorithm where
resampling from the discrete distribution (specified by the
ensemble {(X1

t ,w
1
t ), . . .(X

N
t ,wN

t )}) is replaced by resampling
from an absolutely continuous distribution. The continuous
distribution is generated by using a kernel density smoother,
the details for which can be found in [2], [1].

In the simulations described next, a Gaussian kernel is used.
That is the density at time t is approximated as,

p(x, t)≈
N

∑
i=1

wi
tq

ε(x;X i
t ) =: p̃(x, t)

in which qε(x; µ) := 1√
2πε

exp(− (x−µ)2

2ε
); in numerical simula-

tions, ε = 0.1 is used.

The regularization may be done at the update or the pre-
diction step. In the simulation, regularization is done at the
update step. For this regularized filter, an algorithm for accep-
tance/rejection of particles is also implemented as described
in [2].

V. NUMERICAL RESULTS

In this section, we describe the numerical results for a nonlin-
ear example problem borrowed from the survey article [2]. In
their survey article, the authors show that the particle filtering
approaches can significantly outperform the EKF.

In the present paper, we extend the comparison to now include
the FPF. We show that the FPF algorithm is both more accurate
and more computationally efficient than the other particle
filtering methods. The results are obtained using the constant
gain approximation of the gain function.

In the example problem, the dynamics describe the motion
of a ship. The ship moves with a constant radial and angular
velocity, perturbed by white noise, when it is within some
distance of the origin. If the ship drifts too far away from
the origin, a restoring force pushes it back towards the origin.
The signal model for the state process Xt = [Xt,1,Xt,2]

T ∈ R2

is described by,
dXt,1

dt
=−Xt,2 + f1(Xt,1,Xt,2)+ Ḃt,1,

dXt,2

dt
= Xt,1 + f2(Xt,1,Xt,2)+ Ḃt,2,

where Ḃt,1, Ḃt,2 are independent white noise processes, and

fi(x)
.
= γ

xi

|x|2 −Θ
xi

|x|1(ρ,∞)(|x|), i = 1,2,

where |x|=
√

x2
1 + x2

2, 1(ρ,∞) denotes the indicator function on
the set (ρ,∞)⊂R, and γ,Θ, and ρ are real-valued parameters.

Noisy angular measurements are sampled at time-intervals of
δ = 0.05, according to the observation model,

Yt = h(Xt)+θVt , (16)

where Vt are sampled i.i.d. from a standard Gaussian dis-
tribution N (0,1), independent of (X0, Ḃt) and h(x1,x2)

.
=

arctan(x2/x1). For the numerical simulations, we chose θ =
0.32, which represents approximately 18◦ of standard deviation
for the (Gaussian) observation noise.

A single trajectory along with a sequence of measurements
is depicted in Fig. 4(a)-4(b). The initial condition X0 =
(0.5,−0.5) =: x0 and the parameters γ = 2, Θ = 50, ρ = 9.
This trajectory was obtained by using a predictor-corrector
Euler scheme for time-discretization of the ODE. A fixed
discretization time-step of δ = 0.05 was used for this as well
as for all other numerical simulations reported here.

We next present the results of the numerical experiments. In
these experiments, 100 distinct signal trajectories and measure-
ment profiles were generated over the time interval [0,8.25].

For each of the 100 Monte-Carlo runs, the initial condition of
the ship’s trajectory was randomly sampled from the prior dis-
tribution p0 =N (x0,10), where x0 = [0.5,−0.5]. The process



and the observation noise was generated for each run in an
independent manner.

The filters are initialized with a prior Gaussian distribution
p0. That is, the EKF is initialized with X̂0 = x0 and P0 = 10.
For the particle filters, the initial conditions of the particles,
{X i

0}N
i=1, are randomly sampled from the distribution p0.

Table IV provides performance comparisons between the dif-
ferent particle filters, with N = 500 particles. The following
metrics are used for the comparisons:

Root mean square error (rmse): Computed as a measure of
performance over all trajectories and over all time instants,

rmse :=
1

100
1

165

100

∑
j=1

165

∑
k=1
|X j(kδ )− X̂ j(kδ )|

where X j, j = 1, · · · ,100 represents the signal trajectory,
X j(kδ ) is the true state at time instant kδ , X̂ j(kδ ) is the
state estimate obtained as a mean, and 165 is the total
number of time instances during each simulation run (δ = 0.05,
T = 165δ = 8.25).

Mean computation time: Computed as the mean time (in
milliseconds) it took to perform a single update step. The
mean is obtained over the 100 Monte-Carlo runs. The compu-
tation times are obtained by using a numerical profiler in the
PYTHON programming environment.

TABLE IV. PERFORMANCE COMPARISON

Filter Type rmse Comp. time
PF SIR 1.2902 0.690
PF Resample 1.0991 1.448
PF Resample Lag 1.0856 1.077
PF Deterministic 1.0677 1.557
Feedback PF 0.9901 0.202

The trends shown in the Table IV are consistent with the
trends reported in [2] for the particle filters. The quantitative
numbers are also quite close. The accuracy of the estimate, in
terms of the rmse, improves by using sophisticated versions
of resampling schemes. The penalty is the computation time,
which increases as the rmse improves, with the FPF being the
exception: it has the best rmse and the lowest computation time
among the particle filters. The results for the regularization
particle filter are not included because it became computation-
ally prohibitive to evaluate the Gaussian kernels for the 100
Monte-Carlo runs.

TABLE V. GAIN CAP COMPARISON

Gain Cap FPF rmse EKF rmse
8 1.0111 1.0386
9 0.9901 1.0143
10 1.0164 1.0497
15 1.0464 1.8380
20 1.0667 2.5390

We next discuss comparisons with the EKF algorithm. In
numerical implementation it was found that the gain, for
both EKF and FPF algorithm, was very large at the onset of

simulation. This led to numerical instabilities for the chosen
(fixed) discretization time-step δ = 0.05. In order to avoid
these numerical issues, the gains were capped at K = ±9 for
both the FPF and the EKF algorithms (The numbers reported
in Table V for FPF are with this gain cap). Fig. 5(a) depicts
the results from a typical simulation: part (a) provides a
comparison of the estimate obtained using the EKF and the
FPF algorithms, part (b) depicts the gains as a function of
time. Note the gains are saturated for the first two seconds,
and are within the [−9,9] range thereafter.

The gain cap of ±9 was found to be the value that avoided
the numerical instabilities and minimized the rmse for both the
EKF and the FPF algorithms. This value was found through
our investigation of the effect of the gain cap on filter perfor-
mance, with fixed δ = 0.05. The performance comparison, as
a function of gain cap, are tabulated in Table V.

We also carried out a limited set of numerical simulations with
an adaptive time-stepping scheme (without the gain cap). The
rmse values with these simulations were approximately the
same as those obtained using the gain cap of ±9.

We also investigated the accuracy of the FPF algorithm as a
function of the number of particles used. These results are
tabulated in Table VI.

Note that all the results reported here (Table IV-VI) were
obtained for the same set of 100 Monte-Carlo runs (trajectories
and measurement profiles).

TABLE VI. PARTICLE COMPARISON

# of Particles rmse Comp. time
10 1.0906 0.056
50 0.9985 0.070
100 0.9981 0.086
500 0.9901 0.202
1000 0.9883 0.346

The results with the EKF algorithm, as reported here, are not
consistent with [2]. In that paper, the EKF was reported to have
very poor performance. We found instead that the performance
of EKF was in fact comparable to FPF, and better than other
particle filtering approaches.

VI. CONCLUSIONS

In this paper, we provided some comparative studies with the
feedback particle filter (FPF). FPF is shown to provide for
a generalization of the Kalman filter to a general class of
nonlinear non-Gaussian problems. FPF inherits many of the
properties that has made the Kalman filter so widely applicable
over the past five decades, including innovation error and the
feedback structure (see Fig. 1).

Comparisons with several particle filtering algorithms are also
discussed. The results of the numerical example, taken from
the survey paper [2], are encouraging. These numerical results
show that – for this particular example problem – relative to
conventional particle filtering algorithms, the FPF algorithm
can provide better or comparable performance at a fraction of
the computational cost.
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Fig. 5. Numerical results for a typical simulation: (a) Signal, FPF, and EKF trajectories in the (x1,x2)-plane; and (b) Gain profiles with a gain cap of 9.

Feedback is important on account of the issue of robustness.
In particular, feedback can help reduce the high variance that
is sometimes observed in the conventional particle filter. Even
more significantly, the structural aspects of the Kalman filter
have been as important as the algorithm itself in design,
integration, testing and operation of a larger system involving
filtering problems (e.g., navigation systems). We expect FPF
to similarly provide for an integrated framework, now for
nonlinear non-Gaussian problems.
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