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Abstract— The relevance of the provision of QoS is taken
into account in the definition of the new network technologies
like for example Advanced Switching (AS). AS is a new fabric-
interconnect technology that further enhances the capabilities of
PCI Express, which is the next PCI generation.

In this paper we discuss the aspects that must be considered
for implementing a specific mechanism for the AS minimum
bandwidth egress link scheduler, or just MinBW scheduler. We
also propose several implementations for this scheduler, analyze
their computational complexity, and compare their performance
by simulation.

The main differentiating aspect from other interconnection
technologies that must be taken into account when implementing
the AS MinBW scheduler is that both the link-level flow control
and the scheduling are made at a Virtual Channel (VC) level.
This means that the scheduler must have the ability to enable
or disable the selection of a given VC based on the flow control
information.

Index Terms— Quality of Service (QoS), Advanced Switching,
scheduling algorithms, performance evaluation.

I. INTRODUCTION

CURRENT packet networks are required to carry not only
traffic of applications such as e-mail or file transfer,

which does not require pre-specified service guarantees, but
also traffic of other applications that requires different per-
formance guarantees, like real-time video or telephony [1].
For example, in some applications, if a packet experiences a
latency higher than a certain value, the value to the application
of the packet information may be greatly diminished or even
worthless. Moreover, a larger delay bound implies increased
burstiness of the session at the output of the scheduler, thus
increasing the buffering needed at the switches to avoid packet
losses [2]. In this line, the IEEE standard 802.1D-2004 [3]
defines 7 traffic types at the Annex G with different Quality
of Service (QoS) requirements.

Advanced Switching Interconnect, or just Advanced Switch-
ing (AS), is a new open-standard fabric-interconnect technol-
ogy for communications, storage, and embedded environments
based on PCI Express [4] that includes in its specification
mechanisms to provide the applications with QoS. PCI Express
is itself a technology that is replacing the extensively used
PCI bus. PCI Express eliminates the legacy shared bus-
based architecture of PCI and introduces an improved and
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dedicated point-to-point interconnect. AS is an extension of
PCI Express that adds additional protocols to support reliable
and efficient peer-to-peer communications and a rich set of
other capabilities. Together, PCI Express and AS have the
potential for building the next generation interconnects [5].

A key component for networks with QoS support is the
output scheduling algorithm. One of the schedulers defined
by the AS specification is the Minimum Bandwidth egress
link scheduler, or just MinBW scheduler. However, the AS
specification does not offer a particular algorithm to imple-
ment this scheduler, but only the properties it must respect.
Furthermore, one of the features added by the AS link layer
is a credit-based flow control. Flow control protocol ensures
that packets are only transmitted when there is enough buffer
space at the other end to store them, thereby guaranteeing that
no packets are dropped when congestion appears. The problem
of most well-known scheduling algorithms is that they were
designed without taking into account the existence of a flow
control mechanism.

In [6], we showed how to use the AS mechanisms to
provide applications with QoS based on bandwidth and latency
requirements. We also presented an implementation of the
MinBW scheduler, based on the Self-Clocked Weighted Fair
Queuing (SCFQ) algorithm [7]. We called this algorithm
SCFQ Credit Aware (SCFQ-CA). In this paper, we study
more deeply the considerations that must be made when
implementing the MinBW scheduler. Moreover, we review the
SCFQ-CA algorithm and propose two additional schedulers
for implementing it based on well-known algorithms: the
Weighted Fair Queuing Credit Aware (WFQ-CA) and the
Deficit Round Robin Credit Aware (DRR-CA) algorithms. We
also present a discussion about the computational complexity
of the three possibilities. Finally, we evaluate the performance
of the three schedulers in a multimedia environment. In order
to do so we employ the IEEE standard 802.1D-2004 [3] traffic
types.

The discussion on the aspects that must be considered for
implementing a specific mechanism for the MinBW scheduler
and the proposal of adapted scheduling algorithms for this
scheduler is quite significant if we take into account that PCI
Express and AS are foreseen to be the de facto standard
in lot of interconnection environments. As far as we know,
nobody has proposed previously a specific implementation for
this key component of AS. Moreover, the three credit aware
scheduling algorithms that we propose are actually appropriate
not only for being used in AS, but also for being used in any
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network that employs a link level flow control. To the best of
our knowledge, the important issue of adapting well-known
scheduling algorithms to environments that employ a link level
flow control mechanism has not yet been treated.

The structure of the paper is as follows: Section II re-
views the MinBW scheduler characteristics. In Section III, we
propose our credit aware scheduling algorithms. In Section
IV, we analyze the computational complexity of the new
schedulers. In Section V, we review how to configure the
MinBW scheduler to provide the applications with bandwidth
and latency requirements. Details on the experimental platform
and simulation scenario are presented in Section VI. Section
VII presents and analyzes the simulation results. Finally, some
conclusions and future work are given.

II. THE AS MINIMUM BANDWIDTH EGRESS LINK

SCHEDULER

AS uses Virtual Channels (VCs) to aggregate flows with
similar characteristics. The arbitration and the link-level flow
control are both made at a VC level. This means that each VC
has its own credit count for the credit-based flow control. AS
supports up to 16 unicast VCs and up to 4 multicast VCs. The
implemented unicast VC with the highest identifier is called
the Fabric Management Channel (FMC).

AS defines two schedulers to resolve between the up to
16 unicast VCs competing for bandwidth on the egress link:
The table scheduler and the MinBW scheduler. A given
implementation may choose either of them or may implement
its own proprietary mechanism. The table based scheduler
faces the problem of not working properly with variable packet
sizes, and thus, the MinBW scheduler is intended for a more
precise allocation of bandwidth regardless of packet size.

The MinBW scheduler consists of two parts: The first is a
mechanism to provide the FMC with absolute priority, ahead
of the other VCs, but with its bandwidth limited by a token
bucket. The second is a mechanism to distribute bandwidth
amongst the rest of the VCs according to a configurable set
of weights. AS does not specify an algorithm or implemen-
tation for the MinBW scheduler, but it must respect certain
properties: Work conserving, bandwidth metering, not packet
metering, minimum bandwidth guarantee, fair redistribution
of unused bandwidth and memoryless [8].

Analyzing these properties we can state that they refer to an
ideal fair queuing model. In a fair queuing system, supposing
a service rate R, N flows, with the ith flow having assigned a
weight φi, during a given interval of time, the flow i receives
a fair share bandwidth (Bi) proportional to its weight

Bi =
φi

∑V
j=1 φj

∗ R

where V is the set of flows (V ≤ N ) with data in queue during
that interval of time.

Attending to the specification, several well-known schedul-
ing algorithms exhibit the desired properties of the fair queuing
part of the MinBW scheduler: variants of Weighted Fair
Queuing (WFQ) [9] such as Self-Clocked Weighted Fair
Queuing (SCFQ) [7], and variants of Weighted Round Robin

(WRR) [10] such as Deficit Round Robin (DRR) [11]. The AS
specification also states that commonly employed schedulers
algorithms, such as simple round robin or WRR, do not exhibit
the desired properties of the MinBW scheduler and are, thus,
not suitable for a MinBW scheduler implementation.

However, the AS specification also states that, when im-
plementing the egress link scheduler, the interaction with the
credit-based flow control must be taken into account. If the
credits for a given VC have been exhausted, the VC scheduler
must treat the corresponding queue as if it were empty. This
means that the scheduler must have the ability to enable or
disable the selection of a given VC based on the flow control
information. Moreover, the scheduler is not allowed to ‘save’
bandwidth of inactive VCs for future use. Note that these
requirements do not appear in technologies with a port-based
link-level flow control mechanism like for example Gigabit
Ethernet [12].

The problem of the previously stated well-known scheduling
algorithms is that they were designed without taking into
account the existence of a flow control mechanism, and thus,
they do not consider the possibility of disabling a queue
based on the flow-control information. In the next section,
we propose several implementations for the MinBW scheduler
that fulfill all the properties that an AS MinBW scheduler must
have, including the interaction with the AS flow control.

III. IMPLEMENTING THE FAIR QUEUING MECHANISM OF

THE MINBW SCHEDULER

In this section, we present three new fair queuing scheduling
algorithms that take into account the AS credit-based flow
control. These new algorithms are based on three well-known
scheduling algorithms (WFQ, SCFQ, and DRR).

A. Weighted Fair Queuing Credit Aware

The WFQ algorithm [9] is an approximation of the General-
ized Processor Sharing (GPS) model [13]. GPS is a fair queu-
ing model based on a fluid model that provides perfect instant
fairness in bandwidth allocation. This ideal model assumes that
several packets from different queues can be simultaneously
transmitted. WFQ is a packet-by-packet algorithm that tries to
emulate the GPS model by stamping each packet that arrives
at the egress link with its departure time (virtual finishing
time) in a corresponding GPS system. The packets are then
transmitted in an increasing order of timestamp.

Let F k
i be the virtual finishing time of the kth packet from

flow i,

F k
i = max{F k−1

i , V (t)} +
Lk

i

φi

where Lk
i is the length of the kth packet and V (t) is the virtual

time of the WFQ system. The WFQ algorithm tracks the set
of queues which are active in each instant and the real time
of the system to calculate V (t).

The WFQ-CA algorithm that we propose works in the same
way as the WFQ algorithm, except in the following aspects:
When a new packet arrives at a queue, it is stamped with its
virtual finishing time if there are enough credits to transmit the
packet that is at the head of the queue. Packets are transmitted
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in an increasing order of timestamp, but only those queues
with enough credits to transmit the packet at their head are
taken into account. When a queue is inactive because of lack
of credits and receives enough credits to be able to transmit
again, its packets are restamped, from the head to the tail, as
if they had arrived in that instant.

Another aspect that must be taken into account in order
to implement WFQ as part of the MinBW algorithm is that
this algorithm uses the real time to calculate the virtual time.
Note that the real time includes the time used to transmit the
packets from the FMC VC, which are out of the control of the
fair queuing MinBW mechanism. The WFQ-CA algorithm fits
this problem by not taking into account the time employed in
sending packets from the FMC VC for calculating the virtual
time. However, this is not a trivial task because events still may
happen during that time. An event is anything that changes the
scheduler state, namely the arrival or departure of a packet,
or the arrival of a credit flow control message that changes a
queue from inactive to active.

Figure 1 shows an example of how the V (t) is calculated.
The figure shows 7 events occurring in the system and two
“gaps” (shadowed boxes) in the time line due to the transmis-
sion of packets from the FMC VC. The t line represents the
real time of the system. The t′ line represents the time that is
actually being used to calculate V (t) and when the events are
considered to happen. Note that the events that happen during
a gap time are considered to happen at the beginning of that
gap.

Fig. 1. Time line in the WFQ-CA implementation of the MinBW scheduler.

B. Self-Clocked Weighted Fair Queuing Credit Aware

The SCFQ algorithm [7] defines fair queuing in a self-
contained manner and avoids using a hypothetical queuing
system as reference to determine the fair order of services.
This objective is accomplished by adopting a different notion
of virtual time. Instead of linking virtual time to the work
progress in the GPS system, it uses a virtual time function
which depends on the progress of the work in the actual
packet-based queuing system. Therefore, when a packet ar-
rives, SCFQ uses the service tag (finish time in WFQ) of the
packet currently in service as the V (t) to calculate the new
packet tag. This approach offers the advantage of removing the
computation complexity associated to the evaluation of V (t)
that may make WFQ unfeasible in high-speed interconnection
technologies.

The SCFQ-CA algorithm that we propose works in the same
way as the SCFQ algorithm, except in the following aspects:
When a new packet arrives at a queue, it is stamped with its

service tag only if it is at the head of the queue and there are
enough credits to transmit it. When a packet is transmitted,
if there are enough credits to transmit the next packet, this
packet is stamped with its service tag. When a queue is inactive
because of lack of credits and receives enough credits to
transmit again, the packet at the head of the queue is stamped
with its service tag.

Note that Fcurrent ≤ F k−1
i if there is at least one packet

waiting, or being transmitted, in the queue i. This permits us
to wait to stamp a packet until it reaches the queue head,
avoiding the restamping process of the WFQ-CA algorithm,
and thus simplifying the scheduling process.

C. Deficit Round Robin Credit Aware

The DRR algorithm [11] associates each queue with a
quantum and a deficit counter. The quantum assigned to a
queue is proportional to the bandwidth assigned to that queue.
The deficit counter is set to 0 at the start. The scheduler
visits sequentially each queue. For each queue, the scheduler
transmits as many packets as the quantum allows. When a
packet is transmitted, the quantum is reduced by the packet
size. The unused quantum is saved in the deficit counter,
representing the amount of quantum that the scheduler owes
the queue. At the next round, the scheduler will add the
previously saved quantum to the current quantum. When the
queue has no packets to transmit, the quantum is discarded,
since the flow has wasted its opportunity to transmit packets.

The DRR-CA algorithm that we propose works in the same
way as the DRR algorithm, except in the following aspects: A
queue is considered active only if it has at least one packet to
transmit and if there are enough credits to transmit the packet
at the head of the queue. When a packet is transmitted, the next
active queue is selected when any of the following conditions
occurs:

• There are no more packets from the current queue or there
are not enough flow control credits for transmitting the
packet that is at the head of the queue. In this case, the
current queue becomes inactive, and its deficit counter
becomes zero.

• The remaining quantum is less than the size of the packet
at the head of the current queue. In this case, its deficit
counter becomes equal to the accumulated weight in that
instant.

IV. COMPLEXITY AND LATENCY CONSIDERATIONS

An ideal scheduling algorithm implemented in a high
performance network with QoS support should have good
properties, but also have a simple computational complexity
in order to achieve a good performance. “Sorted-priority”
algorithms, like WFQ and SCFQ, are known to offer very
good delay [2]. However, this family of algorithms suffers
from two major problems. The first problem is that these
algorithms require processing at line speeds for tag calculation
and tag sorting. In other words, each time a packet arrives at
a node, its time tag is calculated and the packet is inserted at
the appropriate position in the ordered list of packets waiting
for transmission. This means that these algorithms require
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at least the complexity of a search algorithm in the list of
queued packets: O(log(N)), where N is the maximum number
of packets at the queue, or if the buffers are not shared,
O(log(J)), where J is the number of active flows. The second
problem that may happen in the sorted-priority approach is
that, since the time tag is an increasing function of the time
and depends on a common-reference virtual clock, which in
turns reflects the value of the time tag of previously served
packets, the virtual clock cannot be reinitialized to zero until
the system is completely empty and all the sessions are idle.
In other words, it is impossible to reinitialize the virtual clock
during the busy period, which, although statistically finite (if
the traffic is constrained), can be extremely long, especially
given that most communication traffic has been shown to
exhibit self-similar patterns which lead to heavily tailed buffer
occupancy distributions.

Therefore, for practical implementation of sorted-priority
algorithms, very high-speed hardware needs to be designed to
perform the sorting, and floating-point units must be involved
in the computation of the time tags. This, of course, can be
done, but at a great cost and with very limited scalability. As
stated before, the SCFQ algorithm avoids the emulation of
a GPS system to maintain the virtual time. This reduces the
computational complexity of the tag calculation. Therefore, the
computational complexity of the SCFQ algorithm is lower than
the complexity of the WFQ algorithm. However, the latency of
the WFQ algorithm does not depend on the number of flows
sharing the same egress link. In a SCFQ scheduler, however,
the latency is a linear function of the maximum number of
flows sharing the egress link [2].

On the other hand, a well-known problem of the WRR
and DRR algorithms is that the latency depends on the frame
length. The frame length in these algorithms is defined as the
sum of all the weights in the WRR algorithm or the quantums
in the DRR algorithm. The longer the frame is, the higher
the latency and the worse the fairness. In order for DRR
to exhibit lower latency and better fairness, the frame length
should therefore be kept as small as possible. Unfortunately,
given a set of flows, it is not possible to select the frame
length arbitrarily. According to the implementation proposed
in [11], DRR exhibits O(1) complexity provided that each
flow is allocated a quantum no smaller than the Maximum
Transfer Unit (MTU). Moreover, the calculations made by this
algorithm are quite simple and do not involve floating-point
units. As observed in [14], removing the minimum quantum
per flow hypothesis would entail operating at a complexity
which can be as large as O(N). Note that this restriction affects
not only the weight assigned to the smallest flow, but to the
rest of the flows in order to keep the proportions between
them.

The credit aware versions that we propose of the SCFQ
and DRR algorithms have a quite similar complexity than
the original ones. However, the WFQ-CA version adds the
complexity of the restamping process, which may be a very
costly process. Furthermore, when considering the complexity
and latency performance of the WFQ-CA and SCFQ-CA
algorithms, it must be taken into account that in AS the
scheduling is made at a VC level. This involves, for example,

that the tag sorting process is quite simpler than in other
environments, where each flow is considered separately. In AS,
the scheduler must consider only the packets at the head of
each active VC. When a packet from a given VC is transmitted,
the next packet in the same VC must be inserted in the sorted
list of eligible packets. Therefore, in AS the maximum number
of packets that the scheduler must consider is twenty (20
VCs per port using a FIFO discipline). Note that, in those
environments where the scheduling is made at a flow level, the
maximum number of packets that must be considered can be
extremely higher. Regarding the latency performance, it must
be taken into account that the maximum number of active VCs
competing for the egress link is also twenty.

Summing up, regarding the computational complexity, the
WFQ-CA scheduler has the highest computational complexity
of the three possibilities for implementing the MinBW sched-
uler that we propose in this paper. However, it is expected to
offer the best latency performance. The SCFQ-CA algorithm is
still rather complex, but simpler than the WFQ-CA algorithm,
and is expected to offer a worse latency performance than the
latter. Finally, the DRR-CA scheduler algorithm is the simplest
option, but is expected to offer the worst latency performance.

V. PROVIDING QOS WITH THE MINBW SCHEDULER

In [6], we showed how to use the AS mechanisms to provide
applications with QoS. We distinguished three broad cate-
gories of traffic: Network Control traffic, which is high-priority
traffic to maintain and support the network infrastructure; QoS
traffic, which is traffic that has explicit minimum bandwidth,
maximum latency, and/or jitter requirements; And Best-effort
traffic, which is traffic largely insensitive to both bandwidth
and latency and only characterized by the differing priority
among each other.

First of all, in order to provide the applications with QoS, a
certain amount of Service Classes (SCs) with different specific
requirements must be specified. Generally, one network control
traffic SC, several QoS SCs, and several best-effort SCs. The
seven traffic types defined by the IEEE standard 802.1D-2004
[3] at the Annex G fit perfectly this classification. Table I
shows each traffic type, which we consider as SCs, and its
requirements.

When various flows obtain access to the AS fabric, they will
be aggregated into the SCs depending on their characteristics.
If there are sufficient VCs, we will devote a separate VC to
each existing SC. The egress link scheduler, in this paper the
MinBW, must be properly configured in order to provide a
different treatment to the VCs attending to the requirements
of their associated SCs.

We propose to assign the network control traffic to the FMC
VC in order to achieve the maximum priority. The rest of SCs
will be assigned to normal VCs and will be scheduled by the
fair queuing mechanism of the MinBW scheduler. Providing
the traffic of VC with minimum bandwidth requirements using
a fair queuing mechanism is as easy as assigning to that VC
a weight equal to the proportion of the egress link bandwidth
that it needs. Moreover, Parekh and Gallager [13] analyzed
the performance of WFQ from the standpoint of worst-case
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TABLE I

SCS SUGGESTED BY THE STANDARD IEEE 802.1D-2004.

Type SC Description
Control Network control (NC) Traffic to support the network infrastructure.

QoS Voice (VO) Traffic with a limit of 10 ms for latency and jitter.
QoS Video (VI) Traffic with a limit of 100 ms for latency and jitter.
QoS Controlled load (CL) Traffic with explicit bandwidth requirements.

Best-effort Excellent-effort (EE) Preferential best-effort traffic.
Best-effort Best-effort (BE) LAN traffic as we know it today.
Best-effort Background (BK) Traffic that should not impact other flows.

packet delay. On the basis of that study, we assign a higher
amount of bandwidth than is needed to those VCs with high
latency requirements, in order to obtain a better average and
maximum latency performance.

In order to distribute the link bandwidth between the VCs,
several things must be taken into account. First of all, it
is well-known that interconnection networks are unable to
achieve 100% global throughput. Moreover, a certain amount
of bandwidth must be reserved to the FMC VC. Therefore,
not all the bandwidth can be distributed among the QoS
and best-effort SCs, thereby requiring a certain bandwidth
to be left unassigned. Secondly, QoS traffic may be bursty
(for example a video transmission) and may require, during
short periods of time, more bandwidth than average. Therefore,
when configuring the MinBW scheduler, not all the bandwidth
that is intended to be assigned to best-effort SCs will in fact
be assigned to them, but only a small amount of bandwidth
proportional to their relative priority. The rest of the best-
effort bandwidth will also be added to this unassigned traffic.
Note that the bandwidth unused by the control and QoS SCs
would be redistributed by the MinBW scheduler among the
best-effort SCs.

Finally, an admission control protocol for the QoS SCs must
be used to provide QoS guarantees. Note that we use VCs
to isolate the traffic with specific QoS requirements from the
best-effort traffic. However, the requirements of the QoS flows
can be guaranteed only if they do not exceed the amount of
bandwidth that they have reserved.

VI. SIMULATION SCENARIO

In [6], we evaluated our proposals for providing QoS over
AS comparing the performance of the table scheduler and the
MinBW scheduler using the SCFQ-CA algorithm. In this paper
we explore and evaluate different alternatives of the MinBW
scheduler. For this purpose, we have developed a detailed
simulator that allows us to model the network at the register
transfer level, following the AS specification. First, we will
describe the main AS network model features. Secondly, the
traffic model and the load used are described. Thirdly, the
configuration of the egress link schedulers is specified. Finally,
we present and analyze the results obtained.

A. Simulated architecture

We have used a perfect-shuffle multi-stage interconnection
network with 64 end-points. In AS, any topology is possible,
but we have used this topology because it is a common solution
for interconnection in current high-performance environments.

The switches have 8 ports and use combined input-output
buffer architecture, with a crossbar to connect the buffers.
Virtual output queuing has been implemented to solve the
head-of-line blocking problem at switch level, although all the
queues of a VC share the same credit count.

In our tests, the link bandwidth is 2.5 Gb/s but, with the
8b/10b encoding scheme, the maximum effective bandwidth
for data traffic is only 2 Gb/s. We are assuming some internal
speed-up (x1.5) for the crossbar, as is usually the case in most
commercial switches. AS gives us the freedom to use any
algorithm to schedule the crossbar, and we have implemented a
Round Robin scheduler. The cut-through latency of the switch
is 145 ns, which is based on the AS StarGen’s Merlin switch
[15].

B. Traffic model

We are going to evaluate the behavior of the three credit
aware algorithms we have proposed in using the 7 traffic types
defined in the IEEE standard 802.1D-2004 as guidelines to
generate the workload. In this way, we consider 7 SCs and
each one will be assigned to a different VC, the NC SC being
assigned to the FMC.

Our intention is to evaluate the behavior of the three credit
aware algorithms we have proposed, using an admission con-
trol mechanism for controlling the QoS traffic and a relatively
small amount of control traffic (as is usually the case). The
QoS SCs should meet their requirements, whatever the load
of best-effort traffic. For that purpose, we constantly inject
a fixed amount of control traffic (NC) and QoS traffic (VO,
VI, and CL) all the time, and we start to inject best-effort
traffic (EE, BE, and BK) at 0.7 normalized network input load,
gradually increasing the amount. The amount of QoS traffic to
be injected is the maximum allowed by the admission control,
which is a simple one, based on average bandwidth. Table
II shows the percentage of traffic of each SC that each node
injects regarding the link bandwidth.

The packets are generated according to different distribu-
tions, as can be seen in Table II. VO, VI, and CL SCs are
composed of point-to-point connections of the given band-
width. In the case of the VI SC, the frames of the traces are
split into packets and transmitted with an equal distribution
through the video frame time (40 ms). The self-similar traffic
is bursty traffic generated with on/off sources, governed by
two Pareto distributions, as recommended by Jain [16]. The
packet sizes that we have used are: Up to 64 bytes for NC
traffic, 128 bytes for VO traffic, and up to 2176 bytes (the
maximum packet size in AS) for the rest of SCs.
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Fig. 2. Performance comparison of the NC SC.

Note that the traffic model that we use in this performance
evaluation is based on a multimedia environment. AS is
intended to be used in very different kind of environments,
and probably in some of them the multimedia traffic is not
the most suitable one. However, we use a wide range of traffic
behaviors, and thus the results obtained with this kind of traffic
can be generalized to other AS environments with other kind
of traffic with QoS requirements.

C. Scheduler configuration

Table II also shows the scheduler configuration. We want
to reserve 20% of link bandwidth to best-effort traffic, but
we have only assigned best-effort SCs a minimum bandwidth
(14.0625%) to establish the preference between them. Thus,
we have left 18.75% of bandwidth unassigned (rest of best-
effort bandwidth + expected amount of control traffic +
expected amount of lost network bandwidth). The remaining
bandwidth has been distributed between the QoS SCs. We
will inject the same amount of traffic of the three QoS SCs
considered, but we have assigned a 33% weight more to VO
SC due to its higher latency requirements [13].

In the case of the DRR-CA implementation of the MinBW
scheduler, the VC that accommodates the BK SC, which is the
VC with the minimum bandwidth requirement, is assigned a
quantum that corresponds to 34 credits (the maximum packet
size), which ensures that at least one packet is going to be
transmitted when a given VC is selected. The rest of VCs are
assigned a proportional quantum.

TABLE II

INJECTED TRAFFIC AND MINBW CONFIGURATION.

Injected traffic MinBW C.
SC Bandwidth % Traffic pattern Weight
NC 1 self-similar -
VO 20.3125 64KB/s CBR 0.265625
VI 20.3125 750 KB/s MPEG-4 traces 0.203125
CL 20.3125 750 KB/s CBR 0.203125
EE 0 - 25.4 self-similar 0.09375
BE 0 - 25.4 self-similar 0.03125
BK 0 - 25.4 self-similar 0.015625

Total 61.9 - 138.1 0.8125

VII. SIMULATION RESULTS

In this section, we show the performance that our three
scheduler implementations provide to the different SCs. We
perform simulations at different input loads. For each simula-
tion we obtain the normalized average throughput, the average

packet latency, and the maximum packet latency of each flow.
Moreover, we obtain the maximum jitter for the connection
oriented flows (VO, VI, and CL SCs). We obtain statistics
per SC aggregating the throughput of all the flows of the
same SC, obtaining the average value of the average latency,
and the maximum latency and the maximum jitter of all the
flows of the same SC. Note that the maximum latency and
the maximum jitter shows the behavior of the flow with the
worst performance. Figures 2, 3, and 4 show the average values
and the confidence intervals at 90% confidence level of ten
different simulations performed at a given input load of these
statistics.

Figure 2 shows the normalized throughput, average latency,
and maximum latency performance of the three schedulers
for the NC SC. This SC obtains all the bandwdith that
it injects and a low latency. All the schedulers provide a
similar performance for this SC because in the three cases
this SC is assigned to the FMC, and thus, to the strict priority
mechanism.

Figure 3 shows the normalized throughput, average latency,
maximum latency, and maximum jitter performance of the
three schedulers for the QoS SCs. It can be seen that these SCs
obtain all the bandwidth they inject. Note that we have used a
control admission protocol in order to make sure that these SCs
do not inject more traffic than they have reserved. The latency
and jitter of these SCs grow slightly with the load until they
reach a certain value. Once this value is reached the latency
remains more or less constant. Note that the latency and jitter
performance provided by the DRR-CA scheduler is rather
worse than the provided by the other two schedulers. The
average latency provided by the SCFQ scheduler is slightly
worse than the provided by the WFQ-CA scheduler. However,
the maximum latency and jitter performance are quite similar.

Another difference among the schedulers is that the DRR-
CA algorithm is affected negatively for the variable bit rate
of video traffic (the VI SC obtains a worse latency than the
CL SC having assigned the same amount of bandwidth). This
is not the case for the WFQ-CA and SCFQ-CA proposals.
Note also that the control traffic obtains a worse latency than,
for example, the voice traffic because control traffic must be
emulated using self-similar traffic, which is more difficult to
handle than the CBR traffic used for the voice traffic. Finally,
the VO SC obtains a better latency than the VI and CL SCs
because, in order to fulfill its latency requirements, we have
assigned it more bandwidth than it strictly requires.

Figure 4 shows the normalized throughput and average
latency of the three schedulers for the best-effort SCs. Contrary
to the rest of SCs that obtain all the bandwidth they inject,
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Fig. 3. Performance comparison of the QoS SCs (VO, VI, and CL).

these SCs do not yield a corresponding result when the
network load is high (around 85%). This figure also shows
that the average latency of these SCs grows with the load.
Note, however, that the three best-effort SCs do not obtain
the same performance. They obtain a different throughput and
average latency according to their different priority.

Summing up, the three proposed algorithms are able to
provide control and QoS SCs with the required throughput, and
to provide best-effort SCs with a throughput proportional to
their priority. However, the three schedulers provide a different
latency performance. The DRR-CA algorithm, which presents
the lowest computational complexity, offers the worst latency
results. Moreover, the latency and jitter provided by this sched-
uler depends on the frame length, which may be quite longer
than in this scenario. Therefore, if we want to provide QoS
based on latency or jitter requirements, the DRR-CA option
may not be the most appropriate. On the other hand, if we
want to provide QoS based only on bandwidth, the DRR-CA
algorithm is probably the best option due to its computational
simplicity. The WFQ-CA algorithm provides the best latency
performance. However, this is the scheduler with the highest
computational complexity among the three options. Therefore,
if we want to provide QoS based on bandwidth, latency and
jitter requirements, the SCFQ is probably the best option
among the three proposed implementations of the MinBW
scheduler. This scheduler provides a good latency performance
with an affordable computational complexity.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have reviewed the main aspects that must
be taken into account to implement the AS MinBW scheduler.
In AS, the link-level flow control and the scheduling are both
made at a VC level. This means that the scheduler must have

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4

WFQ−CA
SCFQ−CA
DRR−CA

Global Input Load

E
E

N
or

m
.

th
ro

ug
hp

ut

 0.1

 1

 10

 100

 1000

 0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4

WFQ−CA
SCFQ−CA
DRR−CA

Global Input Load

E
E

A
v.

la
te

nc
y

(m
s)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4

WFQ−CA
SCFQ−CA
DRR−CA

Global Input Load

B
E

N
or

m
.

th
ro

ug
hp

ut

 0.1

 1

 10

 100

 1000

 0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4

WFQ−CA
SCFQ−CA
DRR−CA

Global Input Load

B
E

A
v.

la
te

nc
y

(m
s)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4

WFQ−CA
SCFQ−CA
DRR−CA

Global Input Load

B
K

N
or

m
.

th
ro

ug
hp

ut

 0.1

 1

 10

 100

 1000

 0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4

WFQ−CA
SCFQ−CA
DRR−CA

Global Input Load

B
K

A
v.

la
te

nc
y

(m
s)

Fig. 4. Performance comparison of the best-effort SCs (EE, BE, and BK).

the ability to enable or disable the selection of a given VC
based on the flow control information.

Moreover, we have proposed three new versions of well-
known scheduling algorithms that accomplish all the properties
that the AS MinBW scheduler must have, including the inter-
action with the AS flow control. Note that these algorithms can
be used not only to implement the AS MinBW scheduler, but
also in any network technology with a queue-based link-level
flow control that takes into account each queue separately.

We have called these algorithms WFQ Credit Aware (WFQ-
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CA), SCFQ Credit Aware (SCFQ-CA), and DRR Credit Aware
(DRR-CA). In the SCFQ and DRR cases the adaptation
of these well-known scheduling algorithms to the MinBW
scheduler is more or less simple. However, in the case of the
WFQ, the solution is not trivial. Moreover, we have studied
the computational complexity of the three proposals.

We have evaluated the performance of our proposals in a
multimedia scenario using IEEE standard 802.1D-2004 [3]
traffic types. Simulation results show that if we want to provide
QoS based on bandwidth, latency and jitter requirements, the
SCFQ is probably the best option among the three proposed
implementations of the MinBW scheduler. This scheduler
provides a good latency performance with an affordable com-
putational complexity.

A possible limitation of this paper is that we have studied
the computational complexity of the algorithms that we pro-
pose in a rather general way. A deeper study may allow to
offer estimates about the silicon area required to implement
the schedulers, and the arbitration time that they would require.
Moreover, as well as future work, we think that a study about
the effect of a link-level flow control over the analytical models
proposed for the well-known scheduling algorithms would be
positive. It would be also positive to propose more credit aware
versions of other well known scheduling algorithms. Finally,
the comparison of the QoS scheme that we propose with other
schemes like the proposed by the Differentiated Services [17]
model would be interesting.
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